M.Sc. Adrian Schmitz

BA-INF 041 - Algorithmen und Berechnungskomplexität II SS 2015 Übungsblatt 7

2. Juni 2015

Aufgabe 1

Sei G = (V, E, w) ein gewichteter, gerichteter Graph. Sei $s \in V$, so dass jeder Knoten $v \in V$ von s aus erreichbar ist. Zeigen Sie, dass genau dann ein kürzester Pfad von s nach $v \in V$ existiert, wenn es keinen Kreis negativen Gewichts gibt, der von s aus erreichbar ist und von dem aus v erreicht werden kann.

Aufgabe 2

a) Sei G = (V, E, w) ein gewichteter, gerichteter Graph und $s \in V$ der betrachtete Quellknoten. Zeigen Sie, dass dann für alle Kanten $(u, v) \in E$

$$\delta(s, v) \le \delta(s, u) + w(u, v)$$

gilt.

- b) Konstruieren Sie einen gewichteten, gerichteten Graphen G = (V, E, w) mit einem Startknoten $s \in V$, so dass für jede Kante $(x,y) \in E$ sowohl ein kürzester Wegebaum existiert, der (x, y) enthält, als auch ein kürzester Wegebaum existiert, der (x, y) nicht enthält.
- c) Zeigen oder widerlegen Sie folgende Aussage für einen gewichteten, gerichteten Graphen G = (V, E, w): Wenn alle Kanten $e \in E$ unterschiedlichen Gewichte haben, dann ist der kürzeste Wegebaum mit Startknoten $s \in S$ eindeutig.

Aufgabe 3

Zeigen oder widerlegen Sie folgende Aussagen:

- a) In einem gewichteten, ungerichteten Graphen G=(V,E,w) mit positiven Kantengewichten ist die Kante mit den geringsten Gewicht stets im kürzesten Wegebaum enthalten.
- b) Angenommen, ein azyklischer, gewichteter, gerichteter Graph G=(V,E,w) wird zu dem Graphen G'=(V,E,w') transformiert, wobei $w'(e):=k-w(e),\ e\in E$ und k eine ausreichend große Konstante ist. Dann entspricht ein kürzester Pfad in G' einem längsten Pfad in G.

Aufgabe 4

Gegeben sei ein azyklischer Graph G=(V,E) und ein Startknoten $s\in V$. Entwickeln Sie einen Algorithmus, der in linearer Zeit für alle $v\in V$ einen längsten Weg von s nach v berechnet. Was geschieht, wenn ein Graph Kreise enthält?