Fast Parallel Computation of
Perfect and Strongly Perfect Elimination Schemes

ELIAS DAHLHAUS
AND
MAREK KARPINSKI

DEPT. OF COMPUTER SCIENCE
UNIVERSITY OF BONN

Abstract.

We design fast parallel algorithms for the construction of perfect and strongly perfect
elimination schemes (orderings) for chordal and strongly chordal graphs. In the case of
chordal graphs the algorithm works in O(log? n) parallel time and O(n*) processors on
a CREW PRAM, an improvement over the recent algorithms of [NNS] and [DK]. The
parallel algorithm for strongly perfect elimination schemes works in (log* n) time and
O(n*) processors.

Section 1: Introduction

Chordal graphs are graphs which have no induced cycle greater than 3. Strongly chordal
graphs have additionally no irampoline or sun as an induced subgraph. A sun or tram-
poline consists of an independent set S, a clique T, both of cardinality , and a 2-k-cycle
C which alternates between S and T

Trampoline:

Several authors ([Go], [Fa 1]) gave characterizations of (strongly) chordal graphs by the
existence of so-called (strongly) perfect elimination orderings.

Definition: Let G = (V, E) be a graph.
i) A total ordering < is a perfect elimination ordering or a perfect elimination scheme
on G iff for any z,y, 2, s.t. [z,4],(2,2] € E and z < y,z < 2, we have [y, 2] € E.

i1) A perfect elimination ordering < is called a strongly perfect elimination order-
ing or scheme iff for any z,y,2,y/, s.t. [z,y],(2,¥],[¥,2] € Eand2z < 2/,y <
y’, we have [z/,y'] € E.

Theorem 1 (Elimination Theorem): ([Go|, [Fa 1]) G is (strongly) chordal iff G
has a (strongly) perfect elimination scheme.

It is well known that (strongly) perfect elimination orderings can be found in poly-
nomial time. Our aim is to find such orderings in parallel. For chordal graphs the
NC?-algorithms have just been published ([NNS], [DK]). The important subroutines
of these algorithms were to determine the set of all the cliques. We shall give a new
parallel algorithm, computing all the cliques of a chordal graph, which needs less pro-
cessors than that of [NNS] and [DK], and a parallel algorithm computing a strongly
perfect elimination ordering of a strongly chordal graph. In section 2, we give some
foundations on chordal and strongly chordal graphs. We also introduce parallel com-
plexity classes. Section 3 presents the new parallel algorithm for the computation of
all the cliques of a chordal graph. For strongly chordal graphs, we can speed up and
simplify this algorithm to AC°. Section 4 describes the algorithm and the subroutines
determining strongly perfect elimination orderings.

2. Basic Definitions and Results
2.1. Parallel complexity

We use two models of parallel computation which are equivalent in time and space up
to a polylog factor. The first model is that of (logspace-) uniform sequences of switching
circuits with bounded fan-in [Co]: NC¥ is the class of all problems computable by a
uniform sequence of switching circuits of depth O(log® n) (it corresponds to the time)
and of polynomial size (the size corresponds to the number of processors). NC =

oo

L) Ng=.

k=1

AC? is the class of all problems computable by a uniform sequence of unbounded fan-
in circuits of polynomial size and constant depth. Most reductions to NP-complete
or P-complete or NC-complete problems are not only polynomial. They are local
replacement reductions. Most local replacements are AC°. Clearly AC® C NC'.

The second model of parallel computation is that of concurrent read/exclusive write
parallel random access machines (CREW-PRAM). A tape can be read by many proces-

2

sors at the same time, but only one processor can write into the same tape. For more
details on parallel random access machines we refer to [Gl].

2.2. Additional features of chordal graphs

Here we give a characterization of chordal graphs which is quite important for the
whole paper.

Theorem 2 (Tree Characterization Theorem): [Bu),(Ga] A graph G is chordal
iff there is a tree T and a collection S of subtrees of T, s.t. G is isomorphic to the
vertex intersection graph of §. Moreover, any vertex ¢ of T' corresponds to a clique of
G in the following sense: The clique represented by ¢ contains exactly all s € S, s.t.
t 9.

[NNS] and [DK] presented a parallel algorithm to compute such a tree representation.
Theorem 3 (Tree Computation Theorem): [NNS] If the set C of cliques of a

chordal graph G is a part of the input, then a subtree representation (T, S) of G can
be computed by a CREW-PRAM in time O(log? n) by O(n®) processors.

2.3. Foundations on Strongly Chordal Graphs

Let G be a graph. Instead of G we can also consider the hypergraph Hg of its cliques
(maximal complete subgraphs). Now the following result is known (See also [BDS] and
[BP]):

Theorem 4 (Acyclicity Theorem): A graph G is strongly chordal if and only if
its clique hypergraph Hg is B-acyclic [BFMY]. A hypergraph H is 8-acyclic iff there
is no B-cycle vg, hy,vo,hg, -+, hi—1,v; = vy, that means:

i) the v, are vertices
ii) the h, are hyperedges
iii) v; € A, (mod ¢y Nhy and v; & hi, k # j, 5 — 1(mod 1).

9

B-cycle (see [BMFY])

In the case of chordal and strongly chordal graphs we have at most as many cliques
as vertices. Hg can be determined from G in polynomial time (see [Go]). It is also

3

known that it can be determined in NC? [NNS|. For strongly chordal graphs we shall
see that there is a much simpler solution in AC°.

Now we want to translate strongly perfect elimination orderings on strongly chordal
graphs to elimination orderings on the cliques. First, we state a simple auxiliary result:

Lemma 1 (Intersection Lemma).: Let H be a S-acyclic hypergraph. Then each
hyperedge intersection is the intersection of at most two hyperedges.

PROOF OF THE INTERSECTION LEMMA: Consider cliques Cg, C;, C3. Assume the
statement of the intersection lemma is not true for these cliques. Then there are
Zo, 21, T2, 8.5, Z; € C;i N Cit1(mods)\Ci+2a(mods). This defines a f-cycle. Second,
we need the following result:

Lemma 2 (Clique Lemma). [Di] Let < be a (strong) perfect elimination scheme;
then {y|(y, z] € E|,z < y} is complete.

Therefore

Lemma 3 (First Element Lemma). No two cliques of a chordal graph have the
same first element with respect to a perfect elimination scheme. Therefore we can now
define an ordering on the hyperedges:

hy <g ho iff the first element of h;is smaller than the first element of hs.

Let N(z) := {y|ly = z or [y, z] € E} be the neighborhood of z. The following result is
due to Farber [Fa 1]:

Lemma 4 (Neighborhood Comparability Lemma). Let G be strongly chordal
and < be a strong perfect elimination scheme.

Let Nz(y) := {v € N(y)|z < v}.

Then {N.(y)|y € Nz(z)} is comparable by inclusion. For the hyperedges we get the
following

Corollary 1: Let <y be the corresponding ordering on the cliques to a strong perfect
elimination scheme.
Then {h N h'|h' >4 h} is pairwise comparable by inclusion.

PROOF: Assume hy,hy >y h. Assume h; N h and hgy N h are incomparable. We
can find an z; € h;\h and a yo € ho N h, s.t. z; and y, are not in a common
clique (or joined by an edge). Otherwise h; would not be a maximal complete set.
By the same argument we also find an z; € hg\h and a y; € h1\h, s.t. 22 and z,
are not joined by an edge. Clearly yo ¢ hy and y; ¢ hy. Let z be the least element
of h. Clearly zi, z3, y1, y2 > z. But N,(y;) and N,(y2) are incomparable because
z1 € Ny(y1)\Nz(y2) and z2 € Nz(y2)\Nz(v1)- 0

Therefore <* satisfies the following strong elimination property for hyperedges hy; <y
ho,hs = hiNhy C hiNhg or hiNhs C hiNhy. We call such orderings strongly perfect
elimination schemes as well. Now we have to show that a strongly perfect elimination
scheme on the cliques also induces a strongly perfect elimination scheme on the vertices.

4

Let < be any ordering on the vertices and <y be a strongly perfect elimination
schemes on the cliques. Let A, be the greatest clique h with respect to <y, s.t. z € h.
Define z <g y iff h; < hy or hy; = hy and z < y.

Lemma 5 (Correspondence Lemma). <¢g is a strongly perfect elimination
scheme.

PROOF: ftrivial.

Corollary 2: For each strongly perfect elimination ordering on the cliques we can

compute a strongly perfect elimination ordering on the vertices in AC° (and therefore
in NC') and vice versa.

PROOF: This can be checked from the fact that each first-order-statement on finite
models can be checked in ACPC,

3. Computing the Set of Cliques of a Chordal Graph

Consider any chordal graph G = (V, E) and its tree representation s.t. the vertices
of the tree T correspond to the cliques.

Lemma 6.
i) Each clique represented by a leaf of T' is the corresponding clique to a simplicial
vertex.

ii) Each clique ¢ corresponding to a T-vertex of degree 2 (shortly degree 2-cliques) is
generated by two vertices of c.

PROOF:

i) trivial;
ii) Let ¢;,cy be the immediate neighbours of ¢ in T'. Then we find 2z, € ¢, 8.t. 2; & €1
and z; € ¢, s.t.z; ¢ c5. But then {y|[y,z1], [y,z2] € E} = c. 0

Another property of degree-2-cliques is the following

Observation 1: Each degree-2-clique has only two maximal intersections with other
cliques. To check the property without knowing all the cliques, we obtain the following

Observation 2: For each clique ¢; and each z € ¢1\¢,c1 Nec € N(z) Ne. Therefore
each maximal clique intersection is of the form N(z)Ne.

Two l-generated or 2-generated cliques can be compared easily:

Lemma 7. Let ¢(z,y) be the clique generated by z and y. Then ¢(21,41) = c(z2,¥2)
iff z1,y1 € c(22,¥2)-

PROOF: trivial.

Definition: The Hajos graph is nothing else than the trampoline, consisting of an
independent set and a clique both of size 3:

Historically it is the first known chordal graph not being an interval graph.

6

Theorem 5: Each chordal graph not having the Hajos graph as an induced subgraph
only has cliques generated by one or two vertices.

PROOF: Consider any clique ¢ not generated by any pair of vertices and a clique ¢; of
maximal intersection with c. Consider z; € cNey, 22 € c\c;. Consider any clique cg,
s.t.zy,Z € €3, 8.t. c2Nc¢ maximal and ¢; NeaNe maximal. ¢;NezNe #exNe because of
maximality conditions. Pick up any z3 € ¢; Nc\c, and consider a maximal intersecting
clique c3, s.t. z3,23 € cs. Because of maximality conditions on c; and cy, we have
c1NezNe ¢ csNe. Let 2 € c;NegNe\es. Then z), 22, z3 together with ¢y, ¢z, c3 form
a fB-cycle of length three. One can find y; € ¢;, s.t. [y;,y;] € E for i # j. Let y; € c;\c
for 1 = 1,2,3. Let [y;,y;] € E. Consider any 2, € ¢;, =, € ¢; and 2z; & cj,%; € ci.
Then y;,y;, = » =, form a cycle. But then there is an edge [z;, y;] or [z;,). W.lo.g.
[z:,y;] € E. But then ¢;Nec & N(y;)Nc and therefore c; is not maximally intersecting.
The induced subgraph of {z), z2, Z3,¥1, Y2, ¥3}is a Hajos graph. 0

Corollary 3: It is possible to compute all the cliques of a Hajos-graph-free chordal
graph by a CREW-PRAM in O(log n) time by O(n*) processors. This is especially true
for strongly chordal graphs.

PROOF: We state an algorithm:
1. Compute for each [z,y] € E N(z,y) := {ul|[u,z],[u,y] € E} and check whether
N(z,y) is complete (O(n*) processors and O(logn) time).
Say
) N{z,y), if N(z,y) is complete
o) = {0 otherwise

2) For each [2,y],[z,w] € E check whether Clz,y] = C[z,w)(O(n*) by the last lemma
and O(log n) time).

3) Eliminate duplicates (O(n®) processors and O(logn) time or O(n?) processors and
O(log® n) time by sorting ([Hil,[Cl]). 0

The corollary means that we can extend the result of [NNS] for the special case of
Hajos-graph-free chordal graphs in time and in processors. Now we want to have a
closer look at the general case of chordal graphs.

Theorem 6: It is possible to compute the collection of all cliques of any chordal graph
by a CREW-PRAM by O(n*) processors in O(log®n) time.

Before we state an algorithm, we have a look at the structure of vertices appearing in
any non-l-or 2-generated clique: A first observation is the following

Lemma 8. Each vertex of a chordal graph G = (V, E) appears in any 1- or 2-generated
clique.

PROOF OF LEMMA: Consider any vertex z.€ V and a tree representation T, C T of
z. Let ¢ be a clique which is a leaf of 7,. We can assume that there are at least two

7

cliques in which z appears. Let ¢, be the immediate neighbour ofcinT,st. z€ ¢
and y € c\¢;. Then c is generated by y and z.]

The key lemma for an algorithm is the following

Lemma 9. If z € ¢, s.t. ¢ is not generated by one or two vertices, then
i) there is an edge [z,y] € E, s.t. there is no 1- or 2-generated clique c(u,u3), s.t.
2,y € c(uy,uz), or
ii) there are y,z, s.t. [z,y],[z,2],[y,2] € E but there is no 1- or 2-generated clique
c(u1,us) s.t. z,y, z € ¢(uy,us), or

iii) there are 1- or 2-generated cliques ¢y, ¢3, €3, 8.t.
1) ¢; N¢; are pairwise incomparable by inclusion
2) z€cyMNegNes.
We call such a triple a 3-cycle.

PROOF OF LEMMA: We assume that i) and ii) are not the case. Assume z € ¢;,
s.t. ¢ is 1- or 2-generated and ¢; N ¢ is a maximal by inclusion. Assume y € c\ex
Then by the assumption that i) is not satisfied, that there is a 1- or 2-generated c;, s.t.
2,y € ¢, We can assume that ¢j N ¢ is maximal. Moreover, we can find a maximal
¢z Ne, 8.t ¢; Neg Ne is a maximal intersection of 1- or 2-generated ¢y, c2 and the non-
1- or 2-generated clique ¢, s.t. ¢ N¢, ¢z Nc are maximal. Assume y € c1\cz2, z € c2\c1.
Then we find a 1- or 2-generated clique cs, s.t. z,¥, z € c3 by the assumption that i) is
not satisfied. Assume that also cs N ¢ is maximal. But by the maximality of c;NezNe
we find a w € ¢; N ¢z N c\ca. Therefore ¢; N c; are pairwise incomparable by inclusion.

0

A last useful result for the complexity analysis is the following

Lemma 10. Let z be a vertex, s.t. for all cliques c, s.t. € ¢, ¢ hasin T' a degree
of at most two. Then z does not satisfy the consequences of the previous lemma.

PROOF: The cliques of T, form an interval and are therefore a-acyclic. Therefore
there cannot be a 3-cycle in T and all cliques of T are 1- or 2-generated by Observation
1.

Now we can state an algorithm:
Input: a chordal graph G = (V,E) (V',E') =G, C:=0

Repeat:

1) Compute the set D := {c(z1,22)|c(z1,22) is the clique generated by 21,23; 21,22 €
V'} and identify equal cliques (this requires O(n") processors and O(logn) time on a
CREW-PRAM).

2) Set

Dua := {[z,y] EE|Vc€ D(z ¢ cVy ¢c)}

Tria := {(z,v,2)|[z,¥),[v,2],[2,y) EE and Ve € D(z ¢ cVy ¢ cVz¢c)}
(this requires O(n*) processors and O(logn) time on a CREW-PRAM).

3) 3-cyc := {(c1,¢2,¢3) € D® : 3z € c1Neca(z ¢ cs) VIz € czNes(z € c1) VIz €
Cs N Ccy (Z ¢ Cg)}
(this can also be computed by O(n*) processors and O(logn) time on a CREW-
PRAM).

4) Vi={zeV':3yeV]yz| € Dua V3Iyze€ V((z,y,2) € Tria)V 3e1,c2,c3 €
D((c1,¢2,¢3) € 3-cyc Az € ¢y Nz Ncs)}
(This can be computed by O(n*) processors and in O(logn) time by a CREW-
PRAM).

G = (P, E NV
5) D':={ceD; Acd €c(cC)}:C:=CUl
until V' ;= 0.
Clearly one step of the loop can be executed by O(n?) processors in O(log n) time.

Claim: The loop is repeated at most O(logn) time.

PROOF OF THE CLAIM: Consider again the tree representation of G. Then
at each step all vertices z, s.t. 7T, appears only on branches of T, van-
ish and therefore all branches of T do so. But one only needs O(logn)
branch deletions until one reaches the empty set. This completes the proof of
Theorem 6. 0

Conclusion: To compute a perfect elimination scheme we continue in the same way
as [NNS] did. We compute a collection of subtrees of a tree representing the chordal
graph G and from that we compute the perfect elimination scheme.

4. Testing Strong Chordality

At first we shall give a parallel algorithm which tests the S-acyclicity of a hypergraph.
Afterwards we present an algorithm which tests the strong chordality of a graph which
uses the first algorithm as a subroutine. We begin with a lemma which is related to
the chordality test in [TY 2] or [NNS].

Lemma 11 (Lemma of 8- Acyclicity Test).

A hypergraph is B-acyclic iff for each z,22 € H, s.t. z; Nzz # 0, after the deletion
of all vertices of z; Nz, and all hyperedges h # z1,z2, s.t. 1 Nz C h, z; and z; are
in different connected components.

PROOF: “<=" Suppose (V, H) is not f-acyclic. Then there is a cycle z;, z2, zx = 21,
s.t. all z; N z;4, are pairwise incomparable by inclusion. We assume that the cycle is
of minimal legth. Then no intersection z; N z;41 C 24, 7 # 1,% + 1. But then z;, 2441

9

remain in the same connected component also after the deletion ofall v € z; Nz
and all y, s.t. 2, N Tip1 C Y # Tis Tig1-

“e=": Suppose z; and z7 are in the same component after the deletion of z; Nxa
and all y, s.t. z; Nzy C y # Z1,%2. Consider a shortest path z1 = y1,¥2,* " Yk = Z2.
Then the intersections y; Nyi41 are pairwise incomparable. ¥; Nyi41 ¢ z1 Nz because
all vertices of z; Nzy are deleted, z1 N2 € ¥: NYit1, because 3N T2 ¢ y; for 1+ # 1,k.

0
Theorem 7 (3-Acyclicity Test Theorem):

i) B-acyclicity is in CoNL C NC?.
ii) B-acyclicity can be tested by a CREW-PRAM in time O(log? n) using O(n*) proces-
sors, where n = maz (number of vertices, number of hyperedges)
PROOF:
i) follows from the previous theorem.

ii) Let hy E'hg :<=> hy Nhy eq0. To test the acyclicity is nothing else than m? times to
compute connected components of an indirected subgraph G, , of (H, E’). Knowing
Vi, Vs, all G , can be generated simultaneously in constant time by n? processors.

To compute connected components on one G, ,, we need O(log? n) time and O(n?)

processors ([Hi],[CV]). Therefore we need O(n*) processors and O(log? n) time to
compute all connected components of all G, , simultaneously. Therefore B-acyclicity

can be tested in O(log? n) time by O(n*) processors.

To test the strong chordality of a graph and to build up the corresponding clique-
hypergraph, we use the following algorithm:
Input: G = (V,E) and an order < on E

Step 1) Select all pairs [z,], generating a clique. C := {[z,y]|[z,y] generates a clique }.

Step 2) If [z,], [z, w] both generate a clique and [z, 2}, [z, w), [y, 2], [y, w] € E, then
identify the clique generated by [z,y] and the clique generated by [z, w], say [z,y] ~
[z, w)].

Step 3) For each [z,y] ~ [z, w], s.t. [z,y] £ [z, w], delete [2, w] from C.

Step 4) If |C| > |V| then reject.

Step 5) If there is an edge [z,y], s.t. for all [z,w] € C {z,y,2,w} is not complete,
then reject.

Step 6) Test (V, H := {{z|[2,u], [z, v] € E}|[u,v] € C}) on f— acyclicity.

Processor and Time Analysis:

Step 1): C = {[z,y]|Vz, w([z,w(], [z], [w, 3], [w, y]) € E — [z,w] € E} can be
computed in O(logn) time by O(n*) processors.

Step 2): can be executed in constant time by O(n*) processors.

10

Step 3): can be done by O(n*) processors in O(log n) time.

Step 4): |C| can be computed from C in O(logn) time by O(n? - log n) processors.
Step 5): can be executed by O(n*) processors in O(log n) time.

Step 6): f-Acyclicity can be tested in O(log n) time by n4 processors (see S-Acyclicity
Test Theorem).

Therefore strong chordality can be tested in O(log? n) time by O(n*) processors.

5. An Algorithm for the Computation of a Strongly Perfect Elimination
Scheme

After we stated an NC-algorithm for the recognition of strongly chordal graphs, it is
straightforward to look for the problem of the computation of a strongly perfect elimina-
tion scheme. We cannot repeat the program of [NNS], for we don’t have tree structures
which represent exactly the class of strongly chordal graphs. But such a construction
problem looks similar to the problem of the construction of a transitive orientation
[HM 2. An important subroutine is finding a maximal independent set (MIS). A first
parallel solution of the MIS-problem is due to Karp, Upfal and Wigderson [KUW].
An NCZ%-solution of that problem is due to Luby [Lu]. A solution which needs only a
linear number of processors in time O(log* n) on a CREW-PRAM is due to Goldberg
and Spencer [GS].

Our algorithm to find a strongly perfect elimination scheme is arranged as follows:

Input: a strongly chordal graph G
1) Compute the set of all cliques of G.
2) Compute a strongly perfect elimination scheme on the set of cliques

3) Translate the strongly perfect elimination scheme on the cliques to a strongly perfect
elimination ordering on the vertices. This will be done by the algorithm SPE.

The first step is already done. It remains to consider the steps 2) and 3). For the
step 2) we have to introduce some notions:

A chain is a sequence (z1,-++,%,) 8.t. Z; N Zi4; and 2; N T;—y are incomparable by
inclusion. We denote by z— y— z the fact that there is a chain from z to 2 via y.

Lemma 12. Let < be a strongly perfect elimination scheme on the hyperedges of a
B-acyclic hypergraph H and z,y, z be hyperedges of H. Ify < z and 2— y— 2, then
B AL

The proof can be done by a trivial induction.

5.1. Algorithm SPE (for the computation of a strongly perfect elimination
ordering on the cliques):

Input a f-acyclic hypergraph (V, H) and an ordering < on H.

11

Step 1) Compute for each z,y,2z € H the relation z— y— 2, which means y is on a chain
between z and z.

Step 2) Using the algorithm of Luby [Lu] or Goldberg and Spencer [GS], compute a relation
A, s.t. for each z,y,z € H:
1. If z—y—2,then ~(y A z)V-(y 2 z) and (z A)V-(yAz)and (z 4 2)V
—|(y i ZB)

2. (z2yV(y A, z) for each intersecting pair z,y

3. =(z2y)V-(y Az,

Here one has Krom formulas with variables of the form z A, y. To find such a relation

is to find a suitable replacement of the variables making these Krom formulas true.

Step 3) Check for each z,y, s.t. z Ayifzly:z A yiff there is a v, 8.t. = Ay Ay and

zNwv,v Ny incomparable or z A y A vand zNy,yNvincomparable.

Step 4) Compute the transitive closure A ofl 2.

Step 5)
If i) xi"-y,yiz

ii) not (z_’ftxorzﬁ.yorz.f.-zory_‘i-z

and
iii) zN z, yN 2z are incomparable, then set z LA

Step 6) Compute the transitive closure <’ of 2oy A

Step 7) < is any total extension of <’. Output <.

5.2. Time and Processor Analysis for SPE:

Each step can be done in NC?. Therefore the algorithm can be interpreted as an
N(C2-algorithm. But the processor analysis is more important: Let n be the number
of vertices and m be the number of hyperedges. We assume that the hypergraph
is implemented as a binary relation. {(v,h) : v € h} We also assume that for no
hyperedges hi, hy we have hy C hy. We will now do the processor analysis for each
step:

Step 1): To compute {z—y—2|,2,¥,2 € H} we have to compute
a) Vi = {[z,y]lz Ny # 0} := {{z,y]|Fv: vEzAvE Y} Set V' i={[z,y,v]lv € 2Ny}
and Vi := {[z,y] : 3v[z,y,v] € V'}.
V; and V' can be computed in log n time with O(n - m?) < O(n?®) processors on a
CREW-PRAM.

b) Va := {[z,y,2]|zNy C 2}. Let V' be defined as above.
Let V" := {[z,y,v,2]|[z,y,v] €V’ and v ¢ 2}
and V" := {[z,y,v,2,]|3v[z,¥,v,2,] €V"}

12

Va = {[z,y, 2,]llz, v, 2] € V')
V, can be computed in log n time with < O(n*) processors.
¢) Va:={[z,y,2]: Ny and y N z are incomparable by inclusion }
== {[Ia Y, Z] . [9:: Y, Z] ¢ V2 and [y: zsz] ¢ V2 and [z! y]s [y: z] € Vl}
This can be computed by O(n®) processors in O(log n) time.
d) Let
Vii={[z,5,2]lzNzCzNyAzNz#0}
= {[2,¥,2]lzN 2z C y}.
V4 can be computed by O(n3) processors in O(logn) time.
e) Let
Vs = {lz,y,2]|lzN2z & zNyorz=y}
= {[z,v,2]|z N y,z N z are not incomparable ([y,z,2,] ¢ Va)and (zNz & zN
z([z,2,y) & Va) or z = y)}

——ara

2t

Z

{.'.C, Y, ‘:1] € V57 bUt [I! , 22]1 |_I) Y, 23] ¢ V5
Vs can be computed by n® processors in O(log n) time. Using Vs, we want to construct
all elements that can be reached by a chain from z via y.

f) Let (",z,y: Ez,'y == ({z|[z, Y, Z] = Vé}!{[zlszﬂ]! z1 N z?“ g x})
Say Ve := {[z,9, 21, 22)||21, 22) € Ez y and 21,22 € Vey}, (21 intersects z; after the
deletion of the vertices of z)
= {[z, v, 21, 22)| [z, ¥, 21], %, ¥, 22] € V5 and [21, 22, 2] € Va}.

g) Let H, , := {z|z is in the connected component of E‘z'y and y}
Say V7 = {[z,v,2] : 2 € Hzy}
For each z,y we need < n® processors and O(log n?) time to compute Hy y. There-
fore we need < O(n®) processors to compute V.

h) We can make the following statement:

Lemma 13. z— y— z iff there are 2,2, s.t. 2’ Ny and 2/ Ny are incomparable and
z€ Hy, and z€ Hy .

13

PROOF: If(z =1z, ", Zi, ¥, Tit+2," "1 Tk = 2) is a chain, then 2;Ny and z;43Ny are
clearly incomparable. For j < 1 we have z;Nzj4+1\y # 0 because of the incomparability
of the intersections z; Nz;j4; and z; Ny € Z;41 NY and z; Ny S z; Ny. Analogously
for j>i4+22;Nzjp1\y#0and 2,41 Ny C zip2NY. Therefore x is in the connected
component of z; in Ey ,, and z; and z is in the connected component of Zi42 in By .,
Vice versa we consider shortest paths P, = (z = z1,-++, 2% = &) from z to 2’ in By g
and P, = (2 = 21,++,2 = 2') from z to 2 in Ey . As in the proof of the acyclicity
test lemma, we can check that these shortest paths form chains. By the definition of
E, and Ey .1, all intersections z; N z;41 and z; N 2541 contain elements not being in
y. Therefore they are incomparable with z' Ny or 2’ N y, respectively. We can paste
these two chains together and the lemma is proved. 1]
Ve := {[z, ¥, 2]|z—y—2}

= {[z,y, 2]|32', #’ Va[y, 7', z] and Vx[y, #',z] and Vsl2', y, 2]}

_ To compute Vg, we first compute

V' = {2y, 2, 2lz' Ny, yn 2 incomparable and 2z € Hy .} (0(n*) processors and
O(log n) time)

V"= {[a',y, 2] 37 [z y, 2, 2] €V}

v = {[z, 2,y 2|z, v, 2] € V" and z € Hy +} (O(n*) processors and)O(log n) time)
Ve := {[z, v, 2]|32'[z,2', y, 2] € V.

Therefore we can compute Vg by O(n*) processors in O(log n) time. Therefore
Theorem 8: {[z,y,2]|z—y—2} can be computed by O(n*) processors in O(log n?)
time.

Step 2):
a) The computation of the Krom formulas does not need more processors than the
size of the output; that means O(n*) processors.

b) The deductive closure is not computed in the usual way: The deductive closure is
Di={lz — y)V(y — 2)leny #0QU{~(z — yV-ly — 3z)lzy€
HYUu{~(y L 2)V (2 — w)|z—y—w and T—w—2z}.

Therefore the deductive closure can be computed by n4 processors.

¢) To compute 2., we need O(log? n) time and O((n?)? - (n?)?) = O(n®) processors
[Lu] or O(log*n) time and O(n® + n*) = O(n*) processors [GS]. That means
Step 2) needs O(log® n) time and O(n®) processors or O(log*n) time and O(n*)

Processors.
Step 3): 2 can be computed from A and Vs in Step 1) in O(logn) time and by Oo(n®)
ProCessors.
Step 4): The transitive closure A+ of {i. can be computed in O(log?n) time by O(n®)
Processors.

Step 5): {(z,y,2)|z A 2 and y 2 2z} can be computed from the previous data in constant
time by O(n®) processors. Therefore . can be computed in O(logn) time by

O(n®) processors.

14

Step 6): can be computed in O(log? n) time by O(n®) processors.
Step 7): The completion of a partial ordering < to a total ordering will be done in two steps:
a) We will construct a set of levels Hj, s.t.
i) z<y= J1>j,8t z€H;, y€ H; and
ii) H;NH; =0 for i # 3.
Define H; := {z| the maximal length of any ascending chain z < z; < z3 < -+ <
z; is 1}
b) Let z <y iff z € H;, y € Hj, ¢ > j or z,y € H; and z 3y w.r.t. the ordering
of the input.

To compute step a), we state an algorithm which needs < O(n*) processors and
O(log® n) time.
Ago =<
For 7 = 1 until logn
[Agi+1 = Agi 0 Agi = {(=,)|z : Ai(z, z) N Ai(2,y)}
LAE!" = Az‘. \A25+1
(The sets A, are pairwise disjoint)
For 7 = 1 until logn
For each number v < m of arity § and each k <logn — j
begin A, .ox pok-1 := {(2,y) € A .2x|2 € Ap.gk © Age }
Apgr = A g\ AL g pok-1
end loop
(The sets A,.qx, 8.t. v of arity j + 1 are pairwise disjoint.)
For each z: h(z) = max{k|3y(y,z) € Ax}. z € Hy :<= h(z) = k.
Step b) can be executed in O(logn) time by n® processors. Therefore:

Theorem 9: A strong perfect elimination ordering can be constructed by O(n*) pro-
cessors in O(log® n) time or by O(n®) processors in O(log? n) time.
5.3. Proof of the Correctness of the Algorithm SPE:

Step 5) guarantees that if y A 2, but not y A z (this means z < y may be possible)

and z A 2, y A z are incompara.ble, then z < z is preserved in form of z 2 z Therefore

the transitive closure of & U 2. computed in Step 6) suiﬁces the axioms of a strong
elimination ordering. We have only to show that = U 2. has no directed cycles.
Assume £ U 2. has a cycle C with mmlmal length Consider three consecutive

hyperedges :::,y,z of C,z— y—2, —= = U A,
Claim: znNy $yNz.
The claim leads to a contradiction:

PROOF OF THE CLAIM: At first z Ny and y N z are comparable by inclusion. Oth-
erwise z 2. z. We now assume yNz C z Ay. That means 2Nz =yN=z.

15

1) Assume y 2. z. Then this is a w, 8.t. yN 2z, wN 2 are incomparable and w A 2z but

not w A z. But then we cannot have z 4. z, otherwise w A 2. Therefore z 2, 2. We
have a contradiction to the minimality of the cycle C.

2) Assume y Nz & z Ny Because of 1) we may assume yAy Let d =

(y,Z1,"**, Tk, 2, (u)) be a minimal chain verifying y A 2. Then zy is the only element
of the chain touching y\z.
Assume z; also touches z\z, then (z,z1,:-,Zk,2,(u)) is a chain verifying z A z

and we have a contradiction to the minimality of the cycle C.
Assume z; does not touch z\z. Then yNz; and z Ny are incomparable and
(z,y,%1,"**, Tk, 2, (u)) i8 a chain and therefore = A, 2. Therefore here we have again
a contradiction to the minimality of the cycle C. N
3) We may now assume zNy =yNz =zN2. We cannot have z 2. y. Otherwise by the
same argument as in 1) we must have z A yand z A y, which is a contradiction to
y A z. Also we cannot have a chain (z,y,2), s.t. z Ay A w. We had also 2 o3
Th‘:arefore there must be a chain (z,21," -, %k, ¥), 8.t.2 Aore A goves By Ay,
Let 2o = z and k41 : = Y-
Clearly yNz=zNy & z; Nz;4, for each 1 =0,--+, k. The subset property follows
from the B-acyclicity and properness from the incomparability of the intersections.
Subclaim: z;Nz=yNz
PROOF OF THE SUBCLAIM: We will prove it by induction.
1 :=k + 1; trivial.
Assume z, Nz = y N 2. We know z;4; N z; contains elements not being in y N z. By
T;ip1MNz =yNz, 2;NZip1\2 = (m,-—}-l\z)r‘]a:,- = (:c.-+1\(yﬂz))ﬂ:c,: = z,-ﬁ:z;“\(yﬂz) #0.

ButifyNz & z; Nz, then z; Nz and z; N z;4; are incomparable by inclusion. That

would force z -2 y because the z; form a chain. This is a contradiction. O
But now, using the same arguments as in 2), we get z; A zforeacht1=0,---,k+1
and therefore z 2 z. This is a contradiction to the minimality of the cycle C.]

5.4. Translation to a Strongly Perfect Elimination Ordering on the Vertices

Now we have to consider the translation of a strongly perfect elimination ordering
on the cliques into a strongly perfect elimination ordering on the vertices.

Input: A F-acyclic hypergraph (V, H), a strongly perfect elimination ordering < on
H and an ordering < on V.

1) For each z,h,hq, 8.t. by < hp and z € hy, ha, delete from h;. (After the execution
of this step, each z is in a unique hyperedge.)

16

2) For each z,y, hs, hy, 8.t. 2 € hg,y € hy
a:<yiff(hz<hyorh1=h2andz-<y).
Step 1) needs O(logn) time and O(n®) processors.
Step 2) needs O(logn) time and O(n?) processors.
Therefore the whole algorithm can be executed in O(log n) time by O(n®) processors.

From this we conclude the following
Theorem 10 (Complexity of Strongly Perfect Elimination):

For any strongly chordal graph we can compute a strongly perfect elimination order-
ing by a CREW-PRAM in O(log? n) time using O(n®) processors or in O(log* n) time
using O(n*) processors.

Section 6. Conclusions:

One might be interested to continue the whole program to Ptolemiic graphs (i.e.,
distance hereditary chordal graphs) or to path graphs. The recognition problem of
Ptolemiic graphs is trivially in NC, because they are chordal graphs which have addi-
tionally a finite set of graphs as forbidden induced subgraphs [BM]. Only the number
of processors seems to be too high. But the decomposition property of this graph class
may lead to an alternating logspace algorithm with a polynomial tree size. This should
imply the existence of a parallel recognition algorithm of less processors [Ru]. We shall
deal with the whole topic in a later paper.

17

References

[BDS] Brouwer, A., Duchet, P., and Schrijver, A.,
Graphs Whose Neighborhoods Have no Special Cycle
Discrete Math. 47 (1983), pp. 177-182

[BFMY] Beeri, C., Fagin, R., Maier, D., and Yannakakis, M.,
On the Desirability of Acyclic Data Base Schemes
JACM 30 (1983), pp. 479-513

[BK] Brouwer, A., and Kolen, A.,
A Super-Balanced Hypergraph Has a Nest Point
Mathematisch Centrum, Report ZW 146, Amsterdam (1980)

[BM] Bandelt, H.J., and Mulder, H.,
Distance-Hereditary Graphs
Journal of Combinational Theory Ser. B 41 (1986), pp. 182-208

[BP] Bandelt, H.J., and Prisner, E.,
Clique Graphs and Helly Graphs
(preprint)

(Bu] Buneman, A.,

A Characterization of Rigid Circuit Graphs
Discrete Math. 9 (1974), pp. 205-212

[Cl] Cole, R.,
Parallel Merge Sort
27t* JEEE FOCS (1986), pp. 511-516

[CV] Cole, R., and Vishkin, U.,
Approximate and exact parallel scheduling with applications to list,

tree and graph problems
27th IEEE FOCS (1986), pp. 478-491

[Co] Cook, S.A.,
A Taxonomy of Problems with Fast Parallel Algorithms
Information and Control 64 (1985), pp. 2-22

[Di] Dirac, G.,
On Rigid Circuit Graphs
Abhandlungen Mathematischer Seminare der Universitdt Hamburg 25
(1961), pp. 71-76

[DK] Dahlhaus, E., and Karpinski, M.,
The Matching Problem for Strongly Chordal Graphs Is in NC
Research Report No. 855-CS, University of Bonn (1986)

18

[Fa 1]

[Fa 2]

[FW]

(Ga]

[GH]

[Go]

[G]]

[GS]

[HCS]

[HM 1]

[HM 2]

Farber, M.,
Characterizations of Strongly Chordal Graphs
Discrete Math. 43 (1983), pp. 173-189

Farber, M.,

Applications of LP-Duality to Problems Involving Independence and
Domination

Ph.D. Thesis, Computer Science Department, Rutgers University, New
Brunswick, NJ (1982)

Fortune, S., and Wyllie, J.,
Parallelism in Random Access Machines
10t* STOC (1978), pp. 114-118

Gavril, F.,

The Intersection Graphs of Subtrees of a Tree Are Exactly the Chordal
Graphs

J. Comput. Ser. B 16 (1974), pp. 47-56

Gilmore, P., and Hoffman, A.,
A Characterization of Comparability Graphs and of Interval Graphs
Can. J. Math. 16 (1964), pp. 539-548

Golombic, M.,
Algorithmic Graph Theory and Perfect Graphs
Academic Press, New York (1980)

Goldschlager, L.,
Synchroneous Parallel Computation
Journal of the ACM 29 (1982), pp. 1073-1086

Goldberg, M., and Spencer, T.,
A New Parallel Algorithm for the Maximal Independent Set Problem
to appear in FOCS ’87

Hirschberg, D.S., Chandra, A.K., and Sarvate, D.V.,
Computing Connected Components on Parallel Computers
CACM 22 (1979), pp. 461-464

Hembold, D. and Mayr, E.,

Two Processor Scheduling is in NC, in: VLSI Algorithms and Archi-
tectures (ed. Makedon et. al.)

LNCS 227, pp. 12-15

Hembold, D., and Mayr, E,,

Applications of Parallel Scheduling to Perfect Graphs
Graph-Theoretic Concepts in Computer Science, LNCS 246 (1987), pp.
188-203

19

[Jo]

(KUW]

[KVV]

[LB]

[Lu]

MVV]

[NNS]

[SV]

[TY 1

Johnson, D.S.,
N P-Completeness Column
Journal of Algorithms 6 (1985), pp. 434-451

Karp, R., Upfal, E., and Wigderson, A.,
Finding a Maximum Matching in NC
17t ACM STOC (1985), pp. 22-32

Kozen, D. Vazirani, U., and Vazirani, V.,

NC-Algorithms for Comparability Graphs, Interval Graphs and Test-
ing Unique Perfect Matching

to appear

Lekkerkerker, C., and Boland, D.,
Representation of Finite Graphs by a Set of Intervals on the Real Line
Fund. Math. 51 (1962), pp. 45-64

Luby, M.,
A Simple Parallel Algorithm for the Maximal Independent Set Problem
17t ACM STOC (1984), pp. 1-10

Mulmulay, K., Vazirani, U., and Vazirani, V.,
Matching is as Easy as Matrix Inversion
Proc. 19" ACM STOC (1987), pp. 345-354

Naor, J., Naor, M., and Schaeffer, A.,
Fast Parallel Algorithms for Chordal Graphs
Proc. 19t" ACM STOC (1987), pp. 355-364

Ruzzo, W.,
Tree Size Bounded Alternation
JCSS 21 (1980), pp. 218-235

Rabin, M.O., and Vazirani, V.,

Maximum Matching in General Graphs through Randomization
Report No. 15-84, Center for Research in Computing Technology, Har-
vard University, Cambridge, Mass (1984)

Shiloach, Y., and Vishkin, K.,
An O(log n) Parallel Connectivity Algorithm
J. Algorithms 3 (1982), pp. 57-67

Tarjan, R., and Yannakakis, M.,

Simple Linear-Time Algorithms to Test Chordality of Graphs, Test
Acyclicity of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Hypergraphs

SIAM J. Comput. 13 (1984), pp. 566-579

20

[TY 2] Tarjan, R., and Yannakakis, M.,

Simple Linear-Time Algorithms to Test Chordality of Graphs, Test
Acyeclicity of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Hypergraphs; Addendum

SIAM J. Comput. 14 (1985), pp. 254-255

21

