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1 Department of Computer Science, University of Bonn
marek@cs.uni-bonn.de

2 Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań
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Abstract. We study the computational complexity of deciding the ex-
istence of a Hamiltonian Cycle in some dense classes of k-uniform hy-
pergraphs. Those problems turned out to be, along with the hypergraph
Perfect Matching problems, exceedingly hard, and there is a renewed
algorithmic interest in them. In this paper we design a polynomial time
algorithm for the Hamiltonian Cycle problem for k-uniform hypergraphs
with density at least 1

2
+ε, ε > 0. In doing so, we depend on a new method

of constructing Hamiltonian cycles from (purely) existential statements
which could be of independent interest. On the other hand, we establish
NP-completeness of that problem for density at least 1

k
− ε. Our results

seem to be the first complexity theoretic results for the Dirac-type dense
hypergraph classes.

1 Introduction

Weaddress theproblemofdeciding the existence andconstructionof aHamiltonian
Cycle in some dense classes of hypergraphs. The corresponding problem is being
well understood for dense graphs (cf., e.g., [7] and [19]), as well as random graphs
(cf., e.g., [2],[4], [5], and [10]). However, the computational status of the problem
for hypergraphs was widely open and has become a challenging issue recently.

In this paper we shed some light on the computational complexity of that
problem for k-uniform hypergraphs. For any ε > 0, we design the first polyno-
mial time algorithm for the Hamiltonian Cycle problem for k-uniform hyper-
graphs with Dirac-type density at least 1/2 + ε. We prove also a complementary
intractability result for k-uniform hypergraphs with density at least 1/k−ε. The
techniques used in this paper could be also of independent interest.

We consider k-uniform hypergraphs, that is, hypergraphs H whose edges are
k-element subsets of V := V (H). We refer to k-uniform hypergraphs as k-graphs.
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For k-graphs with k ≥ 3, a cycle may be defined in many ways (see, e.g.,
[3], [13] and [14]). Here by a cycle of length l ≥ k + 1 we mean a k-graph
whose vertices can be ordered cyclically v1, . . . , vl in such a way that for each
i = 1, . . . , l, the set {vi, vi+1, . . . , vi+k−1} is an edge, where for h > l we set
vh = vh−l. Such cycles are sometimes called tight. A Hamiltonian cycle in a
k-graph H is a spanning cycle in H . A k-graph containing a Hamiltonian cycle
is called Hamiltonian.

For a k-graph H and a set of k−1 vertices S, let NH(S) be the set of vertices
v of H such that S∪{v} ∈ H . We define the degree of S as degH(S) = |NS(H)|,
and write degH(S, T ) for the degree restricted to the subset T ⊆ V , that is,
degH(S, T ) = |NS(H) ∩ T |. We define δ(H) = minS degH(S) and refer to it as
the (k−1)-wise, collective minimum degree of H , or simply, minimum co-degree.
The ratio δ(H)/|V (H)| is sometimes called a Dirac-type density of H .

We denote by HAM(k, c) the problem of deciding the existence of a Hamilto-
nian cycle in a k-graph with minimum co-degree δ(H) satisfying δ(H) ≥ c|V (H)|.

For graphs, that is, for k = 2, one of the classic theorems of Graph Theory
by Dirac [8] states that if the minimum degree in an n-vertex graph is at least
n/2, n ≥ 3, then the graph is Hamiltonian. Hence, the problem HAM(2, 1/2)
is trivial. Complementing this result, it was shown in [7] that HAM(2, c) is
NP-complete for any c < 1

2 .
Turning to genuine hypergraphs (k ≥ 3), it was recently shown in [16] that for

all k ≥ 3, c > 1
2 , and sufficiently large n, every k-graph H with |V (H)| = n and

δ(H) ≥ cn contains a Hamiltonian cycle. Hence, again, HAM(k, c) is trivial for
all c > 1

2 . In the case in which c = 1
2 Rödl et al.[17] proved that the same holds

for 3-graphs and the problem remains open for k ≥ 4.
Our main contribution are two complementary results on HAM(k, c).

Theorem 1. For all k ≥ 3 and c < 1
k the problem HAM(k, c) is NP-complete.

Interestingly, Theorem 1 leaves a similar hardness gap of ( 1
k , 1

2 ) as for the problem
of deciding the existence of a perfect matching in a k-graph with δ(H) ≥ c|V (H)|
(see [18] and [12]). Note that, in view of [7], this gap collapses for graphs. In
Section 2, Theorem 1 is proved by a reduction from HAM(2, c), c < 1

2 .
In the second part of this paper, we strengthen the above mentioned result

from [16], by designing a polynomial time algorithm for the search version of
HAM(k, c).

Theorem 2. For all k ≥ 3 and c > 1
2 there exists a polynomial time algo-

rithm, called HamCycle, which finds a Hamiltonian cycle in every k-graph with
δ(H) ≥ c|V (H)|.
In view of [17], we believe that also the proof from there can be turned into a
polynomial time algorithm extending Theorem 2 to c = 1

2 for k = 3.
Our construction is based on the existential proofs from [16] and [17]. In short,

the idea is as follows. First, procedure AbsorbingPath constructs a special,
relatively short path A in H , called absorbing. Next, procedure AlmostHam-
Cycle finds an almost Hamiltonian cycle C containing A. Finally, the remaining
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vertices are absorbed by A into C to form a Hamiltonian cycle. Along the way,
two probabilistic lemmas from [16] are derandomized using the Erdős-Selfridge
method of conditional expectations [1].

2 The Reduction

In this section we prove Theorem 1. We will show that for all k ≥ 3 and all ε > 0,
the problem HAM(k−1, 1

k−1 − ε′), where ε′ = k
k−1ε reduces to HAM(k, 1

k − ε).
This, together with the known fact proved in [7] that HAM(2, c) is NP-complete
for all c < 1

2 , shows that also HAM(k, c) is NP-complete for all c < 1
k .

Let H be a (k−1)-graph on (k−1)n vertices with δ(H) ≥ ( 1
k−1−ε′)(k−1)n. We

construct a (gadget) k-graph G as follows. Let V (G) = A ∪B where A = V (H)
and B is disjoint from A with |B| = n. The edge set E(G) is union of three sets:

E(G) = E≤k−3 ∪ EH ∪ Ek,

where for i = 0, . . . , k, Ei consists of all k-element subsets of V (G) which in-
tersect A in precisely i vertices, E≤k−3 =

⋃
i≤k−3 Ei and EH consists of all k-

element subsets of V (G) whose intersection with A is an edge of H (see Figure 1).
Let us check first that δ(G) ≥ ( 1

k −ε)kn. We assume, as we can, that εkn ≥ 2. Let
S ∈ (

V (G)
k−1

)
. If |S∩A| = k−3 (and so |S∩B| = 2) then degG(S) = |B|−2 = n−2.

If |S ∩A| ≤ k − 4 then degG(S) = |V (G)| − (k − 1) = kn− k + 1. If S ⊂ A, then
degG(S) ≥ |A| − (k − 1) ≥ n, regardless whether S ∈ E(H) or not. Finally, if
|S ∩ A| = k − 2, we know by the assumption on δ(H) that there are at least

(
1

k − 1
− k

k − 1
ε

)
(k − 1)n =

(
1
k
− ε

)
kn

vertices v ∈ A \ S such that (S ∩ A) ∪ {v} ∈ E(H), and hence, S ∪ {v} ∈ EH ⊂
E(G).

k |A| = (k − 1)n

|B| = n

k − 1

≥ 3

Fig. 1. The gagdet. The dotted oval represents an edge of H .
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It remains to show that H has a Hamiltonian cycle if and only if G does. Let
v1v2 . . . v(k−1)n be a Hamiltonian cycle in H and let us order the vertices of B
arbitrarily, say B = {w1, . . . , wn}. Then the sequence

v1 . . . vk−1w1vk . . . v2k−2w2 . . . wn−1v(k−1)(n−1)+1 . . . v(k−1)nwn (1)

forms a Hamiltonian cycle in G. Indeed, every k consecutive (cyclically) vertices
of that string contain exactly one vertex of B and an edge of H , and thus, by
the definition of EH , form an edge of G.

Conversely, let G have a Hamiltonian cycle F . Note first that E(F ) 	⊆ E≤k−3,
because each edge of E≤k−3 contains at most k−3 vertices of A and each vertex
of F is contained in precisely k edges of F . Hence, F could cover only at most

kn × (k − 3) × 1
k

= (k − 3)n < |A|

vertices of A. But then E(F ) ∩ E≤k−3 = ∅, because, due to the lack of edges
of Ek−2 in G, the cycle cannot traverse from an edge of E≤k−3 to any edge in
EH ∪ Ek.

Secondly, no edge of Ek can be in F either. Indeed, since the edges of F
covering B are all in EH ⊆ Ek−1, each vertex of B has to be immediately
preceded in F by exactly k−1 vertices of A, making no room for any edge of Ek

in F . So, F looks exactly like in (1). Note that every k consecutive (cyclically)
vertices of that string form an edge of G and contain exactly one vertex of B
and a set S of k − 1 vertices of A. Thus, by the definition of G, this set S must
be an edge of H . Hence, the sequence v1v2 . . . v(k−1)n forms a Hamiltonian cycle
in H .

3 Subroutines

In this section we describe several subroutines which will be used by the main
algorithm, HamCycle. We begin with procedures constructing tight paths in a
dense hypergraph. Wherever convenient, we will identify a sequence of distinct
vertices (v1, v2, . . . ) with the set of its elements {v1, v2, . . . }.

3.1 Paths

A path is a k-graph P , whose vertices can be ordered v1, . . . , vl, where l = |V (P )|,
in such a way that for each i = 1, . . . , l− k + 1, we have {vi, vi+1, · · · , vi+k−1} ∈
P . We say that P connects the sequences (v1, v2, . . . vk−1) and (vl, . . . , vl−k+2),
which will be called the ends of P . A path on l vertices (and thus with l− k + 1
edges) will be said to have length l.

Our algorithm will frequently use the following subroutine. Let γ > 0. By
Lemma 4 in [16], for sufficiently large n, every k-graph H with n vertices and
δ(H) ≥ (1

2 + γ)n contains a path of length at most 2k/γ2 between any pair of
(k − 1)-element sequences of distinct vertices. Thus, an exhaustive search of all
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O(n2k/γ2
) sequences of distinct 2k/γ2 vertices would certainly find such a path.

However, for better complexity, a BFS-type search can be applied.

Subroutine Connect

In: k-graph H with δ(H) ≥ (1
2 + γ)n and two disjoint (k− 1)-element sequences

of distinct vertices, u and v
Out: Path P in H with ends u and v of length at most 2k/γ2.

Connect begins its BFS search at u and moves on by one vertex at a time
until the reverse of v is found. Throughout it maintains a record of the path by
which the current end has been reached, and uses this record to verify that the
new vertex added is distinct from all previous on the current path. Each step
corresponds to traversing one edge of H in a particular order and no edge is
traversed twice in the same order. Hence, the time complexity of Connect is
O(nk).

In fact, we will rather need a restricted version of Connect, where the con-
necting path is supposed to use, except for the ends u and v, only the vertices
from a specified ,,transfer set” T .

Subroutine ConnectVia

In: k-graph H , a subset T ⊂ V such that for every S ∈ (
V

k−1

)
we have degH(S, T )

≥ (1
2 + γ)|T |, and two (k − 1)-element sequences of distinct vertices from V \ T ,

u = (u1, u2, . . . uk−1) and v = (v1, v2, . . . vk−1)
Out: Path P in H with ends u and v of length at most 2k/γ2 + 2(k − 1) and
such that V (P ) \ (u ∪ v) ⊂ T

In its first 2k − 2 steps ConnectVia moves from u and v to, resp., u′ and v′,
where all vertices of u′ and v′ are in the set T . Then it invokes Connect with
H [T ], u′, and v′ as inputs.

Another subroutine finds a long path in any dense k-graph. It is an algorith-
mic generalization of Claim 6.1 from [17]. For a k-graph F denote by δ>0(F ) the
minimum of degF (S) taken over all S ∈ (

V (F )
k−1

)
with degF (S) > 0.

Subroutine LongPath

In: k-graph F with l vertices and m > 0 edges
Out: Path P in F of length at least d := m/

(
l

k−1

)
.

1. V (F ) := V, F ′ := F
2. Find a set S ∈ (

V
k−1

)
for which degF ′(S) = δ>0(F ′);

3. If δ>0(F ′) < d, then F ′ := F ′ \ {e ∈ F ′ : e ⊃ S} and go to Step 2;
4. Greedily find a maximal path P in F ′;
5. Return P .

Observe that at the outset of Step 3 we have degF ′(S) = 0 and so, every set S
is selected in Step 2 at most once. Note also that once we get to Step 4, we have
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F ′ 	= ∅ and δ>0(F ′) ≥ d. Hence, any maximal path in F ′ has length at least d.
The time complexity of LongPath is O(lk−1 + m).

3.2 Derandomization

At the heart of our algorithm lies the following procedure based on a simple
probabilistic fact. Let τ > 0, β > τ , and m, N , and r ≤ N , be positive integers.
Set ρ := 2mr/N2.

Algorithm SelectSubset

In: Graph G = (U ∪ W, E) such that

• |U | = M and e(G[U ]) = 0
• |W | = N and e(G[W ]) = m
• minu∈U degG(u) ≥ βN ,

and an integer r, 1 ≤ r ≤ N
Out: Independent set R ⊂ W with (1−ρ)r ≤ |R| ≤ r and minu∈U degG(u, R) ≥
(β − τ − ρ) r.

1. Set U = {u1, . . . , uM}, W = {w1, . . . , wN};
2. R′ := ∅;
3. For k = 1 to r do:

(a) For i = 1 to M and j = 1 to N do:

d′i,j := degG(ui, R
′ ∪ {wj}) and d′′i,j := degG(ui, W \ (R′ ∪ {wj})).

(b) For j = 1 to N do:

e
(0)
j :=e(G[R′∪{wj}]), e(1)

j :=e(G[R′, W\R′]), e(2)
j :=e(G[W\(R′∪{wj})]).

(c) Find wjk
∈ W \ R′ such that, with y := 2m(r/N)2,

M∑
i=1

∑
d≤(β−τ)r−d′

i,jk

(d′′
i,jk
d

)(N−k−d′′
i,jk

r−k−d

)
(
N−k
r−k

)

+
1
y

(
e
(0)
jk

+ e
(1)
jk

r − k

N − k
+ e

(2)
jk

(r − k)(r − k − 1)
(N − k)(N − k − 1)

)
< 1.

(2)

(d) R′ := R′ ∪ {wjk
}.

4. Remove one vertex from each edge of G[R′] and call the resulting set R.
5. Return R.

Lemma 1. If log M = o(r), then SelectSubset finds the desired set R in time
O(M × poly(N)).
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In the proof we use the following probabilistic fact, which together with Markov’s
inequality implies the existence of the required set R. Algorithm SelectSubset
derandomizes this fact.

Fact 3. Let G be the graph given as an input of SelectSubset. Further, let
R′ be a random subset of W chosen uniformly from

(
W
r

)
, let X be the number

of vertices u ∈ U with degG(u, R′) ≤ (β − τ)r and Y = e(G[R′]). Then

EX = o(1) and EY ≤ m
( r

N

)2

.

Proof. First observe that X =
∑

u∈U Iu, where Iu is the indicator of the event
{degG(u, R′) ≤ (β − τ)r}. Note also that P (Iu = 1) = P (Zu ≤ (β − τ)r), where
Zu is a hypergeometric random variable with parameters N, degG(u), r and that,
by the properties of G, the expectation of Zu is rdegG(u)/N ≥ βr. Thus, by a
Chernoff bound for hypergeometric distributions (see, e.g., [11], Theorem 2.10,
formula (2.6)), EX ≤ Me−Θ(r) = o(1). Finally, by the linearity of expectation,
EY = m

(
N−2
r−2

)
/
(
N
r

) ≤ m(r/N)2.

Proof of Lemma 1: By Fact 3 and the definition of y, EX + EY
y ≤ o(1) + 1

2 < 1.
We can view the selection of R′ as a result of a random process wj1 , . . . , wjr ,
where in step k, a vertex wjk

∈ W is randomly selected without repetitions.
Let αj = E(X |j1 = j)+ EY

y E(Y |j1 = j). Then, by the law of total probability,

EX + EY
y = 1

N

∑N
j=1 αj , and so, there exists an index j such that αj < 1. Take

that index as j1. Repeat until the whole set R′ is selected. Then, E(X |R′) +
1
y E(Y |R′) = X(R′)+ 1

y Y (R′) < 1, which implies that X(R′) = 0 and Y (R′) < y.
This proves that R′, and consequently R, have the desired properties.

Note that the conditional expectations E(X |j1, . . . , jk) and E(Y |j1, . . . , jk)
correspond to the quantities appearing in the expression (2) given in Step 3(c)
of the algorithm.

4 The Algorithm

In this section we prove Theorem 2 by giving the main algorithm HamCycle.
It will be based on two major procedures, AbsorbingPath and AlmostHam-
Cycle which we will describe first.

In order to formulate our main procedures, we need a few definitions from
[16]. We choose 0 < ε < c − 1

2 small enough.
Given a vertex v we say that a (2k − 2)-element sequence of vertices x =

(x1, . . . , x2k−2) is v-absorbing in H if for every i = 1, . . . , k − 1 we have
{xi, xi+1, . . . , xi+k−1} ∈ H (that is, x spans a path in H) and for every i =
1, . . . , k we also have edges {xi, xi+1, . . . , xi+k−2, v} ∈ H . Note that, if x is
actually a segment of a path P and v is not a vertex of P , then the segment x of
P can be replaced by the new segment (x1, . . . , xk−1, v, xk, . . . , x2k−2), absorbing
v onto P .

A path A in H is called absorbing if |V (A)| ≤ 8kεk−1n and for every v ∈ V
there are at least

q := 2k−4ε2kn (3)
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disjoint v-absorbing sequences, each of which is a segment of A. Note that if A
is an absorbing path in H , then for every subset U ⊂ V \ V (A) of size |U | ≤ q
there is a path AU in H with V (AU ) = V (A) ∪ U and such that AU has the
same ends as A.

The idea behind our algorithm is the same as the idea of the existential proofs
in [16] and [17], and can be summarized as follows.

• Find an absorbing path A in H .
• Find a cycle C in H containing A as well as all but at most q vertices of

V (H) \ V (A).
• Extend C to a Hamiltonian cycle of H using the absorbing property of A

with respect to U = V (H) \ V (C).

To build an absorbing path we use Procedure AbsorbingPath and to
build the long cycle – Procedure AlmostHamCycle, both described below.

We are now ready to give our main algorithm which finds a Hamiltonian cycle
in every k-graph with δ(H) ≥ cn, for c > 1

2 .

Algorithm HamCycle

In: n-vertex k-graph H with δ(H) ≥ cn, c > 1
2

Out: Hamiltonian cycle C in H

1. Fix a sufficiently small 0 < ε < c − 1
2 ;

2. Apply AbsorbingPath to H obtaining an absorbing path A;
3. Apply AlmostHamCycle to H with P0 = A, obtaining a cycle C in H of

length at least n − q which contains A;
4. For each vertex v ∈ V \ V (C) do:

(a) Find a v-absorbing sequence x = (x1, . . . , x2k−2) which is a segment of
C;

(b) Replace (x1, . . . , x2k−2) by (x1, . . . , xk−1, v, xk, . . . , x2k−2) and call the
new cycle C;

5. Return C.

It remains to describe how the two procedures used by HamCycle work. By
Claim 3.2 in [16] we know that for every vertex v ∈ V (H) there are at least
2k−2γk−1 v-absorbing sequences in H . In [16] a random selection of (2k − 2)-
sequences was chosen and proved to contain enough v-absorbing sequences for
every v. Here we derandomize this step by invoking SelectSubset.

Procedure AbsorbingPath

In: n-vertex k-graph H with δ(H) ≥ (1
2 + ε)n

Out: Absorbing path A in H

1. Build an auxiliary graph G = (U ∪ W, E), where U = V (H), W is the set
of all (2k − 2)-element sequence of vertices x = (x1, . . . , x2k−2) in H , and E
consists of all pairs v ∈ U,x ∈ W such that x is v-absorbing in H , as well as
of all pairs x,x′ ∈ W which share at least one element;
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2. Apply SelectSubset to G with r = εk+1n, ρ = 8(k−1)2εk+1, and τ = β/2,
to obtain a family F of s ≤ r vertex-disjoint sequences and such that for
each vertex v of H the number of v-absorbing sequences in F is at least
2k−4ε2kn;

3. Use repeatedly ConnectVia to connect all sequences of F into one path A.

Note that in the above application of SelectSubset, M = n, N = (n)(2k−2) ∼
n2k−2, m ≤ (2k−2)2n4k−5, and β = 2k−2γk−1. Thus, SelectSubset does find
a family F as described in Step 2. As the final path A contains all elements of
F as disjoint segments, the absorbing property of A follows.

Our second major procedure constructs in H an almost Hamiltonian cycle
containing any given, not too long path. In [16] this has been done by applying a
weak regularity lemma to H and finding in the cluster k-graph an almost perfect
matching. Then, applying repeatedly the existential analog of LongPath to the
dense and regular clusters, a collection of finitely many paths covering almost
all vertices of H was found. These paths were then connected into a cycle by
applying ConnectVia with a preselected reservoir set R.

That proof can be turned into an algorithm by recalling the algorithmic ver-
sion of the weak hypergraph regularity lemma from [6]. We, however, prefer
to follow the more elementary approach from [17], generalizing it to k-graphs
without any effort.

In fact, the single difficulty in both these approaches was the same: to de-
randomize the selection of a reservoir set R, a small subset of vertices which
reflects the property of the entire hypergraph and can be used to connect paths
during the whole procedure. This step is now derandomized by using algorithm
SelectSubset (Steps 1 and 2 of procedure AlmostHamCycle).

Once we have R which is disjoint from P0, we keep extending P0 in H − R
by little increments until it reaches the desired length. Initially, we extend P0

greedily (Step 3), using the fact that δ(H −R) > n/2. After reaching the length
of n/2, in every step we look at L := V \ (V (P ) ∪ R), where P is the current
path, and consider two cases.

If H [L] is dense we apply LongPath to find a long path P ′ in |H [L]| and
connect it via R using ConnectVia with the transfer set R (Step 5(c)).

If H [L] is sparse then many edges of H have k− 1 vertices in L and one in P .
By averaging, there must be a constant length segment I of P with many such
edges incident to I, and, again by averaging, a subset J ⊂ I with |J | ≥ 4

3k |I|
and whose every vertex is hit by the same set H0 of (k− 1)-tuples from L (Step
5(d)(i)). Next a (k − 1)-partite (k − 1)-clique K is found in H0 and trivially
extended, by adding J , to a k-partite k-clique K ′. Clique K ′ contains a spanning
Hamiltonian path Q whose length is 4

3 |I|. We then cut I out of P and reconnect
the two remaining subpaths, P1 and P2, with Q, obtaining a path longer by
1
3 |I| (Step 5(d)(ii)-(vi)). Finally, when P has grown long enough, we connect
the two ends of P to form the desired cycle. All connections are via R using
ConnectVia.
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For details of the case k = 3 we refer to [17]. Since the general case has not
appeared in the literature yet, we provide here a detailed pseudo-code, followed
by a formal proof of the most crucial steps.

Let D be a large integer, say

D  n/q = 24−kε−2k,

where q is given by (3).

Procedure AlmostHamCycle

In: n-vertex k-graph H with δ(H) ≥ (1
2 + ε)n and a path P0 in H of length at

most 1
3εn

Out: Cycle C in H such that P0 ⊂ C and |V (C)| ≥ n − q.

1. Build an auxiliary graph G = (U ∪W, E), where U =
(

V
k−1

)
, W = V \V (P0),

and E consists of all pairs S ∈ U, v ∈ W such that S ∪ {v} ∈ H ;
2. Apply SelectSubset to G with r = 1

2q, and τ = ε/6, to obtain a set
R ⊂ V \V (P0) of size |R| = r with the property that degH(S, R) ≥ 1

2 (1+ ε)r
for all S ∈ (

V
k−1

)
.

3. Extend greedily P0 (at one end only) to a path P in H−R of length at least
n/2;

4. Let x be the common end of P0 and P ;
5. While |V (P )| < n − q do:

(a) let y be the end of P other than x;
(b) L := V \ (V (P ) ∪ R), l := |L|;
(c) If |H [L]| > D

(
l

k−1

)
then do:

i. Apply LongPath to H [L] obtaining a path P ′ of length at least D,
disjoint from P .

ii. Apply ConnectVia with γ = 1
3ε and T = R, obtaining a path Q

of length at most 20k/ε2 from y to x′, and thus connecting paths P
and P ′ into a new path PQP ′;

iii. P := PQP ′, R := R \ V (Q);
(d) If |H [L]| ≤ D

(
l

k−1

)
then do:

i. Find (by exhaustive search) a segment (that is, a set of consecutive
vertices) I ⊂ V (P )\(V (P0)∪y), a subset J ⊂ I, and a (k−1)-graph
H0 ∈ (

L
k−1

)
such that |I| = D, |J | = 4

3kD, |H0| ≥ 2−D(1
2 − 4

3k )
(

l
k−1

)
,

and for every e ∈ H0 and every v ∈ J we have e ∪ {v} ∈ H ;
ii. Find (by exhaustive search) a (k−1)-partite, complete (k−1)-graph

K in H0 with all partition classes of size |J |;
iii. Let K ′ be the k-partite, complete k-graph spanned in H by the

partition classes of K and J ;
iv. Take any Hamiltonian path Q in K ′ with ends z and z′;
v. Remove I from P obtaining two disjoint paths P1 ⊃ P0 and P2;
vi. Apply ConnectVia with γ = 1

3ε and T = R, to connect P1, Q, and
P2 together (see Figure 2); call the resulting path P ;
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6. Apply ConnectVia with γ = 1
3ε and T = R, to the ends x and y of P ,

obtaining a path Q of length at most 20k/ε2 from x to y, and thus creating
a cycle C = PQ of length at least n − q;

7. Return C.

x1 x2

z′

Q

Q1 Q2

P2P1

P0

x

z

y

Fig. 2. Illustration to Step 4(d) of procedure AlmostHamCycle

Fact 4. AlmostHamCycle constructs a cycle C in H such that P0 ⊂ C and
|V (C)| ≥ n − q.

Proof. The graph G constructed in Step 1 has parameters M =
(

n
k−1

)
, (1 −

8kεk−1)n ≤ N ≤ n, m = 0, and β ≥ 1
2 + 2

3ε, and so SelectSubset does find a
set R as described in Step 2.

Now we prove that the sets I and J , and a (k − 1)-graph H0 searched for in
Step 5(d)(i) do exist. By estimating the sum

∑
S∈( L

k−1) degH(S) in two ways we
derive the inequality

(1
2 + γ)n

(
l

k − 1

)
≤ kD

(
l

k − 1

)
+ |R ∪ V (P0) ∪ y|

(
l

k − 1

)
+ N,

where N counts the number of edges of H with k−1 vertices in L and one vertex
in V (P ) \ (V (P0) ∪ y). Since |R ∪ V (P0) ∪ y| ≤ 3

4γn, this yields that

N ≥ [(1
2 + 1

4γ)n − O(1)]
(

l

k − 1

)
.

Let Ni be the number of edges of H counted by N , with one vertex in the i-th
D-element segment Ii of V (P )\(V (P0)∪y). Then, with s := |V (P )\(V (P0)∪y)|
we have

s−D+1∑
i=1

Ni ≥ ND − O(1)
(

l

k − 1

)
≥ (1

2 + 1
5γ)n

(
l

k − 1

)
D,

so, by averaging, there exists i such that Ni ≥ 1
2

(
l

k−1

)
D. Let Hi be the (k − 1)-

graph of all S ∈ (
L

k−1

)
with at least 4

3kD neighbors in I := Ii. Then |Hi| ≥
(1
2 − 4

3k )
(

l
k−1

)
. For each J ⊂ I, |J | ≥ 4

3kD, let HJ be the set of those edges of
Hi whose H-neighborhood in I is exactly J . By averaging there exists a set J
such that |HJ | ≥ 2−D|Hi|.
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The existence of a (k−1)-partite, complete (k−1)-graphK in H0 with all parti-
tion classes of size |J | searched for in Step 5(d)(ii) follows by an old result of Erdős
[9], see also [15], Lemma 8. (Recall that |L| > 1

2q.) Note that the initial path P0 has
stayed intact throughout the entire procedure and so, it is contained in C.

Finally, note that the time complexity of AlmostHamCycle is O(poly(n)).
This completes the proof of Theorem 2.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley, Chichester
(2008)

2. Angluin, D., Valiant, L.: Fast probabilistic algorithms for Hamiltonian circuits and
matchings. J. Comput. System Sci. 18, 155–193 (1979)

3. Bermond, J.C., et al.: Hypergraphes hamiltoniens. Prob. Comb. Theorie Graph
Orsay 260, 39–43 (1976)

4. Bollobas, B., Fenner, T.I., Frieze, A.: An algorithm for finding hamiltonian cycles
in random graphs. In: Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, pp. 430–439 (1985)

5. Broder, A., Frieze, A., Shamir, E.: Finding hidden Hamilton cycles. Random Struc-
tures Algorithms 5, 395–410 (1994)
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12. Karpiński, M., Ruciński, A., Szymańska, E.: The Complexity of Perfect Matching
Problems on Dense Hypergraphs. In: ISAAC 2009 (2009) (to appear)

13. Katona, G.Y., Kierstead, H.A.: Hamiltonian chains in hypergraphs. J. Graph The-
ory 30, 205–212 (1999)
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