
An Approximation Algorithm for the Bandwidth

Problem on Dense Graphs

Marek Karpinski

x

J�urgen Wirtgen

{

Alex Zelikovsky

k

Abstract

The bandwidth problem is the problem of numbering the vertices of a given graph G such

that the maximum di�erence between two numbers of adjacent vertices is minimal. The problem

is known to be NP-complete [Pa 76] and there are only few algorithms for rather special cases

of the problem [HMM 91] [Kr 87] [Sa 80] [Sm 95]. In this paper we present a randomized 3-

approximation algorithm for the bandwidth problem restricted to dense graphs and a randomized

2-approximation algorithm for the same problem on directed dense graphs.

x

Dept. of Computer Science, University of Bonn, 53117 Bonn. Research partially supported by DFG

Grant KA 673/4-1, by the ESPRIT BR Grants 7097 and EC-US 030. Email: marek@cs.bonn.edu.

{

Dept. of Computer Science, University of Bonn, 53117 Bonn. Research partially supported by the

ESPRIT BR Grants 7097 and EC-US 030. Email: wirtgen@cs.bonn.edu

k

Dept. of Computer Science, University of Bonn, 53117 Bonn. Visiting from Dept. of Computer

Science, Thornton Hall, University of Virginia, VA 22903. Research partially supported by Volkswagen

Stiftung and Packard Foundation. Email: alexz@cs.virginia.edu

1



1 Introduction

The bandwidth problem on graphs has a very long and interesting history. It originated

at the Jet Propulsion Laboratory (JPL) at Pasadena in 1962 where single errors in a 6-

bit picture code were represented by edge di�erences in a hypercube whose vertices were

words of the code. At the JPL, Harper and Hales sought codes which were minimizing

the maximum absolute error and the average absolute error. In this way the bandwidth

and the bandwidth sum [Ha 64] problems were born (at least for a special graph class).

Not long after this, Korfhage [Ko 66] began to work on the graph bandwidth problem

(see also [Ha 67])

Formally the bandwidth minimization problem is de�ned as follows. Let G = (V;E) be a

simple graph on n vertices. A numbering of G is a one-to-one mapping f : V ! f1; :::; ng.

The bandwidth B(f;G) of this numbering is de�ned by

B(f;G) = maxfjf(v)� f(w)j : fv; wg 2 Eg;

the greatest distance between adjacent vertices in G corresponding to f . The bandwidth

B(G) is then

B(G) = min

f is a numbering of G

fB(f;G)g

Clearly the bandwidth of G is the greatest bandwidth of its components.

4

2

3 6

5 7

8

1

Figure 1: A small 1=4-dense graph G. It has 8 vertices and minimum degree 2.

The problem of �nding the bandwidth of a graph is NP-complete [Pa 76], even for trees

with maximum degree 3 [GGJK 78]. The general problem is not known to have any

sublinear n

�

-approximation algorithms. There are only few cases where we can �nd

the optimal layout in polynomial time. Saxe [Sa 80] designed an algorithm which decides

whether a given graph has bandwidth at most k in time O(n

k

) by dynamic programming.

Bandwidth two can be checked in linear time [GGJK 78]. Kratsch [Kr 87] introduced an

exact O(n

2

logn) algorithm for the bandwidth problem in interval graphs. Smithline

[Sm 95] proved that the bandwidth of the complete k-ary tree T

k;d

with d levels and

k

d

leaves is exactly dk(k

d

� 1)=(k � 1)(2d)e. Her proof is constructive and contains

a polynomial time algorithm, which do this task. For caterpillars [HMM 91] found a

polynomial time log n-approximation algorithm. A caterpillar is a special kind of a tree

consisting of a simple chain, the body, with an arbitrary number of simple chains, the

hairs, attached to the body by coalescing an endpoint of the added chain with a vertex of

2



the body. Although they are almost interval graphs, the bandwidth problem restricted

to caterpillars is NP-complete.

In this paper we present the �rst constant approximation ratio algorithm for �-dense

graphs. In particular we construct a 3-approximation algorithm. We call a graph G

�-dense, if the minimum degree �(G) is at least �n (see e.g. [AKK 95]). To introduce

our method, we describe in Section 2 a weaker version of the algorithm - namely a 4-

approximation algorithm. It uses as one of its building-blocks the construction of perfect

matchings in bipartite graphs. Furthermore it is easy to paralleliize, since the perfect

matching problem lies in RNC. Recently there has been some success in designing

parallel approximation algorithms for some other hard problems [PS 97] [Tr 97] [TX 97].

This paper is organized as follows. In Section 2 we outline a 4-approximation algorithm.

Section 3 gives a re�nement to a 3-approximation algorithm and section 4 gives a 2-

approximation algorithm for dense directed graphs.

2 Outline of the 4-Approximation Algorithm

Suppose we have some optimal numbering. Then we can split this layout in n=B(G)

boxes, so that there are only edges between neighbored boxes (see �gure 2). It is clear

that a graph with minimum degree k has at least bandwidth k. Therefore the bandwidth

of �-dense graphs is at least �n and thus we have at most 1=� 2 O(1) boxes. Without

loss of generality we may assume that n is divedable by B(G), else we can construct a

new graph G

0

with the same bandwidth, by adding a chain of clique of size �=2n to G

until jV (G

0

)j is dividable by B(G).

1 2 3 4 5 6 7 8

Figure 2: An optimum layout of the graph G in �gure 1. It is optimum, because �(G) = 2

and the maximum distance of two neighbored vertices is 2.

By repeating the algorithm for all the possible values for the bandwidth, we can get for

certain the right value. Note, that there are only O(n) possible values. The algorithm

chooses at random O(logn) vertices R � V . For a vertex v 2 V nR we call the neighbors

in N(v) \R the roots of v. We have 2 important properties of R:

1. R forms with high probability a dominating set (Lemma 1)

2. With high probability each of the boxes has at least one representative in R

(Lemma 2).

Lemma 1 Let G = (V;E) be a �-dense graph. A set of

k =

log(n=�)

log(1=(1� �))

= O(logn)

3



randomly chosen vertices R forms with probability at least (1� �) a dominating set.

Proof: The probability, that one particular vertex v will be dominated by one ran-

domly chosen vertex, is at least �. If we choose k vertices independently, then the prob-

ability that it is not dominated, is at most (1 � �)

k

. Thus the expected number of not

dominated vertices is at most �, because

(1� �)

k

n � �

n=� � (1=(1� �))

k

log(n=�)

log(1=(1� �))

� k

By Markov`s inequality we get the lemma.

Lemma 2 Let V be a �nite set and V = V

1

_

[V

2

_

[:::

_

[V

c

with jV

i

j = dn=ce. Choose

independently k logn vertices v 2

R

V at random, forming a set R. Then we have with

high probability for each V

i

a representative in R.

Proof: The probability that there is no representative in R for a particular V

i

, is

�

c�1

c

�

k logn

. Thus the expected number of V

i

which do not have any representative in R

is c

�

c�1

c

�

k logn

. By Markov`s inequality we get, that the probability, that a V

i

has not a

representative is at most 2cn

k log((c�1)=c)

= o(1).

Suppose we know to which box each root belongs to. In fact we can �nd the right

assignment of the roots to the boxes by exhaustive search in polynomial time. Observe

that we have only a constant number of boxes and that the size of R is in the order of

logn. So there are only O(1)

O(logn)

= n

O(1)

possibilities. For any vertex which is not a

root we have now at most 3 possible boxes where it belongs to, because it has at least

one root (Lemma 1).

1 4 5 7

3 6 82

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3: The vertices f1; 4; 5; 7g are the randomly chosen roots. In the �gure we see

the right assignment of these vertices to the boxes. For all the neighbors of the special

vertices we know the area of at most 3 boxes, where they belong to.

4



Now we construct an auxiliary-graph G

A

in which each vertex of the input-graph is

connected to the possible places in the boxes. Clearly a perfect matching in this graph

gives us a layout (see �gure 3). We have to describe the construction in more detail.

The easiest method would be to build for each non-root vertex v the intersection B

v

of

the 3 surrounding boxes of all its roots. If there is some empty intersection, then the

assignment of the roots to the boxes was wrong and we have to choose another one. Now

we connect v to all the places in the boxes in B

v

. If v is a root B

v

is just the box where v

was assigned to. It is easy to see that there is some assignment of the roots to the boxes,

so that the perfect matching will give us a layout f with B(f;G) � 6B(G).

1 4 5 7 863 2

Figure 4: After running the perfect matching algorithm, we get a layout with maximum

distance at most 3 � 2B(G).

To get a better approximation, we have to be more careful with the construction of B

v

:

For each non-root vertex v 2 V and each root r

v

of v we construct again a set of boxes

and intersect them for all roots of v. Let r

v

be assigned to box i. For each non-root

neighbor w of v there are 4 possibilities (up to direction):

1. There is a root r

w

of w in box i+ 3. Thus we know, that v has to be in box i+ 1

(and w in i + 2). Otherwise v and w would be farer away than the bandwidth in

any layout given by the perfect matching algorithm.

i+1ii-1 i+2 i+3 i+4

v w

The perfect matching can give us a layout f , in which v is on the left side of box

i+ 1 and w on the right side of box i+ 2. Thus B(f;G) � 2B(G).

5



2. w has its roots in the boxes i+ 1 and i+ 2. So v has to be in box i or i+ 1 (and w

in i+ 1 or i+ 2).

i+1ii-1 i+2 i+3 i+4

v w

So the perfect matching will give us a layout f with B(f;G) � 3B(G).

3. w has its roots only in i+ 1. v can be put into the boxes i� 1 to i+ 1 (and w into

i to i+ 2).

i+1ii-1 i+2 i+3 i+4

v w

The worst-case arises in this case: The two non-roots v and w are adjacent. The

dominating roots r

v

and r

w

lie in neighbored boxes i and i+1. The perfect matching

algorithm assigns now u to the very left side of box i�1 and v to the very right side

of box i+ 2.

4. All the roots of w are in box i. v can be put into the boxes i � 1 to i + 1 (and w

into i to i+ 1).

i+1ii-1 i+2 i+3 i+4

v w

Here we have for any layout B(f;G) � 3B(G).

We can summarize the above discussion in the following algorithm.

6



Algorithm DENSE BANDWIDTH (G)

f G is �-dense g

for boxsize = �n to n=2 do

begin

f We have d1=blocksizee boxes, being parts of a layoutg

choose at random and independently a subset R � V of size O(log n);

for each possible assignment of the vertices of R to the boxes do

begin

fbuild a bipartite auxiliary-graph G

A

of which one color-class consists of the places in the boxes

and the other class of the vertices of Gg

for each vertex v 2 V do

begin

Construct B

v

Connect v to all the places in the boxes of B

v

end

If there is a perfect matching in G

A

, return one of them

f Note that a perfect matching M also de�nes a layout f

M

g

end

end

end DENSE BANDWIDTH

At least one of the polynomial number of assignments is correct and gives us a layout,

which is not so far away from the optimum. Furthermore we can �nd a perfect matching

in O(jV jjEj) time by the standard s-t-
ow techniques [LP 86]. There are also some

better methods [FM 91] [KR 97]. However this algorithm seems to be far away from

being practical and the running time PM(G) of the perfect matching algorithm will be

dominated by the rest. We summarize our analysis in the following theorem:

Theorem 3 There is a randomized algorithm which �nds in O(jV j � jEj � PM(G) �

#(Assignments of the roots to the boxes)) bounded time for a �-dense graph G a layout

f , such that B(f;G) � 4B(G).

We can �nd the perfect matchings also in RNC [MVV 87] [KR 97]. It is easy, to construct

the graph G

A

in NC. So we have, by doing all the for-loops in parallel, the following

theorem.

Theorem 4 There is a RNC-algorithm which �nds for a �-dense graph G a layout f ,

so that B(f;G) � 4B(G).

3 Subdivisions for 3-Approximations

We can achieve a better approximation ratio by not using boxes of size B(G), but a

constant fraction of B(G). We construct the bipartite auxiliary-graph G

A

like in section

2. Our input graph G has minimum degree �n. Therefore B(G) � �n. In our improved

algorithm we use boxes of size smaller than �=2n, which is a constant fraction of B(G).

Thus we have again a constant number of boxes and Lemma 2 remains true. We have

much more boxes, so that the running time increases, but remains still polynomial for

constant �.

If the boxes have size �=2n, you can use an argument similar to the one used in Lemma 2

to show, that each vertex has in at least two di�erent boxes of size �=2n roots. Therefore

7



we can isolate at most 2B(G) locations in the layout, where this vertex belongs to (see

�gure 5).

v

δ/2n

B(G)

Figure 5: How to locate the 2B(G) locations in the layout.

If we have the area for a vertex v, we know that its neighbors must not be farer away

then B(G). That means that they are at most in the next B(G) locations surrounding

the area of v (see �gure 6). We call the union of these areas the green area of v.

v w

2 B(G)

green area of v

Figure 6: The green area of v.

If all neighbors of v located in this green area, then they are at most 3B(G) away from

v. In order to compute B

v

we build the intersection of v`s area with the green areas of

all its neighbors. This gives us

Theorem 5 There is a randomized algorithm which �nds in n

O(1=�

) time with high prob-

ability for a �-dense graph G a layout f , so that B(f;G) � 3B(G).

8



As before we can parallize this algorithm.

Theorem 6 There is a RNC-algorithm which �nds for a �-dense graph G a layout f ,

so that B(f;G) � 3B(G).

4 The Bandwidth Problem in Directed Graphs

In this section we will present a 2-approximation algorithm for the directed �-dense band-

width problem. We call a directed graph G �-dense, if each vertex has in-degree at least

�n.

The bandwidth problem in this case is similar to the undirected case, except for the

restriction that all incoming edges of a vertex v has to lie on the left hand side of v in

any valid layout. Thus we can only �nd a valid layout for acyclic graphs.

Like in Section 3 we use boxes of size �=2n. Like before R will build a dominating set

(each non-root vertex v has an incoming edge with one endpoint in R), such that v has

roots in di�erent boxes. If v has a root in box i and j (i < j) (of size �=2n) v can only

be connected to the places of the boxes which are B(G) on the right of j including j (see

�gure 7).

nδ/2 nδ/2

v

i j

B(G)

Figure 7: Possible placement for v.

For v we know now that all its neighbors are only allowed to be assigned to the 2B(G)

places on the left of box j. This area is again called the green area. If we �nd a layout f

in which all the neighbors of each vertex are assigned to their green areas, then we have

B(f;G) � 2B(G)

We build G

A

like in section 3 and get since we have still a constant number of boxes the

following results.

9



Theorem 7 There is a randomized algorithm which �nds in n

O(1=�)

time with high prob-

ability for a �-dense directed acyclic graph G a layout f , so that B(f;G) � 2B(G).

As before we can parallize this algorithm.

Theorem 8 There is a RNC-algorithm which �nds for a �-dense directed acyclic graph

G a layout f , so that B(f;G) � 2B(G).

5 The Superdense Case

Further densi�cation leads to polynomial approximation scheme for the bandwidth min-

imization problem. We call a simple graph G superdense, if the minimum degree of G is

at least n� o(n

�

). The notion of superdenseness has been introduced in [KZ 97].

If G is superdense, B(G) is at least n � o(n

�

) and therefore any layout f will su�ce to

be a good approximation:

B(f;G) � n

� (1 + �)n � o(n

�

) for any � 2 O(1)

� (1 + �)(n� o(n

�

))

� (1 + �)B(G)

6 Further Research and Open Problems

There remains still an important open problem of designing polynomial time approxi-

mation algorithms with approximation ratio less then three for the bandwidth problem

on dense graphs. More strongly, can we hope that a PTAS exists for this problem or is

the problem MAX-SNP-hard (see [PY 88])? At the moment we do not know whether

the general bandwidth problem is MAX-SNP-hard nor whether the bandwidth for dense

graphs is in fact NP-hard.

We were not able to prove any constant ratio approximation of the bandwidth for dense

in average graphs (see [AKK 95]) having �(n

2

) edges. For this case however we were able

to prove NP-hardness.

Acknowledgment

We thank Sanjeev Arora and Haim Kaplan for helpful discussions.

References

[AKK 95] Arora, S., Karger, D., Karpinski, M., Polynomial Time Approximation

Schemes for Dense Instances of NP-Hard Problems, Proc. 36

th

ACM STOC

(1995), pp. 284{293.

[FM 91] Feder, T., Motwani, R., Clique Partitions, Graph Compression and Speeding-

up Algorithms, Proc. 23

rd

ACM STOC (1991), pp. 122{133.

[GGJK 78] Garey, M., Graham, R., Johnson, D., Knuth, D., Complexity Results For

Bandwidth Minimization, SIAM J. Appl. Math. 34 (1978), pp. 477{495.

10



[HMM 91] Haralamides, J., Makedon, F., Monien, B., Bandwidth minimization: an

approximation algorithm for caterpillars, Math. Systems Theory 24 (1991),

pp. 169{177.

[Ha 67] Hararay, F., Problem 16, Fiedler, M., editor, Theory of graphs and its

applications, Czechoslovak Academy of Science, Prague, 1967.

[Ha 64] Harper, L., Optimal assignment of numbers to vertices, J. SIAM 12 (1964),

pp. 131{135.

[KR 97] Karpinski, M., Rytter, W., Fast Parallel Algorithms for Graph Matching

Problems, Oxford University Press, 1997.

[KZ 97] Karpinski, M., Zelikovsky, A., Approximating Dense Cases of Covering Prob-

lems, Technical Report TR-97-004, ECCC, 1997.

[Ko 66] Korfhage, R., Numbering of the vertices of graphs, Technical Report 5,

Computer Science Department of the Purdue University, Lafayette, 1966.

[Kr 87] Kratsch, D., Finding the Minimum Bandwidth of an Interval Graph, Infor-

mation and Computing 74 (1987), pp. 140{187.

[LP 86] Lovasz, L., Plummer, M., Matching Theory, North-Holland, Amsterdam,

1986.

[MVV 87] Mulmuley, K., Vazirani, U. V., Vazirani, V. V., Matching is as Easy as

Matrix Inversion, Proc. 19

th

ACM STOC (1987), pp. 345{354.

[Pa 76] Papadimitriou, C., The NP-Completness of the Bandwidth Minimization

Problem, Computing 16 (1976), pp. 263{270.

[PY 88] Papadimitriou, C., Yannakakis, M., Optimization, Approximation, and Com-

plexity Classes, Proc. 20

th

ACM STOC (1988), pp. 229{234.

[PS 97] Pr�omel, H. J., Steger, A., RNC-Approximation Algorithm for the Steiner

Problem, Proc. STACS'97 (1997).

[Sa 80] Saxe, J., Dynamic programming algorithms for recognizing small-bandwidth

graphs, SIAM Journal on Algebraic Methods 1 (1980), pp. 363{369.

[Sm 95] Smithline, L., Bandwidth of the complete k-ary tree, Discrete Mathematics

142 (1995), pp. 203{212.

[Tr 97] Trevisan, L., Positive Linear Programming, Parallel Approximation, and

PCP's, Proc. 4

th

European Symposium on Algorithms (1997).

[TX 97] Trevisan, L., Xhafa, F., The Parallel Complexity of Positive Linear Program-

ming, submitted (1997).

11


