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Abstract. The general asymmetric TSP with triangle inequality is known to be ap-

proximable only within logarithmic factors. In this paper we study the asymmetric

and symmetric TSP problems with bounded metrics, i.e., metrics where the distances

are integers between one and some constant upper bound. In this case, the problem

is known to be approximable within a constant factor. We prove that it is NP-hard

to approximate the asymmetric TSP with distances one and two within 321/320 − ε

and that it is NP-hard to approximate the symmetric TSP with distances one and two

within 741/740 − ε for every constant ε > 0.

Recently, Papadimitriou and Vempala announced improved approximation hard-

ness results for both symmetric and asymmetric TSP with graph metric. We show that

a similar construction can be used to obtain only slightly weaker approximation hard-

ness results for TSP with triangle inequality and distances that are integers between

one and eight. This shows that the Papadimitriou-Vempala construction is “local” in

nature and, intuitively, indicates that it cannot be used to obtain hardness factors that

grow with the size of the instance.
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List of symbols

δ Greek delta

ε Greek epsilon

ν Greek nu

b left floor sign

c right floor sign

§ section sign
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1 Introduction

A common special case of the Traveling Salesman Problem (TSP) is the metric

TSP, where the distances between the cities satisfy the triangle inequality. The

decision version of this special case was shown to be NP-complete by Karp [13],

which means that we have little hope of computing exact solutions in polynomial

time. Christofides [7] has constructed an elegant algorithm approximating the met-

ric TSP within 3/2, i.e., an algorithm that always produces a tour whose weight is

at most a factor 3/2 from the weight of the optimal tour. For the case when the

distance function may be asymmetric, the best known algorithm approximates the

solution within O(log n), where n is the number of cities [12]. As for lower bounds,

the PCP Theorem [1] and a result due to Papadimitriou and Yannakakis [16] to-

gether imply that there exists some constant such that it is NP-hard to approximate

TSP where the distances are constrained to be either one or two—note that such

a distance function always satisfies the triangle inequality—within that constant.

This hardness result was improved by Engebretsen [9], who proved that it is, for

every constant ε > 0, NP-hard to approximate TSP with distances one and two

within 2805/2804 − ε for the asymmetric and 5381/5380 − ε for the symmetric,

respectively, version of the problem. Böckenhauer and Seibert [5] considered the

symmetric TSP with distances one, two and three, and proved a lower bound of

3813/3812 − ε. For a discussion of bounded metric TSP, see also Trevisan [17]. It

appears that the metric TSP lacks the good definability properties which seem to be

needed for proving strong inapproximability results. Therefore, any new insights

into explicit lower bounds here are of considerable interest.

Papadimitriou and Vempala [14] recently announced stronger approximation

hardness results for the asymmetric and symmetric versions of the TSP with graph

metric, but left the case of TSP with bounded metric open. However, their original

proof contained an error influencing the explicit constants. A new proof with the
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new constants of 117/116 − ε and 220/219 − ε, respectively, was announced by

Papadimitriou and Vempala in May 2002 (the latest version of the paper is avail-

able from URL http://www-math.mit.edu/~vempala/papers/tspinapprox.ps). Apart

from being an interesting question on its own, it is conceivable that the special cases

with bounded metric are easier to approximate than the cases when the distance be-

tween two points can grow with the number of cities in the instance. Indeed, the

asymmetric TSP with distances bounded by B can be approximated within B by

just picking any tour as the solution and the asymmetric TSP with distances one

and two can be approximated within 4/3 [4]. The symmetric version of the latter

problem can be approximated within 7/6 [16]. Very recently, Berman and Karpin-

ski [2] announced an improved algorithm, with approximation ratio 8/7, for the

latter problem.

Definition 1.1. The Asymmetric Traveling Salesman Problem (ATSP) is the fol-

lowing minimization problem: Given a collection of cities and a matrix whose

entries are interpreted as the distance from a city to another, find the shortest tour

starting and ending in the same city and visiting every city exactly once.

Definition 1.2. (1,B)-ATSP is the special case of ATSP where the entries in the

distance matrix obey the triangle inequality and the off-diagonal entries in the

distance matrix are integers between 1 and B. (1,B)-TSP is the special case of

(1,B)-ATSP where the distance matrix is symmetric.

In this paper, we prove that it is, for any constant ε > 0, NP-hard to approximate

(1,2)-ATSP within 321/320 − ε (Corollary 2.2), and that it is, for any constant

ε > 0, NP-hard to approximate (1,2)-TSP within 741/740 − ε (Corollary 3.1).

This shows that the currently best known bounds for TSP with bounded metrics

are, in some sense, not that far from the best currently known bounds for general

TSP with triangle inequality. Specifically, the bounds for TSP with graph metric
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announced by Papadimitriou and Vempala in May 2002 can be written as 1 + ε,

where ε ≈ 0.01 for the asymmetric TSP and ε ≈ 0.005 for the symmetric TSP. We

show, on the other hand, bounds for (1,B)-(A)TSP that are of the same form but

with ε ≈ 0.003 and ε ≈ 0.0013, respectively.

By relaxing the requirement on the “boundedness” of the metric, i.e., by al-

lowing some larger, but still constant, B in the (1,B)-(A)TSP problem, the actual

constants in the approximation hardness results for TSP with bounded metrics can

be made even closer to the constants obtained by Papadimitriou and Vempala. In

fact, we prove in this paper that a slight modification to the recent construction

of Papadimitriou and Vempala shows that it is, for any constant ε > 0, NP-hard

to approximate (1,8)-ATSP within 135/134 − ε (Theorem 5.1) and that it is, for

any constant ε > 0, NP-hard to approximate (1,8)-TSP with 389/388 − ε (The-

orem 6.1). In a preliminary version of this paper [10], we erroneously claimed

slightly better bounds.

The proofs of our approximation hardness results follow by reduction from the

problem Hybrid introduced by Berman and Karpinski [3]. Another way to im-

prove our bounds is therefore to establish stronger approximation hardness results

for Hybrid. Some such progress has recently been reported by Chlebíková and

Chlebík [6].

2 The approximation hardness of (1,2)-ATSP

As mentioned above, we prove our hardness results by reduction from the prob-

lem Hybrid, introduced by Berman and Karpinski [3] to prove hardness results for

special cases of several combinatorial optimization problems where the number of

occurrences of every variable is bounded by some constant. Essentially, Hybrid is

the problem of maximizing, given a system of linear equations with special struc-
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ture, the number of satisfied equations. The special structure of the linear equations

in Hybrid is particularly well-suited for our reduction: The equations have either

two or three unknowns and each variable occurs exactly three times in the instance.

The main idea in the reduction is the same as in earlier reductions [9, 16];

the reduction is local and gadget based. Specifically, each equation in the Hybrid

instance is transformed into a certain subgraph of the TSP instance—a so called

gadget. Different parts of the gadget correspond to the different variables partici-

pating in the equation. The gadgets are then linked together to form a circle. By

the construction of the gadgets, there is a natural way to interpret a TSP tour in

the resulting graph as an assignment to the variables in the Hybrid instance. To

ensure that there is a certain connection between the length of the TSP tour and

the number of equations satisfied by the corresponding assignment, the parts of the

instance corresponding to the same variable are connected to each other in a certain

way.

To obtain a good approximation hardness result, the gadgets must, loosely

speaking, contain as few nodes as possible. On the other hand, the major chal-

lenge in the proof of correctness is to prove that every TSP tour in the resulting

graph can be interpreted as an assignment to the variables in the Hybrid instance

with the property that the number of satisfied equations is connected to the cost of

the tour. Such connections are usually easier to establish when the gadgets con-

tain more nodes. In this work, we are able to improve the approximation hardness

constants by, firstly, observing that the Hybrid instances actually have even more

structure than is explicitly stated by Berman and Karpinski [3] and, secondly, using

gadgets with few nodes. This requires a fairly involved argument to establish that

our reduction is correct.
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2.1 The Hybrid problem and its connection to TSP

In their paper on approximation hardness of bounded occurrence instances of sev-

eral combinatorial optimization problems, Berman and Karpinski [3] introduced

the problem Hybrid and proved that it is hard to approximate.

Definition 2.1. Hybrid is the following maximization problem: Given a system

of linear equations mod 2 containing n variables, m2 equations with exactly two

unknowns, and m3 equations with exactly three unknowns, find an assignment to

the variables that satisfies as many equations as possible.

Theorem 2.1 [3]. For any constant δ > 0, there exists instances of Hybrid with

42ν variables, 60ν equations with exactly two variables, and 2ν equations with

exactly three variables such that:

1. Each variable occurs exactly three times.

2. Either there is an assignment to the variables that leaves at most δν equa-

tions unsatisfied, or else every assignment to the variables leaves at least

(1 − δ)ν equations unsatisfied.

3. It is NP-hard to decide which of the two cases in item 2 above holds.

Delving into the details of the Berman-Karpinski construction, it can be seen that

every instance of Hybrid produced by it has an even more special structure: The

equations containing three unknowns are of the form x+y+z = {0, 1}; the number

of such equations with right-hand side 0 is equal to the number of such equations

with right-hand side 1. The equations containing two unknowns are all of the form

xi + xj = 0. Moreover, the set of variables can be partitioned into classes with

the property that for each class {x1, x2, . . . , xk} of variables there are equations

xi + xi+1 = 0 (1 ≤ i < k) and one equation xk + x1 = 0.
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By rewriting the latter equations mentioned above as xi + x̄i+1 = 1 (1 ≤ i < k)

and xk + x̄1 = 1, we have established the following corollary of Theorem 2.1:

Corollary 2.1. There are instances of Hybrid with 42ν variables, 42ν equations of

the form x+ ȳ = 1 mod 2, 18ν equations of the form x+ y = 0 mod 2, ν equations

of the form x+ y + z = 0 mod 2, and ν equations of the form x+ y + z = 1 mod 2

such that:

1. Each variable occurs exactly three times, two times positively and one time

negatively.

2. Either there is an assignment to the variables that leaves at most δν equa-

tions unsatisfied, or else every assignment to the variables leaves at least

(1 − δ)ν equations unsatisfied.

3. It is NP-hard to decide which of the two cases in item 2 above holds.

To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybrid having

the form described in Corollary 2.1 to instances of (1,2)-ATSP:

Theorem 2.2. Suppose that we are given an arbitrary instance of Hybrid with

n variables, m2,0 equations of the form x + y = 0 mod 2, m2,1 equations of the

form x + ȳ = 1 mod 2, m3,0 equations of the form x + y + z = 0 mod 2, and

m3,1 equations of the form x + y + z = 1 mod 2 such that each variable occurs

exactly three times, two times positively and one time negatively.

Then it is possible to construct in polynomial time an instance of (1,2)-ATSP,

with size polynomial in the size of the Hybrid instance, such that

1. If there is an assignment to the variables in the Hybrid instance that leaves

at most u equations unsatisfied, then there is a TSP tour of length 6n+m2,0+

m2,1 + 4m3,0 + 4m3,1 + u.
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2. From any TSP tour of length 6n+m2,0+m2,1+4m3,0+4m3,1+u, it is possible

to construct in polynomial time an assignment to the variables in the Hybrid

instance that leaves at most u equations unsatisfied.

The rest of this section is devoted to the proof of Theorem 2.2. Before turning

to that, however, let us use the theorem to establish approximation hardness of

(1,2)-ATSP:

Corollary 2.2. For any constant ε > 0, it is NP-hard to approximate (1,2)-ATSP

within 321/320 − ε.

Proof. Select δ > 0 such that (321 − δ)/(320 + δ) ≥ 321/320 − ε. From an

instance of Hybrid with the structure described in Corollary 2.1, construct an in-

stance of (1,2)-ATSP with the properties guaranteed by Theorem 2.2. Combining

Theorem 2.2 with item 2 in Corollary 2.1 shows that the constructed (1,2)-ATSP in-

stance either has a tour of length at most 6·42ν+42ν+18ν+4ν+4ν+δν = (320+δ)ν

or that every TSP tour has length at least 6 ·42ν+42ν+18ν+4ν+4ν+ (1− δ)ν =

(321 − δ)ν. Furthermore, item 3 in Corollary 2.1 states that it is NP-hard to distin-

guish those two cases. Therefore it is NP-hard to approximate (1,2)-ATSP within

(321 − δ)/(320 + δ) ≥ 321/320 − ε.

2.2 Main ideas in the proof of Theorem 2.2

To describe a (1,2)-(A)TSP instance, it is enough to specify the edges of weight

one. We do this by constructing a graph G and then let the (1,2)-(A)TSP instance

have the nodes of G as cities. The distance between two cities u and v is defined to

be one if (u, v) is an edge in G and two otherwise. To compute the weight of a tour,

it is enough to study the parts of the tour traversing edges of G. In the asymmetric

case G is a directed graph.

10



Definition 2.2. We call a node where the tour leaves or enters G an endpoint. A

node with the property that the tour both enters and leaves G in that particular

node is called a double endpoint and counts as two endpoints.

If c is the number of cities and 2e is the total number of endpoints, the weight

of the tour is c + e since every edge of weight two corresponds to two endpoints.

Conversely, any tour of weight c + e has exactly 2e endpoints.

On a high level, the (1,2)-ATSP instance in our reduction consists of a cir-

cle formed by equation gadgets representing the equations occurring in the corre-

sponding instance of Hybrid. These equation gadgets are also connected through

consistency checkers. We first show that any assignment satisfying all but u equa-

tions in the Hybrid instance can be transformed into a tour with exactly 2u end-

points. We then show that any TSP tour can be transformed by local transforma-

tions into another tour with equal or lower cost, and that it is possible to extract an

assignment to the variables in the Hybrid instance from the way that this new tour

traverses certain parts of TSP instance. This assignment satisfies all but at most

be/2c equations in the Hybrid instance, where e is the number of endpoints in the

tour.

The proof of Theorem 2.2 now proceeds by first defining the gadgets and the

consistency checkers, then defining the local transformations of an arbitrary TSP

tour, and finally describing how an assignment can be found from the resulting

tour.

2.3 Constructing a (1,2)-ATSP instance from Hybrid

The equation gadgets for equations of the form x + y + z = {0, 1} are shown in

Fig. 2; gadgets for equations of the form x + y = 0 and x + ȳ = 1 are shown in

Fig. 3. The gadget we use for equations of the form x + y + z = 0 is very similar

to the gadget used by Papdimitrou and Vempala [15]. The ticked edges in the
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gadgets correspond to the variables in the corresponding equation as indicated in

the figures. The following properties of the gadgets can be checked by exhausting

all possibilities:

Proposition 2.1. There is a Hamiltonian path from A to B in the left gadget in

Fig. 2 if and only if an even number of ticked edges is traversed and a Hamiltonian

path from A to B in the right gadget in Fig. 2 if and only if an odd number of the

ticked edges is traversed.

There is a Hamiltonian path from A to B in the left gadget in Fig. 3 if and only

if an even number of the ticked edges is traversed. There is a Hamiltonian path

from A to B in the right gadget in Fig. 3 if and only if an odd number of the ticked

edges is traversed.

The ticked edges corresponding to the same variable are joined together in a con-

sistency checker. Specifically, the ticked edges are syntactic sugar for parts of

the corresponding consistency checker. An entire consistency checker is shown

in Fig. 4. A ticked edge in the equation gadgets shown in Fig. 2 corresponds to

one of the three structures enclosed by a curve in Fig. 4. The correspondence is

such that negated variables always correspond to the part enclosed by a dashed

curve in Fig. 4—recall that each variable occurs one times negated and two times

unnegated.

Note that there is no node between the two ticked edges in the gadget cor-

responding to equations of the form x + y = 0. Instead, the edge leaving the

consistency checker corresponding to the first ticked edge is merged with the edge

entering the consistency checker corresponding to the second ticked edge as shown

in Fig. 5. This simplifies, and improves, our accounting procedure used to compute

the actual approximation hardness constant.

The equation gadgets are hooked together in a circle in such a way that the

node B in each gadget is identified with the node A in another gadget. The order of
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the gadgets is as follows: first all gadgets for equations of the form x + y + z = 1,

then the gadgets for equations of the form x + y + z = 0, and finally the gadgets

for equations containing two variables.

The connection between two gadgets corresponding to equations of the form

x+y+z = 1 is “optimized” as indicated in Fig. 6. To the left, this figure shows the

edges incident to B in one gadget and the edges leaving A in the other gadget; the

bipartite graph on the right shows how this connection is actually implemented in

our construction. This optimization improves the inapproximability factor slightly

since the total number of nodes in the graph is reduced. Also the connection be-

tween the last gadget corresponding to an equation of the form x + y + z = 1 and

the first gadget corresponding to an equation of the form x+y+z = 0 is optimized

similarly. There is one node at A in the first gadget corresponding to an equation

of the form x+ y + z = 1; this node is shared with one gadget corresponding to an

equation containing two variables.

Lemma 2.1. A graph constructed as described above from an instance of Hybrid

with n variables, m2,0 equations of the form x + y = 0 mod 2, m2,1 equations of

the form x + ȳ = 1 mod 2, m3,0 equations of the form x + y + z = 0 mod 2, and

m3,1 equations of the form x + y + z = 1 mod 2 has in total 6n + m2,0 + m2,1 +

4m3,0 + 4m3,1 nodes.

Proof. There is one consistency checker for every variable; each one of them con-

tains six nodes. Not counting the nodes inside the consistency checkers, the gadgets

for equations with two variables contain two nodes; both those nodes are shared

between two gadgets. Hence each gadget corresponding to a two-variable equation

contains, on average, one node.

Gadgets for equations of the form x + y + z = 1 as shown in Fig. 2 contain

four nodes—except for the “leftmost” one which contains one extra node that is

shared with another gadget. Similarly, gadgets for equations of the form x + y +
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z = 0 contain five nodes, two of which are shared between two gadgets—again

except for the “leftmost” gadget which contains four nodes, one of which is shared

with another gadget. Hence each gadget corresponding to a three-variable equation

contains, on average, four nodes.

2.4 Constructing a tour from an assignment

Consider an instance of Hybrid and an instance of (1,2)-ATSP constructed from

it as described in § 2.3. Let π be an assignment to the variables in the Hybrid

instance. We now describe a TSP tour corresponding to this assignment.

Consider the tour that 1) For each variable x traverses the consistency checker

corresponding to x as shown in Fig. 7a if π(x) = 0 and as shown in Fig. 7b if

π(x) = 1. 2) For each equation gadget enters each equation gadget at A, takes the

shortest possible way to B under the condition that the ticked edges are traversed as

prescribed by the traversals of the consistency checkers described above, and then

exits the equation gadget at B.

Such a tour has precisely two endpoints in each equation gadget corresponding

to an unsatisfied equation and no endpoints elsewhere. (A slight technicality arises

here, however, since the three ticked edges in a gadget corresponding to equations

of the form x + y + z = 0 cannot be simultaneously traversed—that would result

in a short cycle. Similarly, both edges in gadgets corresponding to equations of the

form x + ȳ = 1 cannot be simultaneously traversed. We resolve these issues by

defining the tour as shown in Figs. 8 and 9, thereby maintaining the property that

the tour has two endpoints for each unsatisfied equation and no other endpoints.)

The properties of the above construction can be summarized as follows:

Proposition 2.2. Consider an instance of Hybrid and an instance of (1,2)-ATSP

constructed from it as described in § 2.3. Let π be an assignment to the variables
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in the Hybrid instance that satisfies all but u equations. Then the tour constructed

as described above has exactly 2u endpoints.

2.5 Constructing an assignment from a tour

To construct an assignment from a given TSP tour, we consider how the tour be-

haves on the edges of the graph defining the TSP instance. The main idea in the

construction is that if the tour traverses a consistency gadget as shown in Fig. 7a

the corresponding variable should be given the value 0, and if the consistency gad-

get is traversed as shown in Fig. 7b the corresponding variable should be given

the value 1. Complications arise, of course, from the fact that an arbitrary TSP

tour may enter, or leave, a consistency checker somewhere in the middle. Such

traversals cannot immediately be interpreted as an assignment to the correspond-

ing variable.

Considering the equation gadgets, the ticked “edges” in Figs. 2 and 3 are not re-

ally edges since they correspond to parts of the corresponding consistency checker.

Hence a TSP tour may leave or enter a ticked “edge” in the middle—we call such

edges semitraversed. With slight abuse of notation, we also say that an occur-

rence of a literal is traversed if both of its connecting edges in the corresponding

consistency checker are traversed, untraversed if none of its connecting edges are

traversed, and semitraversed otherwise.

We resolve the problem of semitraversed occurrences by performing a se-

quence of local transformations of the given tour. These transformations convert

an arbitrary TSP tour into a TSP tour with equal or lower cost that does not con-

tain any semitraversed occurrences. From this resulting tour, an assignment can be

constructed and it can be shown that every equation that is unsatisfied under this

assignment can be associated with two unique endpoints in the TSP tour.
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2.5.1 Obtaining structure inside consistency checkers

In the first phase, we first make all bridges, i.e., all pairs of undirected edges in the

consistency checkers, traversed. Knowing that all bridges are traversed by the tour

then makes it possible to prove results about further transformations of the tour.

Lemma 2.2. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour can be

modified into a TSP tour that traverses both bridges in every consistency checker.

Moreover, this transformation can be done in polynomial time and it does not in-

crease the length of the tour.

Proof. For every bridge, it can be seen by considering all possibilities exhaustively

that any TSP tour that traverses some set E of the four connection edges can be

modified into a tour with fewer endpoints that traverses the bridge and a subset of

the edges in E. The less obvious cases are shown in Fig. 10.

Lemma 2.3. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour that

traverses both bridges in every consistency checker can be modified into a TSP

tour where the consistency checkers are traversed as shown in Figs. 7, 11, 12a–d,

and 13. Moreover, this transformation can be done in polynomial time and it does

not increase the length of the tour.

Proof. The assumption that the TSP tour traverses both bridges in every con-

sistency checker implies that the consistency checkers are traversed as shown in

Figs. 7, 11, 12, and 13. Without increasing the number of endpoints in the tour, we

can replace the traversals shown in Figs. 12e, g and i with the traversal shown in

Fig. 12a; and the ones shown in Figs. 12f, h and j with the one shown in Fig. 12b.
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2.5.2 Removing semitraversals

The transformations described in this section have the purpose of removing all

semitraversals from the TSP tour. This is performed by a two-step procedure. First,

we take care of variables x for which the negative occurrence of x is semitraversed.

After this procedure, the only possible remaining semitraversals are on positive oc-

currences of variables. An exhaustive case analysis then shows that it is possible to

get rid of also those semitraversals without increasing the total number of endpoints

in the graph.

Lemma 2.4. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour that

traverses the consistency checkers as shown in Figs. 7, 11, 12a–d, and 13 can be

transformed into a tour where the consistency checkers are traversed as shown in

Figs. 7, 11, and 13. Moreover, this transformation can be done in polynomial time

and it does not increase the length of the tour.

Proof. We need to prove that we can get rid of traversals shown in Figs. 12a–d. To

this end, consider an arbitrary consistency checker traversed as shown in Fig. 12c.

The corresponding variable y occurs negatively in some equation x + ȳ = 1. We

claim that it is possible to modify the tour, without increasing the total number

of endpoints, in such a way that the considered consistency checker is traversed

either as in Fig. 7a or as in Fig. 11a. In particular, first suppose that the gadget is

traversed as shown in Fig. 14a, i.e., that none of the two edges leading to node B

is traversed. Then we can remove two endpoints inside the gadget by traversing

the consistency checker for ȳ as shown in Fig. 7a. This may introduce at most two

endpoints elsewhere, so the net effect is that the total number of endpoints is not

increased. Secondly, if there is one traversed edge leading to node B, the equation

gadget must be traversed as shown in Fig. 14b. We can then change the traversal
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inside the gadget so that the upper edge leaving node A in Fig. 14b is traversed

instead of the lower edge. This does not change the total number of endpoints in

the graph and it makes the consistency checker for ȳ traversed as in Fig. 11a.

The procedure described above can also be used to change traversals shown

in Fig. 12a into traversals shown in Figs. 7a and 11c. A very similar procedure

changes traversals shown in Fig. 12d into traversals shown in Figs. 7a and 11b. and

traversals shown in Fig. 12b into traversals shown in Figs. 7a and 11c.

Lemma 2.5. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour that

traverses the consistency checkers as shown in Figs. 7, 11, and 13 can be trans-

formed into a tour where the consistency checkers are traversed as shown in Figs. 7

and 11. Moreover, this transformation can be done in polynomial time and it does

not increase the length of the tour.

Proof. First note that each semitraversed occurrence contains one endpoint. By

making a semitraversed occurrence traversed, one endpoint is therefore removed

from the consistency checker.

Since only positive occurrences of variables can be semitraversed according

to the assumptions in the lemma, the only possibility to consider for gadgets cor-

responding to equations of the form x + ȳ = 1 is that x is semitraversed and ȳ

untraversed. In that case, however, we can remove two endpoints from the tour by

making x traversed.

Gadgets corresponding to equations of the form x+y = 0 can contain either two

semitraversed ticked edges or one semitraversed and one untraversed ticked edge

since the two ticked edges are connected as shown in Fig. 5. In the former case, we

make both semitraversed edges traversed and the edge from A to B untraversed by

the tour; in the latter case we make the semitraversed edge untraversed and let the
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tour traverse the edge from A to B. It is easy to see that the resulting tours do not

have more endpoints than the original tours.

In gadgets corresponding to equations of the form x + y + z = 0, the tour is

modified as follows: If there are three semitraversed occurrences we modify the

tour so that the gadget is traversed according to Fig. 8—since every semitraversed

occurrence contains one endpoint that removes at least one endpoint. If there are

two semitraversed occurrences and one traversed we again modify the tour so that

the gadget is traversed according to Fig. 8—that does not increase the number of

endpoints. If there are two semitraversed occurrences and one untraversed we make

both semitraversed occurrences traversed and modify the tour on the equation gad-

get so that there is a Hamiltonian path from A to B—that removes two endpoints.

For the remaining case, one semitraversed edge, an exhaustive case analysis shows

that by changing the traversal of the equation gadget in such a way that there is

an even number of traversed edges and a Hamiltonian path from A to B, the total

number of endpoints is not increased.

In gadgets corresponding to equations of the form x + y + z = 1, we make

all semitraversed occurrences traversed and then adjust the tour on the rest of the

gadget in such a way that the total number of endpoints is minimized. If there

are initially three semitraversed occurrences we remove at least two endpoints. If

there are initially two semitraversed occurrences and one traversed, we remove two

endpoints. If there are initially two semitraversed occurrences and one untraversed,

we keep the number of endpoints constant. If there is initially one semitraversed

occurrence and either two traversed or two untraversed, we remove two endpoints.

Finally, if there is initially one semitraversed, one traversed and one untraversed

occurrence, we keep the number of endpoints constant.
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2.5.3 Defining the assignment

By the local transformations described in the previous two subsections, we can

assume that the consistency checkers are traversed as shown in Figs. 7 and 11,

i.e., there are no semitraversed occurrences. Turning to the equation gadgets, this

means that each ticked edge is either traversed or untraversed; there are no semi-

traversed ticked edges. If we look at each equation locally, and assume that the

variables participating in the equation are given assignments according to how the

corresponding ticked edge is traversed—0 for untraversed edges; 1 for traversed

edges—Proposition 2.1 states that there will be at least two endpoints in equation

gadgets corresponding to unsatisfied equations. Hence, if all consistency checkers

were traversed as shown in Fig. 7, we could assign values to variables according

to the traversal of the consistency checkers and directly attribute two endpoints to

every unsatisfied equation.

However, some consistency checkers may be traversed as shown in Fig. 11.

Suppose that the consistency checker corresponding to some variable x is traversed

as shown in Fig. 11a and suppose that we assign the value 1 to x. In the equation

where x occurs negated and in one of the two equations where x occurs positively,

the corresponding ticked edges then “announce” the correct value for x. In the

remaining equation, though, the ticked edge corresponding to the second positive

occurrence of x looks untraversed although x has been assigned the value 1. Since

the ticked edges announces that x = 0 although in fact x = 1, the number of end-

points in this equation gadget could be zero even though the equation will not be

satisfied by the assignment. But there are in this case two endpoints in the con-

sistency checker for x; these two endpoints correspond precisely to the occurrence

for which the consistency checker announces the wrong assignment. Announcing

a wrong assignment in the worst case makes an equation gadget “think” that an

equation is satisfied although it is not, but then the two endpoints that come with
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this erroneous announcement can pay for this unsatisfied equation.

Lemma 2.6. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. From any TSP tour with e endpoints that

traverses the consistency checkers as shown in Figs. 7 and 11 it is possible to con-

struct an assignment to the variables in the Hybrid instance with the property that

at most be/2c equations are left unsatisfied.

Proof. The assignment is constructed as follows: Variables whose consistency

checker is traversed as shown in Figs. 7a and 11c–d are given the value 0; all

other variables are given the value 1.

Consider an arbitrary equation gadget. Since all consistency checkers are tra-

versed as shown in Figs. 7 and 11, there are no semitraversed ticked edges. Under

the assumption that each variable in the considered equation is given an assign-

ment according to the traversal of the corresponding ticked edge in the considered

equation gadget—the value 0 if the ticked edge is untraversed and the value 1

otherwise—there will be at least two endpoints in the gadget if the assignment

does not satisfy the equation.

Consider now an arbitrary consistency checker. If it is traversed as shown in

Fig. 11, there is one equation where the ticked edge is not traversed according to the

assignment defined in the first paragraph of this proof. Hence it may happen that

there is no endpoint in the corresponding equation gadget although the equation

is in fact not satisfied under the assignment defined above. However, each consis-

tency checker traversed as shown in in Fig. 11 contains at least two endpoints. To

sum up, there is at least two distinct endpoints for each unsatisfied equation if the

assignment is defined as in the first paragraph of this proof.

21



2.6 Proof of Theorem 2.2

Given an instance of Hybrid with the properties described in Theorem 2.2, an in-

stance of (1,2)-ATSP is constructed as described in § 2.3. By Lemma 2.1, this

instance has in total 6n + m2,0 + m2,1 + 4m3,0 + 4m3,1 cities.

If there is an assignment to the variables in the Hybrid instance that leaves

at most u equations unsatisfied, it follows from Proposition 2.2 that the tour con-

structed from this assignment as described in § 2.4 has length 6n + m2,0 + m2,1 +

4m3,0 + 4m3,1 + u.

Conversely, given a TSP tour of length 6n + m2,0 + m2,1 + 4m3,0 + 4m3,1 + u,

Lemmas 2.2–2.6 show that we can construct in polynomial time an assignment to

the variables in the Hybrid instance that leaves at most u equations unsatisfied by

first applying the transformations described in §§ 2.5.1 and 2.5.2 and then defining

the assignment as described in § 2.5.3.

3 The hardness of (1,2)-TSP

It is possible to adapt the above construction for (1,2)-ATSP to prove a lower bound

also for (1,2)-TSP, yielding the following result:

Theorem 3.1. Suppose that we are given an arbitrary instance of Hybrid with

n variables, m2,0 equations of the form x + y = 0 mod 2, m2,1 equations of the

form x + ȳ = 1 mod 2, m3,0 equations of the form x + y + z = 0 mod 2, and

m3,1 equations of the form x + y + z = 1 mod 2 such that each variable occurs

exactly three times, two times positively and one time negatively.

Then it is possible to construct in polynomial time an instance of (1,2)-TSP,

with size polynomial in the size of the Hybrid instance, such that

1. If there is an assignment to the variables in the Hybrid instance that leaves at

most u equations unsatisfied, then there is a TSP tour of length 16n+m2,0 +
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m2,1 + 3m3,0 + 5m3,1 + u.

2. From any TSP tour of length 16n + m2,0 + m2,1 + 3m3,0 + 5m3,1 + u, it is

possible to construct in polynomial time an assignment to the variables in

the Hybrid instance that leaves at most u equations unsatisfied.

Corollary 3.1. For any constant ε > 0, it is NP-hard to approximate (1,2)-TSP

within 741/740 − ε.

Proof. Select δ > 0 such that (741 − δ)/(740 + δ) ≥ 741/740 − ε. From an

instance of Hybrid with the structure described in Corollary 2.1, construct an in-

stance of (1,2)-TSP with the properties guaranteed by Theorem 3.1. Combining

Theorem 3.1 with item 2 in Corollary 2.1 shows that the constructed (1,2)-ATSP

instance either has a tour of length at most 16 · 42ν + 42ν + 18ν + 3ν + 5ν + δν =

(740 + δ)ν or that every TSP tour has length at least 16 · 42ν + 42ν + 18ν + 3ν +

5ν + (1 − δ)ν = (741 − δ)ν. Furthermore, item 3 in Corollary 2.1 states that it

is NP-hard to distinguish those two cases. Therefore it is NP-hard to approximate

(1,2)-TSP within (741 − δ)/(740 + δ) ≥ 741/740 − ε.

The details of the construction leading to Theorem 3.1, as well as the proof of

correctness, is very similar to the construction for the asymmetric case. Therefore,

we describe most of the construction on a high level, delving into details only

where the argument differs from the asymmetric case.

3.1 Constructing a (1,2)-TSP instance from Hybrid

Given an instance Hybrid with n variables, m2,0 equations of the form x + y =

0 mod 2, m2,1 equations of the form x + ȳ = 1 mod 2, m3,0 equations of the form

x + y + z = 0 mod 2, and m3,1 equations of the form x + y + z = 1 mod 2, the

corresponding instance of (1,2)-TSP is constructed as described below:
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The equation gadgets for equations of the form x + y + z = {0, 1} are shown

in Fig. 15; gadgets for equations of the form x + y = 0 and x + ȳ = 1 are shown

in Fig. 16. The ticked edges in the gadgets correspond to the variables in the

corresponding equation as indicated in the figures.

The ticked edges corresponding to the same variable are joined together in a

consistency checker as shown in Fig. 17. The correspondence is such that negated

variables always correspond to the part enclosed by a dashed curve in Fig. 17—

recall that each variable occurs one times negated and two times unnegated.

As in the asymmetric case, there is no node between the two ticked edges in

the gadget corresponding to equations of the form x + y = 0. Instead, the edge

leaving the consistency checker corresponding to the first ticked edge is merged

with the edge entering the consistency checker corresponding to the second ticked

edge as shown in Fig. 18. Similarly, there is no node in the center of the gadget for

equations of the form x + y + z = 0. Instead, the consistency checkers are joined

as shown in Fig. 19.

The equation gadgets are hooked together in a circle in such a way that node B

in each gadget is identified with node A in another gadget. With an argument

similar to the proof of Lemma 2.1, it can be seen that the instance produced as

described above has 16n + m2,0 + m2,1 + 3m3,0 + 5m3,1 cities.

3.2 Constructing a tour from an assignment

Consider an instance of Hybrid and an instance of (1,2)-TSP constructed from it as

described in § 3.1. Let π be an assignment to the variables in the Hybrid instance.

We now describe a TSP tour corresponding to this assignment.

Consider the tour that 1) For each variable x traverses the consistency checker

corresponding to x as shown in Fig. 20a if π(x) = 0 and as shown in Fig. 20b if

π(x) = 1. 2) For each equation gadget enters each equation gadget at node A, takes
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the shortest possible way to B under the condition that the ticked edges are tra-

versed as prescribed by the traversals of the consistency checkers described above,

and then exits the equation gadget at node B.

It can be seen by case analysis that such a tour has precisely two endpoints in

each equation gadget corresponding to an unsatisfied equation and no endpoints

elsewhere. (As in the asymmetric case, slight technicalities arise here since the

three ticked edges in a gadget corresponding to equations of the form x + y +

z = 0 cannot be simultaneously traversed, nor can the two ticked edges in gadgets

corresponding to equations of the form x+ ȳ = 1. These technicalities are resolved

in the same way as in the asymmetric case.)

3.3 Constructing an assignment from a tour

As in the asymmetric case, it remains to show that any TSP tour with e endpoints

in a (1,2)-TSP instance constructed from a Hybrid instance as described in § 3.1

can be associated with an assignment to the variables in the Hybrid instance and

that this assignment satisfies all but at most be/2c equations.

The proof of this fact follows in exactly the same way as in the asymmetric

case. The only additional complication follows from that fact that some consis-

tency checkers have two connection edges on one side due to the gadgets corre-

sponding to equations of the form x + y + z = 0 (Fig. 19). However, any tour that

traverses two connection edges on some consistency checker can be transformed

into a tour without this property by a simple local transformation as indicated in

Fig. 22. Having established this, it can be seen by a case analysis that any tour

can be transformed into a tour that traverses all bridges and does not have more

endpoints than the original tour in precisely the same way as indicated in the proof

of Lemma 2.2 and Fig. 20. The remaining transformations described in §§ 2.5.1

and 2.5.2 can be straightforwardly adapted to the symmetric case since they only
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work with the connection edges of the consistency checkers. Having transformed

the tour, the assignment to the variables in the Hybrid instance is defined as follows:

Variables whose consistency checker is traversed as shown in Figs. 20a and 21c–d

are given the value 0; all other variables are given the value 1. It can then be seen

in the same way as in § 2.5.3 that this assignment has the properties required by

Theorem 3.1.

4 Trading “boundedness” for approximation hardness

Papadimitriou and Vempala [15] prove their hardness result for TSP with graph

metric by reduction from Håstad’s approximation hardness result for systems of

linear equations [11].

Theorem 4.1 [11]. For any constant δ ∈ (0, 1/2), there exists systems of linear

equations mod 2 with 2m equations and exactly three unknowns in each equation

such that: 1) Each variable in the instance occurs a constant number of times,

half of them negated and half of them unnegated. This constant grows as Ω(21/δ).

2) Either there is an assignment satisfying all but at most δm equations, or every

assignment leaves at least (1 − δ)m equations unsatisfied. 3) It is NP-hard to

distinguish between these two cases.

From a system of linear equations with the properties described in Theorem 4.1,

Papadimitriou and Vempala construct an instance of ATSP by hooking several gad-

gets together. Each equation is represented by an equation gadget of the form

shown in Fig. 24. The ticked edges in that figure in fact correspond to gadgets

themselves; these gadgets are shown in Fig. 25. The construction is parameterised;

Papadimitriou and Vempala set a = 4, b = 2 and d = 6 in the current version of

their paper [15]. The main idea in the construction is that the way a TSP tour tra-

verses the latter gadgets mentioned above, the so called edge gadgets, gives an as-
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signment to the variables in the underlying system of linear equations (see Figs. 26

and 27). The main technical challenge is to prove that there is a correspondence

between the length of TSP tours in the constructed graph and the number of equa-

tions satisfied by the corresponding assignment. To this end, Papadimitriou and

Vempala devised a way to connect the edge gadgets corresponding to the same

variable in a net with certain expander-type properties. Informally, the structure of

this net is such that any attempt to construct a TSP-tour that represents the value

of a certain variable inconsistently in the gadgets corresponding to the equations

where that variable occurs gives a tour of high cost. Intuitively, it is therefore

always suboptimal to construct such “cheating” TSP-tours.

More formally, Papadimitriou and Vempala introduces the notion of a b-pusher

[15, Definition 1] to precisely describe the structure that is needed to thwart “cheat-

ing” TSP-tours: A d-regular bipartite graph with vertex set V1 ∪. V2 is called a b-

pusher if, for any partition of V1 into subsets U1, S1, T1 and any partition of V2 into

subsets U2, S2, T2 such that there are no edges from vertices in U1 to vertices in

U2, the number (T1, T2) of edges between vertices in T1 and T2 satisfies
(

b +
1
2

)

(T1, T2) ≥ min
{

|U1| + |T2|, |T1| + |U2|
}

−
(

b −
1
2

)

(

|S1| + |S2|
)

.

Papadimitriou and Vempala establish the existence of 6-regular 2-pushers [15, The-

orem 5.1] and use such graphs to construct the precise coupling between different

edge gadgets.

4.1 Modifications for bounded metrics

An inspection of the details of the Papadimitriou-Vempala construction shows that

it, essentially, uses a metric which is bounded, in our sense of the word, by some

constant that depends on ε. Qualitatively, their result is therefore of the form “there

exists a constant c such that for every ε > 0 it is hard to approximate TSP within

c− ε in instances with metrics bounded by B(ε)”. Our result in this paper is, again
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qualitatively, that the order of the quantifiers may be reversed, i.e., our result is of

the form “there exists constants B and c such that for every ε > 0 it is hard to

approximate TSP within c − ε in instances with metrics bounded by B”. Quan-

titatively, Papadimitriou and Vempala [15] have c = 117/116 for the asymmetric

TSP and c = 220/219 for the symmetric TSP. For our case, the result is a trade-off

between B and c. We settle for B = 8 which gives c = 135/134 for the asymmetric

TSP and c = 389/388 for the symmetric TSP.

As mentioned in the caption of Fig. 25, the edge gadgets devised by Papadim-

itriou and Vempala [15] contain edges with very small weight. Specifically, the

weight of the lightest edge in the instance is negligible compared to the constant ε

in the main hardness result. In our model for bounded metrics, we only allow dis-

tances that are integers between one and some bound B. Consequently, we must

modify the bridges in the edge gadgets so that they contain a edges of weight one

instead of aL edges of weight 1/L. This modification implies that the analysis

must be modified. In particular, the so called “doubly traversed bridges”, that incur

an extra cost of a+ b in the Papadimitriou-Vempala construction, only incur a cost

of a + b − 2 in our case. We believe that it is more natural to view those bridges

as a kind of “semitraversed edge gadget” in our case. This change implies that a

certain trick used by Papadimitriou and Vempala to associate a larger cost with the

semitraversed edge gadgets does not work.

To conclude, we obtain weaker bounds on the cost incurred by “cheating TSP

tours” in our case. This means that we cannot use the 6-regular 2-pushers used

by Papadimitriou and Vempala—to use the straightforward reduction, we would

instead need 2.5-pushers. It is easy to prove that 8-regular 2.5-pushers exist. How-

ever, using 8-regular graphs instead of 6-regular ones gives weaker approximation

hardness results. To improve our results somewhat, we use a slightly more elabo-

rate reduction, that does not need pushers but bipartite graphs with slightly weaker
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properties. As the final link in the proof of our hardness results, we show that there

exist 7-regular graphs with the properties we need for our analysis to go through.

5 The hardness of (1,B)-ATSP

The purpose of this section is to show that the Papadimitriou-Vempala construction

can be analysed also in the setting of bounded metrics with only small modifica-

tions. Specifically, we prove the following result:

Theorem 5.1. For any sufficiently small constant ε > 0, there exists for any large

enough integer m instances of (1,8)-ATSP with 113m cities such that: 1) Either

there is a TSP tour with length at most (134 + ε)m or else every TSP tour has

length at least (135 − ε)m. 2) It is NP-hard to distinguish these two cases.

The proof of this theorem follows from Lemmas 5.1 and 5.2 described below.

We describe our instance of (1,B)-ATSP by constructing a weighted directed

graph and then let the (1,B)-ATSP instance have the nodes of this graph as cities.

In this paper we denote by `(u, v) the distance from u to v in this weighted graph

and define the distance between two cities u and v is the (1,B)-ATSP instance,

denoted by c(u, v), as c(u, v) = min{`(u, v), B}.

5.1 The gadgets

The gadgets are parameterised by the parameters a, b and d; they will be speci-

fied later. The equation gadget for equations of the form x + y + z = 0 is shown

in Fig. 24. The following property of the equation gadget was established by Pa-

padimitriou and Vempala [15]:

Proposition 5.1. There is a Hamiltonian path of length four through the gadget

only if zero or two of the ticked edges are traversed. All other traversals have cost

at least five.
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The equation gadgets are connected in a circle by identifying vertex B in one gadget

with vertex A in the next gadget in the circle.

The ticked edges in Fig. 24 are gadgets themselves. This gadget is shown in

Fig. 25. Each of the bridges is shared between two different edge gadgets, one

corresponding to a positive occurrence of the literal and one corresponding to a

negative occurrence. The precise coupling is provided by a certain d-regular bi-

partite multigraph. Specifically, proceed as follows for each literal x: Let k be the

number of occurrences of x (and therefore also of x̄); Take a bipartite d-regular

multigraph with vertex set V1 ∪. V2 (|V1| = |V2| = k); Label the vertices in V1 with

the occurrences of x and the vertices in V2 with the occurrences of x̄; Let a positive

and a negative occurrence correspond to the same edge gadget if there is an edge

between the corresponding vertices in the bipartite graph—the order of the occur-

rences inside the edge gadget is not important. Later, we describe some additional

required properties of the bipartite multigraph, for now it only remains to mention

that it can be constructed in constant time since it is of constant size.

5.2 Constructing a tour from an assignment

Consider a system of linear equations with the properties described in Theorem 4.1

and an instance of (1,B)-ATSP constructed from it as described in § 5.1. Let π be

an assignment to the variables in the system of linear equations and consider the

tour that 1) For each variable x traverses the edge gadget corresponding to x as

shown in Fig. 26 if π(x) = 0 and as shown in Fig. 27 if π(x) = 1. 2) For each

equation gadget enters each equation gadget at node A, takes the shortest possible

way to B under the condition that the ticked edges are traversed as prescribed by

the traversals of the edge gadgets, and then exits the equation gadget at node B.

Since there are 2m equations in the system of linear equations, the number of

cities contained in the equation gadgets is 4 · 2m = 8m. Similarly, since every

30



edge gadget is shared between two equation gadgets, there are 2m · 3
2d(a + 1) =

3md(a + 1) cities inside the equation gadget.

The length of the tour described above “inside” the edge gadgets is d(a + b).

The “extra” cost of one that comes from the two “outermost” horizontal edges in

Fig. 25 is attributed to the equation gadget; in this way we can assign a cost of

one to all edges in Fig. 24. Since there are 2m equations, three edge gadgets per

equation gadget, and every edge gadget is shared between two equation gadgets, it

follows that the total cost of the tour inside the edge gadgets is 3md(a + b). Con-

sidering an arbitrary equation gadget, the path from A to B in a tour constructed

as described above has length four if the corresponding equation in the system of

linear equations is satisfied by the assignment π and length five otherwise. (Strictly

speaking, it is impossible to have three traversed edge gadgets in an equation gad-

get, since this does not result in a TSP tour. However, we can regard the case when

the tour of the third edge gadget leaves the edge gadget by jumping directly to the

exit node of the equation gadget as a tour with three traversals; such a tour gives

a cost of five, in addition to the cost attributed to the edge gadgets.) Hence, the

total cost accounted to the equation gadgets is 8m + u, where u is the number of

unsatisfied equations. We summarise the above discussion:

Lemma 5.1. Consider a system of linear equations with the properties described

in Theorem 4.1 and an instance of (1,B)-ATSP constructed from it as described in

§ 5.1. This instance contains 3md(a + 1) + 8m cities. Given an assignment to the

variables in the system of linear equations that satisfies all but u equations, the tour

produced from this assignment as described above has length 3md(a+b)+8m+u.

5.3 Constructing an assignment from a tour

The main challenge now is to prove that the above correspondence between the

length of the optimum tour and the number of unsatisfied equation holds also when
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we drop the assumption that the tour is shaped in the intended way. Specifically,

the aim is to show the following:

Lemma 5.2. Consider a system of linear equations with the properties described

in Theorem 4.1 with δ sufficiently small and an instance of (1,B)-ATSP constructed

from it as described in § 5.1 with a = 4, b = 2, d = 7, and B = 8. Any TSP tour of

length 3md(a+ b) + 8m+ u in this instance can be used to construct in polynomial

time an assignment satisfying all but at most u equations.

Our proof uses three technical lemmas. The first one shows that any tour can be

transformed into a tour with a certain behaviour inside the bridges. The second

lemma lower bounds the additional cost caused by non-standard traversals of an

edge gadget and the last lemma establishes that the bipartite graph used has a cer-

tain expansion-related property.

Lemma 5.3. Consider a system of linear equations with the properties described

in Theorem 4.1 and an instance of (1,B)-ATSP constructed from it as described in

§ 5.1. If B ≥ a, any TSP tour in such an instance can be transformed in polynomial

time into a tour with smaller, or equal, length with the following properties:

1) Let (u, v) be an edge of the tour and suppose that u and v both belong to the

same bridge. Then u and v are neighbours in the graph defining the (1,B)-ATSP

instance.

2 Let u and v be neighbours on the same bridge and assume that there is no

edge between u and v in the tour. Let (u, u′) and (v, v′) be edges of the tour and

assume that c(u, u′) = `(u, u′) and that c(v, v′) = `(v, v′). Then the shortest path

from u to u′ does not intersect the shortest path from v to v′.

Definition 5.1. A bridge has a defined traversal if the tour restricted to the bridge

is a path of length a; otherwise the bridge has an undefined traversal.
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Definition 5.2. An edge gadget is traversed if all bridges have defined traversals

and the connection edges (horizontal in Fig. 25) are traversed by the tour; it is

untraversed if all bridges have defined traversals and none of the the connection

edges are traversed by the tour. All other edge gadgets are semitraversed.

Lemma 5.4. Consider a system of linear equations with the properties described

in Theorem 4.1 and an instance of (1,B)-ATSP constructed from it as described in

§ 5.1. From a tour with the properties guaranteed by Lemma 5.3, it is possible to

associate a cost of at least min{a/2, b, a/2 + b/2 − 1} with every semitraversed

edge gadget given that B ≥ max{3b, a + b, 2a + b − 2}.

Lemma 5.5. For every large enough constant k, there exists a 7-regular bipartite

multigraph with vertex set V1 ∪. V2 (|V1| = |V2| = k) such that for every partition of

V1 into sets T1, U1 and S1 and every partition of V2 into sets T2, U2 and S2 such

that there are no edges from T1 to T2, and there are no edges from U1 to U2,

2
(

|S1|+ |S2|
)

≥ min
{

k, |U1|+ |T2|+ |S1|+ |S2|, |U2|+ |T1|+ |S1|+ |S2|
}

.

Before proving these lemmas, we show that they give—by appropriate choice of

parameters—the desired connection between the length of an arbitrary TSP tour

and the number of satisfied equations in the corresponding system of linear equa-

tions.

Proof of Lemma 5.2. Set a = 4, b = 2, d = 7, and B = 8. Then it follows from

Lemma 5.4 that every semitraversed edge gadget incurs a cost of at least two.

For every variable x, let the bipartite multigraph used to construct the edge

gadget have the property stated in Lemma 5.5 with k equal to the number of oc-

currences of x (and hence also of x̄). Lemma 5.5 asserts that such graphs exist for

sufficiently large k; hence we must assume that δ in Theorem 4.1 is small enough.
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The assignment to an arbitrary variable x is constructed as follows: Suppose

that x occurs k times positively and k times negatively. Let T1 be the set of tra-

versed positive occurrences and T2 be the set of traversed negative occurrences.

Define U1, U2, S1, and S2 similarly. If |S1| + |S2| ≥ k/2, set π(x) = 0 with

probability 1/2 and π(x) = 1 with probability 1/2. Otherwise define π(x) deter-

ministically as follows: If |T1| + |U2| ≥ |T2| + |U1|, let π(x) = 1, otherwise let

π(x) = 0. The resulting probabilistic assignment is then derandomised, using the

method of conditional probabilities, to produce an assignment satisfying at least as

many equations as the expected number of equations satisfied by π.

We need to prove that there is at most one unsatisfied equation per unit of the

“extra” cost u, i.e., per unit of the cost in addition to the “normal” cost of 3md(a+b)

for the edge gadgets and 8m for the equation gadgets. To this end, we show that it is

possible to associate a cost of at least 1/2 with every equation containing a variable

that has been set at random and a cost of at least 1 with every other equation that

could be unsatisfied by π.

Let x be an arbitrary variable and suppose that x occurs 2k times. Define T1, T2,

U1, U2, S1, and S2 as above. Since variables are given probabilistic assignments

only when |S1| + |S2| ≥ k/2 and every semitraversed edge gadgets incurs an

extra cost of 2, there is an extra cost of at least 1/2 associated with every equation

containing a variable that has been assigned a random value. Since every such

eqation is satisfied with probability 1/2, no matter the number of variables in the

equation that were given random assignments, the extra cost attributed to variables

with a random assignment is equal to the expected number of unsatisfied equations

from this assignment.

Consider next the case when |S1| + |S2| ≤ k/2. Since Lemma 5.5 guarantees

that the extra cost incurred by the semitraversed occurrences of x and x̄ is no less
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than

min
{

|U1| + |T2| + |S1| + |S2|, |U2| + |T1| + |S1| + |S2|
}

in this case, the extra cost incurred by the semitraversed occurrences pays for the

potential unsatisfaction of every equation that contains a variable that has been as-

signed a value contradicting the traversal of the corresponding edge gadget. The

only remaining possibility for equations that are unsatisfied under π comes from

equations where all variables have been assigned values according to the traversal

of the corresponding edge gadgets and that assignment does not satisfy the equa-

tion. However, for such equations, there is an extra cost of one in the equation

gadget according to Proposition 5.1.

5.4 Proof of Lemma 5.3

To ensure property 1, repeat the following for all edges (u, v) of the tour such that

u and v belong to the same bridge but are not neighbours in the graph: Redefine the

tour, so that instead of jumping from u directly to v, the tour follows the shortest

path from u to v in the graph defining the instance. Since B ≥ a this does not

increase the length of the tour. This change will make the tour pass through some

cities—the cities that are on the shortest path from u to v in the graph—twice. For

all such cities w, do the following: Let w′ be the city visited immediately before w

and w′′ be the city visited immediately after w. Then replace the edges (w′, w)

and (w, w′′) by the single edge (w′, w′′) in the tour. By triangle inequality this

procedure does not increase the length of the tour.

To ensure property 2, repeat the following for all vertices u and v that belong

to the same bridge but for which there is no edge between u and v in the tour: Let

u′ and v′ be defined as in the formulation of the lemma. If the shortest path from u

to u′ does not intersect the shortest path from v to v′, no transformation of the tour
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is needed. Otherwise, the fact that u and v are on the same bridge implies that we

can assume without loss of generality that the shortest path from u to u′ passes v

(otherwise we just exchange u and v in the argument). We then redefine the tour,

so that instead of jumping from u directly to u′, the tour follows the shortest path

from u to u′ in the graph defining the instance. As above, for every node w on

the shortest path from u to u′ (including v), let w′ be the city visited immediately

before w and w′′ be the city visited immediately after w and replace the edges

(w′, w) and (w, w′′) by the single edge (w′, w′′) in the tour. By triangle inequality

this procedure does not increase the length of the tour.

5.5 Proof of Lemma 5.4

Consider a semitraversed edge gadget. We now argue by case analysis that it in-

troduces an extra cost in addition to the “standard” cost of a + b per bridge. For

accounting purposes, we use the convention that this standard cost corresponds to

a cost of b/2 for the incoming edge of the tour plus a cost of b/2 for the outgo-

ing edge of the tour plus a cost of a for the traversal of the bridge itself. When

analysing the extra cost due to semitraversals, it is important to attribute this extra

cost to both edge gadgets that take part in the semitraversal. Sometimes this means

two different edge gadgets that represent the same literal x (or x̄); sometimes this

means the two edge gadgets that cross at a certain bridge. For “long” jumps, i.e.,

cases when the tour traverses an edge (u, v) with cost c(u, v) 6= `(u, v), a cost of

B/2 is attributed to both of the involved bridges.

Lemma 5.6. Given that B ≥ 2a + b − 2, it is possible to associate a cost of at

least of at least a/2 + b/2 − 1 with every edge gadget that becomes semitraversed

because of a bridge having an undefined traversal.

Proof. We first consider the case when the metric is not bounded; we will show

later how to extend the argument to cover also bounded metrics. In the unbounded
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case, the distance between two vertices u and v is exactly the length of the shortest

path from u to v in the graph defining the instance.

Since the bridge has an undefined traversal, there must be two adjacent cities u

and v that are not neighbours in the tour. Consider the edges (u, u′) and (v, v′) in

the tour—thanks to Lemma 5.3 we can assume that neither u′ nor v′ belong to the

bridge.

The tour must visit all cities on the bridge. Therefore the total cost of the tour

on the bridge is, according to our convention, at least 2a + 2b − 2, which gives an

extra cost of a + b − 2.

When the metric is bounded by some bound B, a case analysis shows, that if

B/2 ≥ a+ b/2−1 it follows that the cost of the tour on a bridge with an undefined

traversal is still at least 2a + 2b − 2. Intuitively, this states that the case shown to

the right in Fig. 28 with the dotted line replaced by a “jump” following some edge

with cost B is the worst case, i.e., the case with lowest extra cost.

Since a bridge containing an undefined traversal makes both edge gadgets pass-

ing through it semitraversed, the proof of the lemma is complete.

Lemma 5.7. Given that B ≥ max{a+ b, 3b} it is possible to associate a cost of at

least min{a/2, b} with every edge gadget that becomes semitraversed because of

a bridge with a defined traversal.

Proof. We first consider the case when the metric is not bounded and show later

how to extend the argument to cover also bounded metrics. In the unbounded case,

the distance between two vertices u and v is exactly the length of the shortest path

from u to v in the graph defining the instance.

Consider first a bridge traversed from left to right but where the connecting

edge leaving the bridge is not traversed by the tour. Hence, the tour makes a jump

leaving the bridge. There are three sub-cases:

37



The tour goes down (Fig. 29). The earliest available free city is a distance

of 2b away; that blocks the tour leaving the right bridge, forcing it to also make

a jump of at least 2b. The next available free city is a distance of 3b away. Both

these cases give a total extra cost of 2b.

The tour goes forwards (Fig. 30). The earliest available free city is a distance

of a + b away, giving a total extra cost of a.

The tour goes backwards (Fig. 31). The earliest available free city is a dis-

tance of a + b away, giving a total extra cost of a.

Next, consider a bridge traversed from left to right where the connecting edge

entering the bridge is not traversed by the tour. Again, there are three sub-cases.

The tour comes from above (Fig. 29). The earliest available free city is a

distance of 2b away, but that blocks the tour entering the right bridge, forcing it

to also make a jump of at least 2b. The next available free city is a distance of 3b

away. Both these cases give a total extra cost of 2b.

The tour comes from the front (Fig. 30). The earliest available free city is a

distance of a + b away, giving a total extra cost of a.

The tour comes from behind (Fig. 31). The earliest available free city is a

distance of a + b away, giving a total extra cost of a.

So far, the analysis only considered unbounded metrics. Note first, however,

that if B ≥ max{3b, a + b}, the above argument is valid. If the tour makes a larger

jump than the shortest possible jumps stated above, the additional cost can never

decrease, thanks to the triangle inequality. Next, note that if the tour leaves a bridge

with a defined traversal with a “long jump”, i.e., following an edge (u, v) where

c(u, v) 6= `(u, v), that particular bridge can only cause one of the edge gadgets

passing through it to be semitraversed and hence we can allocate the entire net cost

of B/2 − b/2 to that edge gadget. If B ≥ max{3b, a + b}, then B/2 − b/2 ≥

max{a/2, b}, hence the lemma holds also in this case.
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Note, finally, that the above analysis is valid also for tours such that a “long jump”

may start in a semitraversed gadget with no undefined traversal and end in an un-

defined traversal, and vice versa.

5.6 Proof of Lemma 5.5

The proof uses the same main idea as the proof that establishes existence of 6-

regular 2-pushers: It uses the fact that it is possible to lower bound the size of

neighbours to any given set of vertices in d-regular bipartite graphs. For a set W ,

let N (W ) denote the neighbours of W in the graph. With this notation, a recent

study of Engebretsen [8] implies that there exist, for every large enough k, a 7-

regular bipartite multigraph with vertex set V1 ∪. V2 (|V1| = |V2| = k) such that for

every W ⊆ V1 and every W ⊆ V1, the following holds:

|W | ≤ 0.15k =⇒ |N (W )| > 8|W |/3,

0.15k ≤ |W | ≤ 0.60k =⇒ |N (W )| > 0.25k + |W |,

|W | ≥ 0.60k =⇒ |N (W )| > 5k/8 + 3|W |/8,

|W | ≤ 0.31k =⇒ |N (W )| > 2|W |,

0.31k ≤ |W | ≤ 0.35k =⇒ |N (W )| > 0.31k + |W |,

|W | ≥ 0.35k =⇒ |N (W )| > 31k/65 + 34|W |/65.

Our task is to prove that for every partition of the left vertices into sets T1, U1 and

S1 and every partition of the right vertices into sets T2, U2 and S2 such that there

are no edges from T1 to T2, and there are no edges from U1 to U2,

2
(

|S1|+ |S2|
)

≥ min
{

k, |U1|+ |T2|+ |S1|+ |S2|, |U2|+ |T1|+ |S1|+ |S2|
}

.

From now on, we use the shorthands |T1| = kt1, |U1| = ku1, |S1| = ks1, |T2| = kt2,

|U2| = ku2, and |S2| = ks2. We can also assume without loss of generality that
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u1 + t2 ≤ t1 + u2. Hence, we must show that

2s1 + 2s2 ≥ min{1, u1 + t2 + s1 + s2}. (1)

We let n(x) denote 1
k times the size of the neighbours of some set with size kx.

Since there are no edges between T1 and T2 and there are no edges between U1

and U2, it follows that s1 ≥ n(t2) − u1. Similarly, s2 ≥ n(u1) − t2. Also, it is easy

to see that t1 ≤ 1 − n(t2) and that u2 ≤ 1 − n(u1). These observations are used

repeatedly in the following, somewhat overlapping, case analysis that covers all

possible values of u1 and t2.

Case I: u1 ≤ 0.31 and t2 ≤ 0.31. In this case s1 + s2 ≥ n(t2) − u1 + n(u1) − t2 ≥

u1 + t2, which implies (1).

Case II: 0.15 ≤ u1 ≤ 0.60 and 0.15 ≤ t2 ≤ 0.60. Since s1 ≥ n(t2) − u1 ≥

t2 + 1
4 −u1 and s2 ≥ n(u1)− t2 ≥ u1 + 1

4 − t2 in this case, it follows that s1 + s2 ≥ 1
2 ,

which implies (1).

Case III: u1 ≥ 0.35 and t2 ≥ 0.35. Using the fact that u1 + t2 ≤ t1 + u2 ≤

2 − n(t2) − n(u1) ≤ 68
65 − 34

65u1 − 34
35 t2, or, equivalently, that u1 + t2 ≤ 68

99 < 0.70,

we reach a contradiction since u1 + t2 must be at least 0.70 in this case. Hence this

case cannot occur.

Case IV a: u1 ≤ 0.35 and t2 ≥ 0.60. In this case s1 ≥ n(t2)−u1 ≥ 3
8 t2+

5
8 −u1 ≥

3
8 · 3

5 + 5
8 − 7

20 = 1
2 , which implies (1).

Case IV b: u1 ≥ 0.60 and t2 ≤ 0.35. In this case s2 ≥ n(u1)−t2 ≥ 3
8u1+ 5

8 −t2 ≥
3
8 · 3

5 + 5
8 − 7

20 = 1
2 , which implies (1).

Case V a: u1 ≤ 0.15 and t2 ≥ 0.35. In this case s1 ≥ n(t2)−u1 ≥ 31
65+

34
65 t2−u1 ≥

31
65 + 34

65 · 35
100 − 15

100 = 51
100 > 1

2 , which implies (1).
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Case V b: u1 ≥ 0.35 and t2 ≤ 0.15. In this case s2 ≥ n(u1)−t2 ≥ 31
65+

34
65u1−t2 ≥

31
65 + 34

65 · 35
100 − 15

100 = 51
100 > 1

2 , which implies (1).

Case VI a: u1 ≤ 0.15 and 0.31 ≤ t2 ≤ 0.35. In this case s1 ≥ n(t2) − u1 ≥

t2 + 0.31 − u1 and s2 > max{n(u1) − t2, 0} > max{8
3u1 − t2, 0}. This gives two

sub-cases that together imply (1).

t2 ≥ 8
3u1: s1 + s2 ≥ s1 ≥ 5

8 t2 + 0.31 ≥ 5
8 · 0.31 + 0.31 = 403

800 > 1
2 .

t2 ≤ 8
3u1: s1 + s2 ≥ 5

3u1 + 0.31 ≥ 5
8 t2 + 0.31 > 1

2 .

Case VI b: 0.31 ≤ u1 ≤ 0.35 and t2 ≤ 0.15. In this case s1 > max{n(t2) −

u1, 0} > max{ 8
3 t2 − u1, 0} and s2 ≥ n(u1) − t2 ≥ u1 + 0.31 − t2. This gives two

sub-cases that together imply (1).

u1 ≥ 8
3 t2: s1 + s2 ≥ s2 ≥ 5

8u1 + 0.31 ≥ 5
8 · 0.31 + 0.31 = 403

800 > 1
2 .

u1 ≤ 8
3 t2: s1 + s2 ≥ 5

3 t2 + 0.31 ≥ 5
8u1 + 0.31 > 1

2 .

6 The hardness of (1,B)-TSP

To adapt the construction from the § 5 to the symmetric case we change the gadgets;

on a high level both the construction and the proof of correctness are as in the

asymmetric case. The equation gadget is replaced with the gadget in Fig. 32; this

gadget tests odd instead of even parity.

Proposition 6.1. The only way to traverse the equation gadget in Fig. 32 with a

tour of length five—if the edge gadgets count as length one—is to traverse an odd

number of edge gadgets. All other traversals have length at least six.

To construct a symmetric edge gadget, note that already the asymmetric edge gad-

get is in fact almost symmetric since the bridge in the asymmetric edge gadget is

an undirected path of length a. Consider the following attempt to make an undi-

rected edge gadget: Let the edges connecting the bridge with other bridges in the
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asymmetric edge gadget be undirected and connect the edge gadgets as in the asym-

metric case. The resulting gadget penalises many, but not all, unwanted tours. In

particular, the weakness with the above construction is that a path may, without

any additional penalty, enter a bridge through an edge that is directed towards the

bridge in the asymmetric version of the gadget and leave the same bridge along the

other edge that is directed towards the bridge. To overcome this problem, we con-

struct a symmetric version of the asymmetric bridge by hooking up three copies of

the “symmetrised asymmetric bridge” described above in parallel and then rotating

the resulting package 90◦ (see Fig. 33). We call the resulting structure a symmetric

bridge.

Similar to the asymmetric case, we say that a symmetric bridge has a defined

traversal if the tour restricted to the bridge traverses all three bridges and exactly

two of the horizontal edges in Fig. 33. With a = 4, b = 2 and B = 8, the tech-

nical lemmas from § 5.5 can be used to show that any undefined traversal of the

edge gadget gives an additional local cost of four, i.e., an additional local cost of

two can be attributed to each of the two edge gadgets that meet at the symmet-

ric bridge. Defining traversed, untraversed and semitraversed edge gadgets as in

the asymmetric case, a case analysis similar to that in the proof of Lemma 5.7

then shows that a cost of at least two can be associated with each semitraversed

symmetric edge gadget. As in the asymmetric case, the individual edge gadgets

corresponding to the same variable are stitched together according to the edges in

a d-regular bipartite multigraph with vertex set V1 ∪. V2 (where |V1| = |V2| = k and

2k is the number of occurrences of the variable) that has the property that for every

partition of V1 into sets T1, U1 and S1 and every partition of V2 into sets T2, U2

and S2 such that there are no edges from T1 to T2, and there are no edges from U1

to U2, it holds that

2
(

|S1|+ |S2|
)

≥ min
{

k, |U1|+ |T2|+ |S1|+ |S2|, |U2|+ |T1|+ |S1|+ |S2|
}

.
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To summarise, the following lemma follows in the same way as in the asymmetric

case:

Lemma 6.1. Consider a system of linear equations with the properties described

in Theorem 4.1 with δ sufficiently small and an instance of (1,B)-TSP constructed

from it as outlined above with a = 4, b = 2, d = 7, and B = 8. A TSP tour of

length 9md(a+b)+10m+u in this instance can be used to construct in polynomial

time an assignment satisfying all but at most u equations.

For the symmetric analogue of Lemma 5.1, note that a “jump” past an edge gadget

actually requires following an edge of length 9md(a + b) + 1 as the construction

is described above. However, by adding for every edge gadget an edge of length

two that is parallel with the edge gadget in the graph defining the TSP instance, it

is easy to see that the following lemma holds:

Lemma 6.2. Consider a system of linear equations with the properties described

in Theorem 4.1 and an instance of (1,B)-TSP constructed from it as outlined above.

Given an assignment to the variables in the system of linear equations that satisfies

all but u equations, it is possible to construct a TSP tour with length 9md(a + b) +

10m + u.

Given the above lemmas, our second main theorem follows in exactly the same

way as in the asymmetric case.

Theorem 6.1. For any constant ε > 0, it is NP-hard to approximate (1,8)-TSP

within 389/388 − ε.

7 Concluding remarks

There are two main conclusions from the work presented in this paper. First, the

fact that it is relatively straightforward to adapt the construction devised by Pa-

padimitriou and Vempala [15] to the case of bounded metrics shows that this latter
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construction is essentially local, in spite of the fact that it uses as a critical compo-

nent edges with unbounded—but constant—length. This indicates that new ideas

are needed to obtain hardness within factors that are ω(1), or even hardness within

an arbitrarily large constant factor.

The second main conclusion is that simpler constructions and simpler proofs

of correctness are needed in order to obtain hardness results that are substantially

better than the currently best known ones. Current techniques have been pushed

more or less to their limits. Also, earlier versions of this paper as well as earlier

versions of [15] contained errors in the accounting of penalties due to non-standard

traversals. In order to achieve stronger hardness results, some kind of more struc-

tured approach is probably necessary—more complicated gadget reductions and

accounting procedures are bound to be even more sensitive to errors in the analysis

than the construction of Papadimitriou and Vempala [15]. We believe that a direct

PCP construction is the natural next step for constructing stronger approximation

hardness results for TSP with triangle inequality.
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A

B

C

Figure 1. The above figure contains two partial tours—one entering the graph at A
and leaving at B, and one both entering and leaving at C. The nodes A and B are
endpoints and C is a double endpoint. The dashed parts of the tour denotes parts
where the tour traverses edges with weight two.
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Figure 2. The gadget for equations of the form x+ y + z = 0 (left) and x+ y + z = 1
(right). There is a Hamiltonian path from A to B only if an even (left) or odd (right)
number of the ticked edges is traversed.
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Figure 3. The gadget for equations of the form x+ y = 0 (left) and x+ ȳ = 1 (right).
There is a Hamiltonian path from A to B only if an even (left) or odd (right) number
of the ticked edges is traversed.
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Figure 4. The gadget used to connect the ticked edges that correspond to the same
variable x. The ticked edges corresponding to the two positive occurrences of x are
represented by the parts enclosed in the dotted curves and the ticked edge correspond-
ing to x̄ is represented by the part enclosed in the dashed curve.
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A B

x y

Figure 5. A more detailed view of the gadget for equations of the form x + y = 0.
In this figure the ticked edges have been expanded to show the consistency checkers.
The black edges correspond to the gadget shown in Fig. 3
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A

B

Figure 6. The cost of the gadgets for equations of the form x + y + z = 1 is lowered
by the above transformation. The figure to the left shows the connection between two
such gadgets as it is obtained by joining B in one gadget as shown in Fig. 2 with A
in another such gadget. The figure to the right shows how this connection is actually
implemented.
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(a) (b)

Figure 7. The figure above shows the “intended” traversals of the consistency check-
ers. The traversal (a) is to be interpreted as assigning 0 to the corresponding variable;
traversal (b) as assigning 1.
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z

A B

Figure 8. A more detailed view of how the tour corresponding to an assignment π
such that π(x) = π(y) = π(z) = 1 traverses the gadget for equations of the form
x + y + z = 0. In this figure the ticked edges have been expanded to show the
consistency checkers. The black edges correspond to the gadget shown in Fig. 2.
Note that the tour has two endpoints in the consistency checker corresponding to x.
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A B

x

ȳ

Figure 9. A more detailed view of how the tour corresponding to an assignment π
such that π(x) = 1 and π(y) = 0 traverses the gadget for equations of the form
x+ ȳ = 1. In this figure the ticked edges have been expanded to show the consistency
checkers. The black edges correspond to the gadget shown in Fig. 3. Note that the
tour has two endpoints in the consistency checker corresponding to x.
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Figure 10. It is possible to change the traversals in the left column into the traversals
in the right column without increasing the total number of endpoints in the graph.

59



(a) (b)

(c) (d)

Figure 11. The traversals shown above may still be present in the tour after the
“normalization” described in Lemmas 2.2–2.5.
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(i)

(b)

(d)

(f)

(h)

(j)

Figure 12. If the negative occurrence in the consistency checker is semitraversed, the
checker has to be traversed as shown above.
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Figure 13. If there is at least one semitraversed occurrence in the consistency checker
but the upper level is untraversed, the checker has to be traversed as shown above.
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Figure 14. A gadget for equations of the form x + ȳ = 1 where the variable gadget
corresponding to ȳ is traversed as shown in Fig. 12c.
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Figure 15. The gadget for equations of the form x+y+z = 0 (left) and x+y+z = 1
(right). There is a Hamiltonian path from A to B only if an even (left) or odd (right)
number of ticked edges is traversed.
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Figure 16. The gadget for equations of the form x + y = 0 (left) and x + ȳ = 1
(right). There is a Hamiltonian path from A to B only if an even (left) or odd (right)
number of the ticked edges is traversed.
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Figure 17. The gadget used to connect the ticked edges that correspond to the same
variable x. The ticked edges corresponding to the two positive occurrences of x are
represented by the parts enclosed in the dotted curves and the ticked edge correspond-
ing to the negative occurrence is represented by the part enclosed in the dashed curve.
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A B

Figure 18. A more detailed view of the gadget for equations of the form x + y = 0.
In this figure the ticked edges have been expanded to show the consistency checkers.
The black edges correspond to the gadget shown in Fig. 16
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C

D

Figure 19. A more detailed view of the gadget for equations of the form x+y+z = 0.
The figure shows how the three variable gadgets meet in the center of the gadget. The
black edges above correspond to the ticked edges in Fig. 15 and the three labeled
nodes above are the same as the corresponding nodes in Fig. 15.
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(a) (b)

Figure 20. The figure above shows the “intended” traversals of the consistency check-
ers. The traversal (a) is to be interpreted as assigning 0 to the corresponding variable;
traversal (b) as assigning 1.
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(a) (b)

(c) (d)

Figure 21. If there are no semitraversed occurrences in the consistency checker it
may still be traversed as shown above.
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Figure 22. Some consistency checkers have double connection edges at one point,
see also Fig. 19. By local transformations according to the above pattern we can
assume that at most one of the double edges are traversed.
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Figure 23. It is possible to change the traversals in the left column into the traversals
in the right column without increasing the total number of endpoints in the graph.
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A B

Figure 24. The gadget for equations of the form x+y+z = 0. There is a Hamiltonian
path from A to B only if zero or two of the ticked edges, which are actually gadgets
themselves (Fig. 25), are traversed. The non-ticked edges have weight 1.
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Figure 25. The edge gadget consists of d bridges. Each of the bridges are shared
between two different edge gadgets. Each bridge consist of aL undirected edges of
weight 1/L each. In the construction of Papadimitriou and Vempala [15], L is a
(very) large integer constant—in our construction for bounded metrics, L = 1. The
edges between bridges have weight b, the first horizontal edge has weight b b+1

2 c, and
the last horizontal edge has weight d b+1

2 e.
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Figure 26. An untraversed edge gadget represents the value 0.
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Figure 27. A traversed edge gadget represents the value 1.

76



Figure 28. We can assume that traversals shown in the left figure above never occur
since they can be transformed into the traversal shown in the right figure without
increasing the length of the tour. A bridge with a traversal of that form gives an extra
cost of at least min{a + b − 2, a + b/2 − 1} if B ≥ 2a + b − 2.
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Figure 29. Switching from traversing an edge gadget representing an occurrence of x
to traversing another edge gadget representing an occurrence of x gives an extra cost
of at least b. The dotted edge above has length 3b; that gives an extra cost of 2b which
is then shared evenly among the two semitraversed edge gadgets.
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Figure 30. Switching from traversing an edge gadget representing an occurrence of x
to traversing an edge gadget representing an occurrence of x̄ gives an extra cost of
at least a/2. The dashed edges above has length a + b; that gives an extra cost of a
which is then shared evenly among the two semitraversed edge gadgets.

79



Figure 31. Switching from traversing an edge gadget representing an occurrence of x
to traversing an edge gadget representing an occurrence of x̄ gives an extra cost of
at least a/2. The dashed edges above has length a + b; that gives an extra cost of a
which is then shared evenly among the two semitraversed edge gadgets.
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A B

Figure 32. The symmetric gadget for equations of the form x+ y + z = 1. There is a
Hamiltonian path from A to B only if an odd number of the ticked edges are traversed.

81



Figure 33. To transform the edge gadget from Fig. 25 into a gadget that can be used in
the symmetric case, all occurrences of the structure to the left above are replaced with
the structure to the right above. All vertical edges in the right figure have weight 1
and there are a edges in each of the three vertical paths; the other edges in the right
figure have weight b.
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