On the Monte Carlo Space Constructible Functions and Separation Results
for Probabilistic Complexity Classes
(Revised Version)

MAREK KARPINSKI AND RUTGER VERBEEK
UNIVERSITY OF BONN

Abstract It is proven that contrary to the deterministic and nondeterministic cases
there is no recursive lower bound for Monte Carlo space constructible functions. The
existence of small constructible bounds enables the separation of Monte Carlo space
f(n) from probabilistic space g{n) (f(n) = o(g(n))) and - together with a new halting
lemma. for probabilistic machines with small space bounds - a hierarchy of “prov-
able” Monte Carlo space classes with small bounds. We are also able to separate
O(loglog n) terminating Monte Carlo space in the sense of [AKLLR 79], [We 83] from
NSPACE(loglogn).

0. Introduction

It is known from [LSH 65) that any meaningful padding-control requires at least
log log n space. Therefore there is ‘no life’ for deterministic machines between O(1) and
O(loglogn).

In contrast to this Freivalds [Fr 81a] displayed exponential (and therefore arbitrary
elementary recursive) padding doable in O(1) Monte Carlo space. We prove that even
arbitrary recursive paddings are achievable within O(1) Monte Carlo space (Theorem
1). This enables the proofs of separation results for complexity classes with arbitrary
small bounds.

For the definition of probabilistic Turing machines (PTMs) see [Gi77]. If M
is a PTM, then &) is the function computed by M. [is in probabilistic
SPACE(s(n)) (PrSPACE(s(n))) if there is a PTM M such that ®» = f and for

all =

Pr {M uses on input z at most s(|z|) space and outputs dn(z)} > %
If in addition M always stops (stronger condition than terminating with probability
1!), then f € PrTSPACE(s(n)) [AKLLR 79], [We 83]. If in the definition above 1
is replaced by %, we call the corresponding machines Monte Carlo Turing machines
(MTMs). The Monte Carlo space complexity classes are denoted by MSPACE(s(n))
and MTSPACE(s(n)), respectively. Sets are recognized by PTMs or MTMs computing
their characteristic functions. .

RSPACE(s(n)) and RTSPACE(s(n)) (for sets only) are defined in the same way
as the Monte Carlo classes, with the restriction that the error probability is 0 on the
complement of the recognized set.

A function f : IN — IN will be called Monte Carlo (MC-)constructible if thereis a
MTM M with space bound f(n) for which for all n there is some z, |z| = n, such that
&y = f(n). If M satisfies the above for z = 0", then [is called Jully MC-constructible.

The notions of MCT -constructibility and full MCT-constructibility will correspond
to the class of (always) terminating MTMs.

1. Monte Carlo O(1) Space Simulation of Deterministic Counters and Small
MC-Constructible Functions

We use two machine models

(i) off line two counter Turing machines (2CTs) [HU 79, p.171] and
(ii) classical (unary input) three counter (Minsky) machines (3CMs) [Mi 61].

A configuration of a 3CM M is to be encoded in the form 09+11%12723%, where ¢
is the state of M, z; is the content of the ¢-th counter for ¢ = 1,2,3. The code of a
computation is a sequence of encoded M-configurations according to its transition table.
3CMs are able to compute all partial recursive functions (with unary input Joutput) [Mi

2

61], whereas 2CMs are not [Ba 62]. In the case of 2CTs, configurations are encoded
by 09+11#1222 (note that we do not mind the input). 2CTs are able to compute all p.r.
functions (input/output binary) (HU 79].

Given 3CM M and an accepted input n, compy(n) will denote the code of the
accepting computation on n. If n is not accepted, comp () is undefined. In the same
way compt (z) is defined for 2CT T.

Lemma 1 For every 3CM M, {compn(n) |n € IN} € MSPACE(O(1)).

PROOF The recognition of the set {compy(n)} is based on the idea of Freivalds’
example {0201{}211- 021 ke IN} [Fr 81a] (cf. also Lemmas 1 and 2 of [Fr 81al)

used for the exponential padding. A deterministic finite automaton can check whether
the sequence of states is correct (the next state depends only on the zero-tests and the
current state). What remains is to compare the (non-zero) contents of the counters
in succeeding configuration by a sequence of tests of roughly the form “Isn =m
in 1"0*1™?” (the differences +1 or -1 can be handled in the finite control). These
tests are performed by tossing 8n coins on 1* and 8m coins on 1™. This procedure
is repeated until two times the outcomes of all the 8n or 8m tosses were ‘heads’. If
this happens both times on the same substring, decide ‘n # m’; otherwise decide
‘n = m’. Ifn = m, Pr{outcome is ‘n = m’} = 1;ifn # m, Pr {outcome is ‘n = m’} <
2
1- (=) s277

Thus, in a sequence of £ tests the probability that all tests give the result
2-¢ ifn; =m; foralls,1 <i<(
< 2786 otherwise.

Thus we must “compare” Pr{all £ tests have outcome ‘n = m’} with 2-% or, better,
with 27¢73. This is done in a way similar to the single comparisons:

begin repeat
tl := true; t2 := true;
fori:=1to £do
begin compare n; with m;;
if ‘n; # m;’ then tl := false;
toss a coin;
if the outcome is ‘tail’ then t2 := false;
end;
toss 3 coins;
if one of them is ‘tail’ then t2 := false;
until tl or t2;
if tl then write (‘(Vi)n; = m;’)
else write (‘(3)n; # m;’")
end

Obscrve that this algorithm requires finite storage only (using a two way input tape,
i and ¢ need not be stored).

The probability analysis is quite simple:

If (Vi)n; = m;, then Pr {answer is £} < %ﬁj—} < Tlv
if (31)n; # my, then Pr{answer is =} < 22_;;-;7 <3 0

Lemma 1 entails the following corollaries:

Corollary 1 Every unary re. set is homomorphic image of some set from

MSPACE(O(1)). 0

Corollary 2 ([Fr 81b]) For every r.e. set X, there is a set Y € B* x &* recognizable
by an O(1) space bounded MTM with two input tapes, and X is its first projection.

PROOF Suppose T is a 2CT recognizing X, Y := {(z,y) |z € X, y=compr(z)}.
A MTM with z on one input tape and compt(z) on the other can clearly verify if

y = compr(z). 0
Corollary 3 ([Fr 81a], Algorithmic Problems 1 and 2) The emptiness (and every-

where acceptance) problem for Monte Carlo two-way finite automata are both IT§-
complete. 1

Lemma 2 For every recursive function f: IN — IN there is a 3CM M such that for
all n, f(n) < |compy (m)| < lcompy(n + D).

PROOF Given recursive f, there is a 3CM M; computing f. We construct a 3CM

M, computing f' : n — f(0) f(1) -+ f(n) in a canonical way. Then for all n, f(n) <

1'(n) < lcompy(n)] < lcompy(n +)] 0

Theorem 1 For every unbounded nondecreasing (u.nd.) recursive function f there
is an u.nd. MC-constructible minorant g with g(n) < f(n) for all n.

PROOF Given f : IN — IN, F(n) := max{m | f(m) < n}. Take 3CM M of
Lemma 2 for the function F, i.e. satisfying F(n) < |compu(n)| < |[compu(n + 1)|.
Define g(n) = min{m | |compy(m)}| > n}. Construct by Lemma 1 a MTM with
space O(1) that recognizes all strings having a prefix of the form compy{m) and outputs
m for such a word and 0 otherwise. Obviously on input w the output is at most g(|w)).
For the input of the form compM(g(n))O“‘l“’mP“{9("))! T computes exactly g(n). 0

The function ¢ constructed above has an important predictability property: for all n
there is an z, such that the MTM constructing g either outputs g(n) {with probability
> 3) or outputs 0. We call such a function predictably MC-constructible.

2. Probabilistic Machines Halting with Probability 1

For space bounds s(n) greater than log n there is no problem with halting: a proba-
bilistic clock can switch off every computation longer than 92" with high probability.

4

Then the modified machine {with clock) computes the same function with almost the
same probability and halts with probability 1. In the case of smaller space bounds this
method is not available since the number of configurations is not bounded by 20(s(n))

but by n - 29((*)) | and thus computations of length 222" av be relevant.

On the other hand, for Monte Carlo machines which diverge with probability > 0,
we cannot apply the “majority vote” technique for decreasing the probability of error.
Thus we have to develop a new method which switches off cycles at the cost of double
exponential increase of the space bound (which makes sense for constant space and very
small non-constant bounds).

Theorem 2 For every PTM M there is a PTM M’ and ¢ € IN such that for all z,y, 2
Pr {M with input z outputs y within space z} <

Pr { M’ with input (z, z) outputs y within space 22°"}
and Pr {M’ with input (z, z) stops } = 1.

PROOF Given a PTM M with working alphabet T and set of states @, and given
an input z, the set of storage configurations is SC(M,z) = @ x L*. The set of all
IDs of M on input z is given by ID(M,z) = SC(M,z) x {1,---,|z|]} = SC(M,z) x
{positions of the input head}. For a,8 € ID(M,z) we write I 3, meaning that
Pr{ID o goes to ID (3 in one step} > 0. In the same way we define altﬂ if at least
one step is involved. 3 is said to be i:afting if 3B andforall y#8, 8 i 4. We say

3 is a trap if for all halting IDs 7, BH .

The decision ‘z € X’ is uniquely determined by the halting (accepting) IDs (which
produce the output ‘yes’), whereas the decision ‘z ¢ X’ can implicitly be made by going
into a trap. In what follows we construct a symmetrical machine identifying the set
X by halting with output ‘yes’ or ‘no’. (It is known by [Sim 81] that this is possible
above log n without changing the space bound. In the deterministic case, this is possible
even below logn [Sip 80]. We do not know whether the pi=ilin
construction can be improved.)

Given a position 7 on the input z of length n, the left table of M for position ¢ (1 <
i<n)of MonzLT(z) C SC(M,z) x (SC(M,z)U {*}) is defined by

space bound of our

(a,b) € LT () <= Pr{(a,1) goes to (b,1) without visiting (¢ + 1)st square} > 0.
(a,*) € LT (i) <= Pr{(a,1) goes to halting ID without visiting (7 + 1)st square} > 0.

RT(3) is defined in the same way by replacing ‘(¢ + 1)st square’ by ‘(¢ — 1)st square’.
It is easily seen that the following is doable deterministically in space 20(2),
- store a fixed number of tables,
— compute LT(1) from z, or RT(n) from z,,
~ compute LT (i 4 1) from LT(¢), z;, and 2,41 (1 £ ¢ < n)
or RT(i — 1) from RT(%), z;, and z;—; (1 < ¢ < n),
- decide from LT(7) and RT(¢) whether (a,?) is a trap.

5

Suppose e.g. that LT(i) is stored, the machine scans the ith square. Store a pair
(a,b) in LT (i + 1) if one of the following is true (start with LT'(i + 1) = 8):

—a = b,

—(ay,t+ 1) F (b,e + 1),

= (a,i+ 1) F (d,3), (¢,3) F (b3 + 1), (a',b') € LT(5),
— (a,a’) € LT(i + 1) and (@’,b) € LT(z + 1),

— b= % and « is halting,

—b=1x, (a,i+ 1)+ (a,2), (¢, %) € LT(2).

Thus it is possible (starting at the right end of the input) to compute successively
RT(n), RT(n-1), ---, RT(1), LT(1), using 20(2) gpace.

What remains is to show that
~ LT(i—1) can be computed from LT(7) and the input (without losing the position),
- RT(i+ 1) can be computed from RT ().

This is a bit difficult, since the position cannot be stored. The following procedure
depends on a trick of Hopcroft and Ullman [HU 67] (we describe it only for the left
tables LT):

(0) If there is (depending on the input z;—; and z;) only one possible predecessor

for LT (1) (i.e. only one possible table LT'(: — 1))
then stop
else let T, - -, Tk (k > 1) be the possible predecessors of LT (3); T; := {Tj} for
j=1,---,k; goto (1)
(1) Move one step left (on the input) and determine T/ = set of all the possible
predecessors of tables in T; for j = 1,-+, k; goto (2)
(2) If the left boundary (square 1) is reached
then determine the jo such that LT(1) € T.; goto (3)
else if only T is nonempty
then goto (3)
else T; := T/ for j=1,---,k; goto (1)
(3) Choose two tables T, T’ from different (nonempty) subsets T; move right and
compute the successors until these become equal. Then the desired table is T},
and the machine scans square 1.

Note that the (right) successors of left tables are unique and hence the sets T; are
pairwise disjoint. Thus jo is uniquely determined and 1 is in fact the first position such
thg.i[; ;che successors of T, T’ converge. Since sets of tables must be stored, the space is
247,

Now we are ready to start our terminating (with probability 1) simulation. Denote
the simulating PTM by M. M is to simulate M step by step keeping the exact record
of left and right tables at the current position. At each step M recomputes both tables
at the new position. Whenever M detects that the current configuration is a trap, it
halts and outputs ‘no’. Obviously M halts with probability 1.

To go ahead we need to exclude the case that the probabilities for the correct and
wrong anwers are equal. The standard technique of [Gi 77] and [Sim 81] guarantees

6

that for every PTM M there is effectively M’ with probability of all answers # % and
working within the same space boundaries. If moreover M terminates with probability
1 and computes a (partial) 0-1 valued function, then M’ computes the characteristic
function of the recognized set of M. 0

The main application of Theorem 2 in this paper is Theorem 5 in section 3. - Below
we give another application for probabilistic finite two-way automata:

Theorem 3 For every probabilistic finite two-way automaton (PFA) M with s states

recognizing a set X with error probability e(z)(< 3, if ¢ € X) there is a PFA

M’ with error probability < e(z) computing the characteristic function of X and

&k *
stopping with probability 1. M’ has 22" states for an appropriate k.

PROOF Take the machine M’ constructed in the proof of Theorem 2 and modify it
so that it outputs ‘z ¢ X’ whenever a trap is detected. 0

Corollary 4 The sets recognized by PFAs are closed under the complement. |

Corollary 5 The sets recognized by Monte Carlo finite two-way automata form a
Boolean algebra. a

Nothing is known about the lower bounds for complementation for both the prob-
abilistic and Monte Carlo automata — as it is known for non-deterministic automata
(one-exponential function).

3. Separation Results for Small Space Classes

Unlike the deterministic case the existence of chains of constructible space bounds
does not guarantee the existence of a Monte Carlo small space hierarchy. The reason
for this anomaly is that we do not know whether there is a universal Monte Carlo
simulator for all Monte Carlo machines working in the smaller bound, that itself works
in the greater bound.

It is not sure whether for every function in MSPACE(f) there exists a machine
that is explicitly Monte Carlo and f-space bounded. On the other hand, diagonaliza-
tion over f-bounded probabilistic machines seems not to be possible when the bound
is merely MC-constructible. What we can do, however, is to diagonalize over all f-
bounded Monte Carlo machines using a g-bounded probabilistic machine, provided g is
sufficiently greater than f. '

Theorem 4 Suppose g is predictably MC-constructible and f = o(g).
Then MSPACE(f) ¢ PrSPACE(g).

PROOF We construct a PTM M working in space O(g) such that o ¢ MSPACE(f):
Suppose the input of M is divided in two tracks containing z, and zz, z = (xy1,z2).
Suppose M’ is a MTM constructing g, z is the output of M’ on input z,. M simulates

7

My(z) in space z, where y is a prefix of z2 of length z. If z # 0 and the simulation is
successful, then M outputs contrary to the output of My(z), else it outputs 0.

If Pr{M outputs z >0} > 3, then Pr{M outputs z >0} > 3 and z < g(|z])
and M is strictly g(|z|) space bounded. Else Pr{M’ outputs z >0} < 1, pu(z) =
0 and sy(z) = 0. Thus, pm € PrSPACE(g).

Suppose oM € PrSPACE(f), M, computes oy with probability % in space f.
Choose z; so that M'(z,) outputs g(|z,|) = g(]z|) with probability 2, [y| < g(|z:])
and M,(z) can be simulated in space g(|z|), if it works in space f(|z]). Choose z3 so
that it describes a padded version of the machine M. Then, if M outputs g (|z,|) with
probability 2, M on input z outputs # wu, (z). Since (3)2 > 1, om # on,- O

As outlined above, a diagonalization over Monte Carlo space classes seems not to be
possible. For subclasses of “provable” Monte Carlo machines, however, the standard
diagonalization method in connection with the halting lemma (Theorem 2) can be
applied. Of course, for practical purposes, the only interesting class of algorithms
is this for which a Monte Carlo property, which is I1}-complete, is provable in some
reasonable theory.

Definition Suppose T is an enumerable theory (e.g., Peano arithmetic or Zermelo-
Fraenkel set theory).
Then MSPACET (f) =
{om | “VzPr{M(z) outputs ¢ u(z) in space f (|z[)} > 3” is a theorem of T }.

Theorem 5 If T is an enumerable theory, g is MC-constructible and f = o(g), then
MSPACET(f) ¢ MSPACET (27).

PROOF By diagonalization over all machines which are provably (in T') Monte Carlo
and working in f(n) space we get a machine M with the (provable) properties:
(1) Pr {M works in space g(n)} > %
(2) Pr{M computes vy in space g(n)} > 3.3 = % > 1,

Application of Theorem 2 yields a machine M’ halting with probability 1 and the same
error probability ({%) working in space 92°™ Application of majority vote reduces
(provably!) the error probability to ;. Thus, oM = oM € MSPACET (22') \

MSPACE(Y). 0

4. log log n is Fully (Terminating) Monte Carlo Constructible

Unlike the deterministic fully constructible functions we are able to give a Monte
Carlo terminating algorithm constructing the space function log log n. Log lug n is not
a deterministic fully constructible function ([AMe 76], see for details proofs of Lemma
6 and Theorem 3).

Lemma 3 logn € MT(loglogn).

PROOF We design a log log n space Monte Carlo algorithm (terminating!) count-
ing in binary a maximal number of consecutive ‘heads’ in n-coin tosses for the in-
put of length n. Given a n in unary, we toss a coin n times. The probabilities
ok = Pr{ maximal number of ‘heads’ = K} have their peak at the value K = logn.
The expected value of ak is approximately (up to a constant) log n (see, e.g., [Fe 57],
pp. 190-197). Thus we are able to construct log n in log log n Monte Carlo space up
to a small constant. 0

5. Separation of Random and Non-Deterministic log log n Space

The problem whether random polynomial (terminating) log n space (RSPACEPOLY

(log n)) is equal to DSPACE(logn) was formulated in [AKLLR 79]. Any separation
result in

DSPACE(logn) C RSPACEFP9Y (logn) = RTSPACE(logn) C NSPACE(logn)

clearly solves the long-standing problem: DSPACE(logn) = NSPACE(logn)?
(BS 81] suggested the likelihood that the space-bounded fast probabilistic algorithms
are less powerful than non-deterministic ones.

In this section we separate the terminating random log log n space from the deter-
ministic log log n space, and the terminating Monte Carlo log log n space from the
non-deterministic o(log n) space. The random separation result is the first known space
separation for an RSPACEPOLY class, proving that the class RT SPACE(loglogn)
is more powerful than DSPACE(loglogn). The Monte Carlo separation result says
that the fast (n?logn-time) terminating Monte Carlo algorithms are provably more
powerful than those in NSPACE(O(loglogn)).

In [Fr 83] Freivalds was able to prove that the one-way (on-line) Monte Carlo proba-
bilistic Turing machines do have a one-logarithmic space advantage over corresponding
one-way deterministic Turing machines. He proves also that the sets recognized by
one-way Monte Carlo probabilistic Turing machines in o(log log n) are all regular. Our
results entail that the one-logarithmic space advantage holds for arbitrary multi-tape
terminating Monte Carlo PTMs (over arbitrary non-deterministic TMs).

Denote {0"1"} = {0"1" |n € N}, and C{0"1"} = {0"1™ [n#m,n,mE IN}.
Lemma 4 ({0"1"} € RTSPACE(loglogn).

PROOF By Lemma 3, log log n is fully MC7 -constructible. We apply the Gauss prime
number formula (see:[AMe 76]) to obtain the O(loglog(n + m))-space-deterministic al-
gorithm for n # m: if n # m = 3k < 4-log(n + m) (n & m(mod k)). Then,
apply the coin tosses to create ‘many’ (more than half of all) computations for the
unique deterministic accepting computation for 0%1™, n # m. The switch-off of the
algorithm for the case O"1™ is made by the Monte Carlo aljorithm of Lemma 3.

g0

Theorem 6 (Separation of random and deterministic log log n space)
RTSPACE(loglogn) # DSPACE(loglogn)

ProoF C{0"1"} € RTSPACE(loglogn) by Lemma 6, and C{0"1"} ¢

DSPACE(loglogn) by [AMe 76],{Al 79). 0
Corollary
RTSPACE(loglogn) = NSPACE(loglogn) = DSPACE(loglogn) #
NSPACE(loglogn) 0

Theorem 7 MTSPACE(loglogn) § NSPACE(o(logn))

PrOOF {0"1"} € MTSPACE(loglogn) by Lemma 6, since the terminating Monte
Carlo space classes are closed under the complement. It follows from [Al 79], Theorem
5, that {O"1"} ¢ NSPACE(o(logn)). This completes the proof. 0

We were not able to disprove that “{0"1"} € RTSPACE(loglogn) N
co-RT SPACE(loglogn)”, i.e., (by Lemma 4) that {0"1"} is not computable by any
Las Vegas algorithm (€ RTSPACE(loglogn)N co-RT SPACE(loglogn)), [BGM 82],
[AMa 77). If indeed there is a Las Vegas algorithm for {0"1"}, then we get the full
separation of DSPACE, Las Vegas-SPACE and NSPACE for log log n:

DSPACE(loglogn) ¢ RTSPACE(loglogn) N co-RT SPACE(log log n)
¢ NSPACE(loglogn).

We conclude with an open problem on the Monte Carlo full constructibility:

Problem Is (contrary to the case of MSPACE(o(loglogn)) class) MTSPACE
(o(loglogn)) = REG? In particular, is log log log n fully (terminating) Monte
Carlo constructible?

Acknowledgement

The initial ideas of this paper evolved during the course CS 858 given by the first
author at the Carnegie-Mellon University in the spring of 1984. Our thanks go to
Rick Statman, Bud Mishra, Robert Wilber, and Merrick Furst for a number of very
intcresting conversations. Burchard von Braunmiihl shared with us some very clear
insights and interesting ideas. We are thankful to Sylvio Micali for many illuminating
discussions during the early stages of this research, and his final encouragement to write
down the paper.

10

References

[AKLLR 79]

(Al 79]

[AMa 77]

[AMe 76]

[Ba 62]

[BCP 83]

(BG 81]

[BGM 82]

[BS 83]

[Co 83]

Aleliunas, R., Karp, R.M., Lipton, R.J., Lovész, L., and Rackoff, C.,
Random Walks, Tl raversal Sequences and the Complexity of Maze Prob-

lems
Proc. 20t* IEEE FOCS (1979), pp.218-223

Alt, H.,
Lower Bounds on Space Complexity for Context-Free Recognition
Acta Informatica 12 (1979), pp.33-61

Adleman, L., and Manders, K.,
Reducibility, Randomness and Intractability
Proc. 9t ACM STOC (1977), pp. 151-163

Alt, H., and Mehlhorn, K.,

Lower Bounds for the Space Complexity of Context-Free Recognition
in: S. Michaelson and R. Milner, eds.,

Proc. ICALP ‘76, Edinburgh University Press 1976, pp. 338-351

Bardzin, Ya.M.,
On One Class of Turing Machines (Minsky Machines)
Algebra and Logic Seminar, Novosibirsk 6, (1962), pp. 42-51 (Russian)

Borodin, A., Cook, S., and Pippenger, N.,

Parallel Computation for Well-Endowed Rings and Space-Bounded
Probabilistic Machines

Information and Control 58 (1983), pp. 113-136

Bennet, C., and Gill, J.,

Relative to a Random Oracle A, PA # NP4 # co-NP* with Proba-
bility 1

SIAM J. Comput. 10 (1981), pp. 96-114

Babai, L., Grigoryev, D.Yu., and Mound, D.M,,
Isomorphism of Graphs with Bounded Eigenvalue Multiplicity
Proc. 14t" ACM STOC (1982), pp. 310-324

Berman, P., and Simon, J.,
Lower Bounds on Graph Threading by Probabilistic Machines
Proc. 24t* JEEE FOCS (1983), pp. 304-311

Cook, S.,

The Classification of Problems which have Fast Parallel Algorithms
in: M. Karpinski, ed., Foundations of Computation Theory,
Springer Lecture Notes in Computer Science 158 (1983), pp. 78-93

11

[Fe 57)
(Fr 81a]

[Fr 81b]
[Fr 83]
[Gi 77]
[GJ 79]

[HU 67]
[HU 79]

[Ju 84]

[LSH 65|

Feller, W.,
An Introduction to Probability Theory and its Applications
John Wiley, New York 1957

Freivalds, R.,
Probabilistic Two-Way Machines, MFCS ‘81
Springer Lecture Notes in Computer Science 118 (1981), pp. 33-45

Freivalds, R.,

Projections of Languages Recognizable by Probabilistic and Alternat-
ing Finite Multitape Automata

Information Processing Letters 13 (1981), pp. 195-198

Freivalds, R.,

Space and Reversal Complexity of Probabilistic One-Way Turing Ma-
chines

in: M. Karpinski, ed., Foundations of Computation Theory,

Springer Lecture Notes in Computer Science 158 (1983), pp. 159-170

Gill, J.,
Computational Complexity of Probabilistic Turing Machines
SIAM J. Comput. 6 (1977), pp. 675-694

Garey, M.R., and Johnson, D.S.,

Computers and Intractability: A Guide to the Theory of NP-
Completeness

W.H. Freeman, San Francisco (1979)

Hopcroft, J.E., and Ullman, J.D.,
An Approach to a Unified Theory of Automata
The Bell System Technical J., vol. 46, no. 8, (1967), pp. 1793-1829

Hopcroft, J.E., and Ullman, J.D.,
Introduction to Automata Theory, Languages, and Computation
Addison-Wesley, Reading, Ma., (1979)

Jung, H., _

On Probabilistic Tape Complexity and Fast Circuits for Matrix Inver-
sion Problems

Springer Lecture Notes in Computer Science 172 (1984), Proc. ICALP
‘84, pp. 281-291

Lewis, P.M., Stearns, R.E., and Hartmanis, J.,

Memory Bounds for Recognition of Context-Free and Context-Sensitive
Languages

Proc. 6¢* IEEE Symp. on Switching Circuit Theory and Logical Design
(1965), pp. 191-202

12

[Mi 61]

[MS 82

[Sim 81]

[Sip 80}

SS 77)

[We 83]

Minsky, M.L.,

Recursive Unsolvability of Post’s Problem of ‘Tag’ and Other Topics
in the Theory of Turing Machines

Annals of Math. 74 (1961), pp. 437-455

Monien, B., and Sudborough, I.H.,

On Eliminating Non-Determinism from Turing Machines which Use
Less than Logarithmic Work Tape Space

Theoretical Computer Science 21 (1982), pp. 237-253

Simon, J.,

Space-Bounded Probabilistic Turing Machine Complexity Classes Are
Closed Under Complement

Proc. 13t* ACM STOC (1981), pp. 158-167

Sipser, M.,
Halting Space-Bounded Computations
Theoretical Computer Science 10 (1980), pp. 335-338

Solovay, R., and Strassen, V.,
A Fast Monte Carlo Test for Primality
SIAM J. Comput. 6 (1977), pp. 84-85

Welsh, D.J.A.,
Randomised Algorithms
Discrete Applied Mathematics 5 (1983), pp. 133-145

13

