THE MATCHING PROBLEM FOR BIPARTITE GRAPHS
WITH POLYNOMIALLY BOUNDED PERMANENTS IS IN NC
(Extended Abstract)

DIMA YU. GRIGORIEV,
STEKLOV INSTITUTE OF MATHEMATICS,
SOV. ACAD. OF SCIENCES,
LENINGRAD 191011

AND

MAREK KARPINSKI,
DEPT. OF COMPUTER SCIENCE,
UNIVERSITY OF BONN,
5300 BONN 1

(November 19, 1986)

Abstract. It is shown that the problem of deciding and constructing a perfect match-
ing in bipartite graphs G with the polynomial permanents of their n X n adjacency
matrices A (perm(A) = n®())) are in the deterministic classes NC? and NC?3, respec-
tively. We further design an NV C3 algorithm for the problem of constructing all perfect
matchings (enumeration problem) in a graph G with a permanent bounded by O(n*).
The basic step was the development of a new symmetric functions method for the de-
cision algorithm and the new parallel technique for the matching enumerator problem.
The enumerator algorithm works in O(log® n) parallel time and O(n**5- - log n) pro-
cessors. It entails among other things an efficient N C3-algorithm for computing small
(polynomially bounded) arithmetic permanents and a sublinear parallel time algorithm
for the bipartite matching with permenents up to 2%,

Concerning the circuit complexity of the logical permanent (cf. [Ra 85]), we display
a class of bounded permanent problems, each of superpolynomial monotone circuit



complexity n(°¢") ([Ra 85]), and which are computable within the uniform O(log? n)
depth and O(n*?®) size boolean circuits.

1. Introduction.

Given a bipartite graph G, and its (bipartite) adjacency matrix A. The problem of
constructing all perfect matchings of G (the computation of the arithmetic permanent
perm(A)) is #P-complete [Va 79]. Let PERT (logical permanent problem) denote the
set of all square adjacency matrices that have a perfect matching. PERT does have
polynomial time algorithms and O(m?®)-uniform circuits [HK 73],[Ra 85].

Also a problem of finding some perfect matching (not the enumeration of all match-
ings) can be done in polynomial time [HK 73]. The problem of perfect matching for
bipartite graphs is known to be in RNC? [MVV 86|, [KUW 85]. The problem of de-
ciding whether there exists a perfect matching (the problem of the logical permanent)
possesses some interesting lower bound properties for monotone circuits [Ra 85], as well
as interesting connections of its circuit upper bounds to the intractability of the discrete
logarithm problem [FLS 85], for example. In 1984, Rabin and Vazirani [RV 84] have
proved that if a graph has a unique perfect matching, then the problem of finding it
lies in NC.

Kozen, Vazirani and Vazirani [KVV 85] and Hembold and Mayr [HM 86| have de-
signed NC-algorithms for the problem of testing for unique matching as well as for
interval graphs and the connected problem of 2-processor scheduling. [DK 86a] has
generalized the result on interval graphs to strongly chordal graphs ([Fa 83), [Ta 85]).
It was observed in [DK 86a] that the perfect matching for chordal graphs is complete
for the general matching problem. Surprisingly, it was proved in [DK 86b] that the
problem of matching for regular graphs is complete for the general matching problem.

It is also known that the perfect matching construction for bipartite regular graphs
is in NC?[LPV 81). In [Br 86 interesting approximation methods have been proposed
for bipartite matching problems. The status of the general perfect matching problem
remains open and is still one of the most intriguing open problems in parallel compu-
tation.

In this paper we attack the problem of checking and constructing perfect matchings
in bipartite graphs in the case where its number is bounded by the constants and the
polynomials. It was known from Rabin and Vazirani [RV 84] that if a graph has a
unique perfect matching, then the problem of finding it lies in NC.

The aim of this paper is to prove the following three results:

(1) If a bipartite graph G has a polynomial adjacency permanent (perm(Ag) < enk),
then the problem of deciding the existence of a perfect matching and its construction
is in NC? and NC?3, respectively (Theorems 1 and 3).

(2) If a bipartite graph G has a bounded adjacency permanent (perm(Ag) < k), then
the construction problem of ‘all perfect matchings’ lies in NC? (Theorem 2).
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(3) If a bipartite graph G has a polynomial adjacency permanent, then the problem of
constructing all perfect matchings lies in NC® (Theorem 4). The enumerator algorithm
works within O(log® n) parallel time and O(n3**5-8log n) processors.

The algorithm involves development of the new method of symmetic functions (Theo-
rem 1) and the new parallel techniques for the matching construction and the matching
enumerator.

It is interesting to notice that we have displayed a new parallel complexity feature of
the matching problem, the easiness of its parallel enumerator for the small number of
solutions. This feature is seemingly not shared, on the different complexity levels, by
other hard counting problems (cf. [VV 85], [MVV 86]).

2. The Algorithms.

Given a bipartite graph of n vertices, denote its 0-1 bipartite adjacency matrix by Ag.
The permanent of G is the permanent of Ag = (aij)nxn, i.6. the number perm(Ag) =
Y. @15(1) G20(2) “** Gno(n), Where summation extends over all permutations ¢ on

{1,2,---,n}. Given a 0-1 matrix A = (ai;), a I-pattern t4 of A is a mapping from
{1,---,n} x {1,---,n} into {1,-++,n?} such that t4(¢,5) =l if a;; = 1 and ay; is the
[-th non-zero element, t 4(t,7) = 0 otherwise.

Theorem 1. If a bipartite graph G has a polynomial permanent, perm(Ag) < cn*
for given constants ¢ and k, then the problem of deciding the existence of a perfect
matching (the logical permanent problem) is in NC2.

PROOF. Suppose G is a given graph of n vertices and A its adjacency matrix. Let
P1,P2,* -, Px denote consecutive prime numbers. We construct the following NC?-
algorithm for deciding the existence of a perfect matching:

1. Construct in parallel all matrices

Am = (a]) for 1 <m<en* by

a

m - (ptA(ijJ)m if ai; = 1
. 0 otherwise

2. Compute the determinants of Ay, 1 <m <cn*:  Det(Am) = am

In this paper we shall use the boolean circuit model of computation ([Co 85]). Com-

puting the determinants of an n X n matrix of n-bits numbers takes O(log? n) boolean
parallel time and O(n*?®) processors ((BGH 82], [BCP 83)).

3. If 3m|am # 0] then ‘accept’ else ‘reject’.
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We prove the correctness of the algorithm by the following
Lemma 1. Ym[em, = 0] <= perm(4) =0.

PROOF ( =>). We make use of the fact that the determinants of the consecutive

matrices (a]) form symmetric differences of the form Yz - Yy, for z;, y; prime
i i

codings of all matchings, 1 < m < en*. Codings z; and y; are pairwise different z; # y;,
z; # z;, etc. or equal to zero. o,y = )z and oy, = >_y[* are symmetric functions.
- -
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All such functions are uniquely represented by the elementary symmetric functions
[Ma 79]. Any two solutions of such systems must coincide up to permutations

(cf [Ga 60], pp. 87-88)by the use of the Newton formulas; so in general there must
exist a permutation o such that z; = yo(;)- On the other hand all z; and y, are
different or equal to zero; therefore equal to zero, which ends the proof. 0

It is interesting to note that because of the monotonicity property, computing the
logical permanent of matrices with k-bounded arithmetic permanents, perm(A) £ k, for
k =1,2,--,does have superpolynomial n*(1°8 %) monotone circuit complexity ([Ra 85])
for all k’s. It stands in contrast with our

Corollary 1. The Logical Permanent Problem for matrices with k-bounded arithmetic
permanents is computable within the uniform O(log? n) depth and O(n*?) size boolean
circuits.

Theorem 2. If a bipartite graph G has a bounded permanent, perm(Ag) < k for k
a constant, then the problem of constructing all matchings of G is in NC?,

PROOF. One sees that the algorithm of Theorem 1 encodes matchings in the form
of the numbers Y z* — )y for1 <m < cn®. The problem of decryption of these
i J

numbers and recovery of all actual matchings is a very interesting problem of polynomial
algebra. We shall be able to prove the existence of such parallel ‘matching recovery’ in

Lemma 3 for numbers of matchings bounded by lv::g(%_SJ n.

However, we now apply for a constant k a completely different method which is an
interesting new ‘divide-and-conquer’ approach to the problem of matching.

The following is the NC?-algorithm for constructing all matchings of a given bipartite
graph with a bounded permanent, perm(Ag) < k for k a constant:

Input: Matrix 4°

Subroutine (Split (4%)). Take in parallel all (%, ) entries of a matrix A such that
a;; # 0 and compute two new matrices A{™" and AT .

o Alt!is the (n — 1) x (n — 1) matrix resulting from the cancellation of its i-th row
and j-th column; store the numbers (1, 7).

and



e AX*! s the n x n matrix resulting from plugging ‘0’ into its (4, 5)-entry.

Algorithm.

1. A® — Ag
2. Repeat in parallel
subroutine Split (A*%)
until £ =k - 1.

3. Construct new matrices N = (z;;) on the leaves of the computation tree. Suppose
M = (yi;) is on the leaf; then

s = {Ptu(i.j) if yiy =1

Y 0 otherwise

4. Compute the determinants of all matrices N.
5. If a determinant is an encoding of a unique matching (the condition: det(AF™!) #
0 and det(A5™!) = 0 is fulfilled), recover it from the determinant (by consecutive
dividing by prime numbers p;,ps,- -+, pn and retrieving stored numbers (¢, ) from the

computational path) and print it out. (If you do not want repetition, do additional
parallel sorting.) The correctness of the algorithm is based on the following

Lemma 2. For every matching in a graph G there exists a leaf of a computation
tree (step 3) with the unique matching in it.

We now aim at improving Theorem 2. First we prove

Lemma 3. If a bipartite graph G has a permanent bounded by

log* ~*n, perm(Ag) < 1og%_‘ n, then the problem of constructing all its matchings
lies in NC.

PROOF. Denote by k the number of matchings. Let k < log”"‘) n, and {g;} are such
primes that

1)g; > k (in fact ¢; ~kn log n < log“%_‘) n) and

2)[14¢: > 2"(n!)* > 0j(z1, -+, 2¢),1 £ J <k, 21, , 2k — products of primes plugged

3
in matchings; the number of ¢; is near kn.

Fix g;, (in parallel) and solve the system

2 zi— )y =4
1595 1<5<k—t
: i mod ¢,
Y zk- ¥ yf=A

1<t 1< <k~

Take any solution Z;,«,Z¢, §1,° -+ Jk—e (at the beginning we test £ =0,1,---,k), then
compute o;(Z1,-**,Ze),05(F1, * Je—1);1 < j < k. Any two solutions of this system
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coincide up to permutations in Zy,- -, Z¢ and §1,° ", k-t (separately) because g, > k.
Therefore 0;(Z1,- 1 Z¢),05(F1, k—¢) are uniquely defined and

0(Z1y++yEe) = 05(z1, 0y ze)(mod i)
oi(F1, - Tk-t) = oi(y1s s yk—e)(mod gi,)
where 1, ++,Z¢, 1, Uk—t i8 the unique (up to permutations in z4,-+-,z¢ and in

Y1, ", Yk—e) solution of the system
2%~ > y; =A1

Yk -y =Ax

and so o;(zy, ", 2e),05(y1, "+ yx—¢) are defined uniquely.

By the Chinese remainder theorem restore o;(zy,"**, 2¢),0i(Y1,** Yk—e)- It is possible
since [T g > o(z1,--,2e),05(y1,*,yk—e). Then apply [Lo 83] or [BKR 84] to find
Tyy oy Xy Y1yt Yk—t-

The complexity of the solving system mod g;, (the method of [CHG 83] and [CHG 84])
is polynomial in (dcg)("‘“)z. Gio < k** . kn log n is polynomial in n. The point is that
the method of [CHG 83] and [CHG 84] can be done simultaneously in parallel time log
(sequential time)< O(log n) - its main subroutine is factoring in IFylzy,-+,2n] — and
the method in [CHG 83] needs only linear algebra - not reduction basis. O

Having proved the existence of an NC-algorithm for the enumerator of logi" n match-
ings (which seems to be a limit for an efficient parallel algebra algorithm), we are now
going to attack the general matching problem of polynomially bounded permanents,
both for the construction of a matching and the matching enumerator. We are able to
prove a much stronger result than Lemma 2 by using our symmetric functions technique
of Theorem 1 for the solution of the logical permanent problem (surprisingly not using
any efficient linear algebra).

Theorem 3. If a bipartite graph G has a polynomial permanent (perm(Ag) < cnk),
then the problem of constructing a perfect matching lies in N 3.

PROOF. Denote by A = (a;;) a 0-1 n X n matrix. For any entry aj, by Ai; denote
the (n — 1) X (n — 1) matrix obtained from A by canceling the i-th row and the j-th
column.

For any a;; = 1 test (with the help of the deciding method of Theorem 1) whether
A;; has at least one matching. We call such a;; generators. Consider a row (10-th)
containing at least two generators ai,j, = Gipj, = 1 (otherwise, if no such row exists,
we have found a unique matching). Then at least one of the two matrices Ayj and
A;,j, has at most half of all the matchings of the matrix A. This is a crucial point of
our algorithm (the rest is a consequence of our decision algorithm of Theorem 1)
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Then apply the same construction to both matrices A ;,, Aioj, (call recursively the
subroutine of Theorem 1), and so on. After ¢t < log(en*) = O(log n) steps we shall
obtain one of the 2¢ matrices with the unique matching. 0

Theorem 4. (Catching all Perfect Matchings in NC3) If a bipartite graph G has
a polynomial permanent (perm(Ag) < cn*), then the problem of constructing all its
perfect matchings lies in NC3. The algorithm works in O(log®n) parallel time and
O(n3*+8-5 Jog n) processors.

PROOF. We start with a definition:

Definition. A set of entries a,;,,***,aij, of the matrix A is called (matching)
active if there exists a matching in the graph corresponding to the matrix A, containing
all these entries.

One can test for any given set of entries a;,;,,--*,a;,;, whether it forms an active
set. Namely, it is equivalent to the fact that for all a;,;, = -+ = a;,;, = 1, the indices

21, ++, 1y are pairwise distinct (and also j;,- -, J.) and besides, in the matrix A(':':;:),
obtained from A by canceling the rows i;,-:+,%, and the columns jj,- -+, j., there is
at least one matching that can be checked by means of the decision procedure exposed
above (Theorem 1).

Now we describe an algorithm yielding all the matchings of the matrix A. We can
suppose w.l.o.g. that n = 2™. The algorithm works recursively in (m + 1) stages. At
the first stage it produces all the active entries.

Next, fix a certain i, 1 < ¢+ < m, and assume that after the i-th stage the
algorithm has produced the family of all the active sets of entries of the form
QQGi=1)gg 1,50 " " s B20-1) 042010 5 iy, for each s, 0 < 8 < 2m~i+1,

So, at the (i + 1)-th stage for every 0 < t < 2™~* the algorithm tests in par-
allel for any pair of active sets of the form ajci-1)(a¢)41,5;, " *» G3G-1) (26)426-1) 5, ;)
and Gg(i-1)(2¢4+1)+1,py, " "1 B20=1) (2t+1)+36=Dp, ;4 whether the union of these two sets
A30-1)(2t) 41,5y, * * " » B26=1) (2641)+20=1) py.(,_,, fOrmMS an active set. If yes, then the al-
gorithm outputs it as one of the results of the (¢ + 1)-th stage. This completes the
description of the algorithm. At the end of it (after (m + 1) stages) we obtain all the
matchings of the matrix A.

Let us prove that the described algorithm is in NC. The depth of the algorithm
is O(log® n). To estimate the size of the algorithm observe that after any stage there
would be less than n - cn* active sets. Thus, at any stage the algorithm tests less than
¢n2*+1 pairs of active sets. This proves that the described algorithm lies in NC* and
takes O(n3%+%5 Jog n) processors. 0

We now derive some important corollaries from the construction of Theorems 3 and
4:

Corollary 2. The problem of computing a polynomially bounded permanent is in
NC3.



Corollary 3. If the number of matchings in a graph G is n®(1°8 #) then the decision
problem (logical permanent) and the construction of a perfect matching problem are
mutually O(log? n)-uniform depth reducible.

Corollary 4. If a bipartite graph G has a permanent less than 2'°8" » , then there is a
log**t! n parallel time (log**! n-sequential space) algorithm for enumera.tmg all perfect
matchings.

Corollary 5. If a bipartite graph G has a permanent less than 2”° for a constant
€ < 1, then there is a sublinear parallel time (sublinear sequential space) algorithm for
enumerating all the perfect matchings in a graph.

3. Deciding whether the Permanent is Small; a Randomised Version of the
Matching Enumerator.

It is known that for every positive integer k there exists a (0,1)-matrix with the
permanent k. The minimum order of (0, 1)-matrices with the permanent k does not
exceed [log(k—1)]+2for k = 2,3, ((GMW 74]). An important computational prob-
lem of bounded counting arises: given an arbitrary k, k = 0,1,2,3, -, decide whether
perm(A) is k-small, i.e. whether perm(A4) < k. If the answer is yes, our enumerator
algorithm of Section 2 will produce all the perfect matchings. Our algorithms provide
a way of deciding whether perm(A) = k, for k > 0, but unfortunately they cannot
distinguish between zero and many matchings.

A similar situation holds for polynomially small permanents. For a function f €

n®W), perm(A) is f-small if perm(A) < f(n) for an n X n-matrix A. We are now
mterested in detecting all matrices A with f-small permanents. We produce here an
attractive randomised version of our Theorem 4.

Theorem 5 (Randomised Enumerator) For any polynomial f € n®(1) (f(n) = cn*)
there exists a randomised (Las Vegas) RN C®-algorithm for deciding whether perm(A) is
J-small. In the case perm(A) is f small, the algorithm outputs all the perfect matchings
of A. The algorithm takes O(log® n) parallel time and O(n?*+5-% log n) processors.

PROOF There exists a Las Vegas RN C?-algorithm (not outputting any errors) for the
logical permanents (cf. [MVV 86, [KUW 85]) working in O(log? n) parallel time and
O(n*?®) processors and using O(n? log n) random bits. We use this algorithm (instead of
applying the deterministic procedure of Theorem 4) to compute the logical permanent
of the active set matrices A'-":::j-“ in the algorithm of Theorem 4.

We control the number of active sets produced at any level by comparing it in parallel
W.... the number n-cn* (computed by another NC!-circuit). If it exceeds this number,
we switch the circuit off. If not, we shall obtain a printout of all the matchings in A in
O(log® n) parallel time. The algonthm takes O(n2?*+5:5 log n) processors. 0
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The randomised algorithm above reduces the number of processors by the factor of
~ O(n*) on the expense of O(n?*+7:8 log? n) random bits.

4. Extensions.

Our results can be extended to the problem of Maximum Matching for the case of non-
bipartite graphs with the polynomially bounded number of matchings. In this case we
deal with computations over skew matrices and Pfaffian functions rather than bipartite
adjacency matrices. Due to the enumerator algorithm of Theorem 4, the problems of
Maximum Weighted Matching (with weights in binary), First Lexicographical Perfect
Matching, or the connected Stable Marriage Problems are all put in NC?®, provided the
number of underlying matchings is small. Also, as a consequence of the enumerator,
inherently difficult problems of counting perm(A) mod k ([Va 79], [VV 85]) have been
proved efficiently parallelisable for the polynomially small permanents.

5. Further Research.

It remains to be seen whether the method applied in our algorithm for bounded cases
of the logical permanent could be refined to provide a general deterministic solution. It
seems that a more careful look at the algebraic varieties stemming from our symmetric
functions construction of Theorem 1 is now justified.

Independently, it would be very nice to shed some light (say, via NC-reducibilities)
on the mutual interdependence between the decision methods and the comstruction
of a perfect matching for graphs with superpolynomial permanents (Theorem 3 and
Corollary 3 might be good starting points).
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