Approximating the Number of Solutions
of a ¢ r /27 Polynomial

Marek Karpinski*
Department of Computer Science
University of Bonn
and
International Computer Science Institute

Berkeley, California

Michael Luby

International Computer Science Institute

Berkeley, California

Abstract

We develop a polynomial time Monte-Carlo algorithm for estimat-
ing the number of solutions to a multivariate polynomial over GF/[2].
This gives the first efficient method for estimating the number of points
on algebraic varieties over GF/[2], which has been recently proven to
be #P-complete even for cubic polynomials. There are a variety of
applications of our result, which will be discussed in the full version
of the paper.

1 Introduction

The problem of counting the number of points on algebraic varieties is a
fundamental issue in algebra, geometry, and especially in algebraic geometry

*Supported in part by the DFG Grant KA 673/4-1, and by the SERC Grant GR-E
68297.




(which can be “defined” as the study of polynomial equations over fields).
Among other things, this problem has direct applications in information and
coding theory for computing weights of codes and channel-error probabilities
(cf. {3], [7], [8]). For some special cases of counting the number of points
on an algebraic variety, like counting the order of an elliptic curve over finite
fields or the number of rational points on the Jacobian of a curve of genus two
over finite fields, there are known polynomial time algorithms ([11], [1], [2]).
However, in most cases there are no known efficient algorithms for counting
exactly the number of points. Furthermore, for some cases the exact counting
problem is known to be #P-complete.

In lieu of the fact that exact counting is hard, the question arises: Is it
possible to produce a reasonable estimate of the number of solutions to a
general algebraic circuit over GF(g) in polynomial time? In this paper, we

consider the special case of this problem when the input is a polynomial over
GF/[2]. Let

g(mh---:mn)=tl(mli---uxn)@t‘z(wlu-"1mn)@"'@tfn(wl!"'ixﬂ)

be a polynomial in variables z,,...,z, over GF[2], where for each : =
I,...,m, term ¢;(x1,...,2y) is a product of a non-empty subset of the vari-
ables 2y, ...,2,. Furthermore, for all i # j, {; # ¢;, i.e. there are no duplicate
terms. Consider the equation

9(Z1y0 00 420) = @,

where @ € {0,1}. Let G be the subset of assignments to zy,..., z, that satisfy
this equation. The GF[2] problem is to compute the number of assignments
|G| that satisfy this equation given a description of g and the value of a.!
The computational complexity of computing |G| exactly over GF[2] has
only recently been resolved. In [4] it is shown that the problem is #P-
complete. In fact, [4] shows that the problem is #P-complete even when
restricted to cubic polynomials over GF[2]. Degree three is the sharp bound
for the intractability of exact counting for polynomials; an O(n?) time algo-
rithm has been designed for exact counting for degree two polynomials over

GF/2] [4].

!For brevity, hereafter the arguments z1,..., 2, to the polynomial and to the terms of
the polynomial are suppressed.

2



We develop a polynomial time Monte Carlo (¢, 6) approximation algo-
rithm (cf.[5], (6]} for estimating |G|. We develop Monte Carlo algorithms Ag
and A, for estimating |G| when a = 0 and a = 1, respectively. The analysis
of the two algorithms, excluding the portion that relies on previous work, are
very similar. We focus most of our attention on algorithm A, and, in a later
section, we briefly describe algorithm A,. Both algorithms have the following
properties. Part of the input is a description of g, i.e. a list of the variables
and for each term a list of the variables that appear in the term. The rest of
the input is the allowable error ¢ in the output and the confidence level é in
the output. The output Y of the algorithm satisfies

Pr|GI(1~ ) SY S|G|(1 +¢)] 2 1 -4,

where this probability is taken over the random coin flips of the algorithm.
The running time of Aq is O(nm?1n(1/6)/€*) and the running time of A, is
O(nm2In(1/8)/€?).

Algorithm A, is based on the algorithm developed in [5] for estimating the
number of truth assignments that satisfy a disjunctive normal form (DNF)
formula. In the terminology used above, the difference between the DNF
problem and the GF[2] problem is the following. For the DNF problem
we want to estimate the fraction of assignments that satisfy at least one
term, whereas for the GF[2] problem we want to estimate the fraction of
assignments that satisfy an odd number of terms. Let G be the subset
of assignments that satisfy at least one term of g, and as before let G be
the subset of assignments that satisfy an odd number of terms of g. The
additional component in the analysis of the GF[2] algorithm beyond the
portion borrowed from the analysis of the DNF algorithm described in [5] is
a combinatorial theorem which shows that |G|/|G| € m.

Besides the basic algebraic interest in the GF/[2] problem, it is also in-
teresting from the viewpoint of circuit complexity. The polynomial g can be
viewed as a depth two circuit over the basis (@, A). Although we provide a
randomized polynomial time approximation algorithm for the GF/2] problem,
there are no known subexponential deterministic algorithms for approximat-
ing the GF[2] problem. On the other hand, for the related DNF problem
when the basis is (V, A, =), in addition to the randomized polynomial time
algorithm developed in [5], there is a deterministic approximation algorithm
with running time 21°6°” " (9]. In fact, the results in [9] extend to the much
more general case of a constant depth circuit over basis (V, A, -).

3



2 Algorithm A,

In this section, we develop algorithm A;. The outline of the algorithi:
borrowed from the DNF approximation algorithm of [5]; we provide a self-
contained description of the algorithm. We first review a simple and standard
“dart throwing” algorithm that at a very high level provides the general
outline for the GF/2] algorithm and highlights the design obstacles that must
be overcome. We have a finite (but large) universe U of known size |U/|, and
our goal is to estimate the size of some set G € U of unknown size. A trial
of the algorithm for estimating |G| consists of the following two steps:

(1) Randomly and uniformly choose u € U (i.e. throw a dart).

(2) Seeif u € G (i.e. see where the dart lands).

Let b be an easily computable upper bound on |U|/|G|. The algorithm
performs N = 4bIn(2/6)/e* independent trials, and the output Y is the
fraction of these NV trials where an element of G is chosen, multiplied by |U].
A standard analysis using an inequality due to Bernstein [10] shows that for
e< 1,

Pr[IG|(1 =€) S Y L|G|(1 4 ¢)] 21 =6.
(See for example [6] for a proof.)
The key criteria in the design of the GF[9] algorithm are:

(a) The universe U should be defined in such a way that |U| is easy to
compute.

(b) Steps (1) and (2) above can be performed efficiently.

(e) |G| is known a priori to be a significant fraction of |/, i.e. b is polyno-
mially bounded.

We now describe how to meet these criteria for algorithm A4;. For all
= 1,...,m, let T} be the set of all ordered pairs (i, s), where i is the index
of term ¢; and & is an assignment to ©1,...,2, that that satisfies term ¢,.
Let U = Uizy,..mTi. Let G C U be the set of all pairs (i,8) € U such that
there is no j < ¢ with (j,8) € U. It is easy to verify that |G| is the number



of assignments that satisfy at least one term of g. Let G C G be the set of
all pairs (7,s) € G such that the number of terms that s satisfies is odd. It
is easy to verify that |G| is the number of assignments that satisfy an odd
number of terms of g.

We now verify that (a), (b) and (c) are satisfied. By definition, |U| =
Yiz1..m |Ti]. For each i =1,...,m, |T}| = 2"=%, where v; is the number of
variables that appear in term ¢;. Thus, |U/| can be easily computed. Further-
more, an element (i,8) € U can be uniformly and randomly chosen by the
following two step process:

(i) Randomly choose i € {1,...,m} with probability |T}|/|U|.
(ii) Randomly choose s € T; with probability 1/|T}|.

Also, (¢,s) € G if and only if assignment s satisfies no term with index
smaller than ¢ and in total s satisfies an odd number of terms. Both of
these conditions can be checked in O(nm) time, and this is the most time
consuming portion of a trial.

The final portion of the analysis is to show that there is an easily com-
putable value b such that b is an upper bound on |U|/|G| and such that b
is polynomial in n and m. As shown in [5], it is not hard to verify that
|U|/|G| € m; this is simply because |G| > maxiz1,...m |7i| which implies that

UINGIE T [T/ max T < m,

i=1,..,m

We prove in the next section that |G|/|G| < m. It follows that |U|/|G| < m?,
and thus N = 4m?n(2/6)/¢* trials suffice. Since the time per trial is O(nm),
the total running time of Ay is O(nm?®In(2/6)/€?).

3 The Main Theorem

In this section, we abuse the notation from the previous section slightly and
let G be the subset of all assighments that satisfy at least one term of ¢, and
let G be the set of assighments that satisfy an odd number of terms of g.

Theorem 1: |G|/|G| € m.



Proof: The basic idea of the proof is to define a function f : G — G in such
a way that the mapping is at most m-to-1, i.e. for each s € G, |f~(s)| £ m.
From this the theorem follows.

The mapping f is defined as follows. For each § € G, choose any term t;
that is satisfied by 5 such that there is no term ¢; which is satisfied and which
contains all the variables in ¢;. It is always possible to choose such a term
because ¢ does not contain two identical terms. Without loss of generality,
let this be term ; and let X = {z,,...,2«} be the variables in ¢; (all of these
variables are set to 1 in §). For any X' C X, let 5(X’) be the assignment
obtained from 3 by changing the values of all variables in X — X’ from 1 to
0.

Claim: There is at least one X’ C X such that 3(X') satisfies an odd
number of terms.

Proof of Claim: Let T be the set of terms satisfied by 5. If |T'| is odd,
then let X' = X and 5(X’) = 5. If |T| is even then we proceed as follows.
Partition T into T and T", where T" is the set of terms that have at least one
variable in common with X and T is the set of terms that have no variables
in common with X. If || is odd (and hence |T"| is odd) then we let X' =@,
in which case 3(X') satisfies none of the terms in 7" and all the terms in I,
and thus an odd number of terms overall. If |7"| is even (which means that
|T"| is also even), then we argue that there is an X’ C X such that 5(X’)
satisfies an odd number of terms as follows.

For each X’ C X, let p(X’) be the parity of the number of terms in
T that are satisfied by assignment 5(X') and let g(X’) be the parity of the
number of terms ¢; in 7" such that t;NX = X’. By the way term ¢, is chosen,
t; is the only term ¢; that satisfies t; N X = X, and thus ¢(X) = 1. We can
view p(-) and ¢(-) as column vectors of length 2% with entries from GF[2],
where the first entry corresponds to X’ = () and the last entry corresponds
to X' = X. Then, it can be verified that there is a 2¥ x 2¥ lower triangular
matrix M over GF[2] with main diagonal 1 such that M - ¢(-) = p(-). In
particular, row X’ in M has a 1 in column X" if and only if X" C X'. (See
Figure 1.)

Because M is invertible and because ¢(-) # 0, it follows that for at least
one X' C X, p[X") = 1. For this X’, 5(X’) satisfies an odd number of terms
from T” and, as for 5, all the terms of T". Thus, for this X', 3(X') satisfies
an odd number of terms overall. This complete the proof of the claim. O

6



D {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

¢ |1 0 0 0 0 0 0 0
1y [t 1 0 0o 0 0 0 0
2 [t 0o 1 0o o 0 0 0
B} |1 o o 1 0 0 0 0
a2y 11 1 1 o0 1 0 0 0
13} /1 1t 0o 1 0 | 0 0
23} /1 0o 1 1 0 0 i 0
12311 1 1 1 1 | 1 1

Figure 1: The matrix M for k =3

We now complete the proof of the theorem. To define f(3), we arbitrarily
choose any X' such that 3(X’) satisfies an odd number of terms and let
f(8) = 8(X"). Finally, we argue that for each s € GG there are at most m
distinct assignments 5§ € G such that f(5) = s. This is because each such 3
is either equal to s, or is obtained by taking one of the terms not satisfied by
s (there are at most m — 1, since s must satisfy an odd number and thus at
least one term) and setting the values of all variables in this term to 1. O

It 1s not hard to see that the bound given in Theorem 1 is asymptot-
ically optimal. To prove this, consider the following sequence of m-sparse
polynomials. For m a power of two and for all T C {1,2,...,n} such that
IT| = logm, let gr = [Lier(1 ® =:) [1;gr ;. For each such T, gr when ex-
panded out has m terms. When viewed as a polynomial over GF/2], gr = 1
has a unique solution, whereas when viewed as a DNF formula, gr has m
satisfying assignments.

4 Algorithm A

In this section we briefly describe the algorithm Ag. In this case U is the set
of all 2" assignments to z,...,2,, and G is the set of all assignments that
satisfy an even number of terms (possibly zero). A trial of the algorithm
consists of choosing a random assignment s uniformly from U and seeing



if s satisfies an even number of terms. Each trial takes O(nm) time. The
output of the algorithm is the fraction of the assignments that satisfy an
even number of terms, multiplied by |U| = 2". Theorem 2 below shows that
|U|/|G| < m, and thus N = 4mIn(2/8)/€? trials suffice. The overall running
time of Ag is O(nm?1In(2/6)/¢€?).

Theorem 2: |U|/|G| <m

Proof: Similar to the proof of Theorem 1. O

5 Open Problems

The success of our method depends on a special property of the GF/2] field,
and its connection to the DNF counting problem. An important open ques-
tion is whether there is an (¢, 6) approximation algorithm for estimating the
number of solutions of a multivariate polynomial over arbitrary finite fields
GF(qg) that runs in time polynomial in the problem input size, 1/¢, log(1/6)
and log ¢ (or even ¢). This problem is of paramount importance in algebra
and algebraic geometry.

Another important question is whether it is possible to design a poly-
nomial time deterministic approximation algorithm for the GFf2] (or more
optimistically, for the GF(q) problem) that always produces an estimate with
relative error at most e. Such an algorithm would imply a deterministic poly-
nomial time simulation of Monte Carlo depth two circuits over the (&, A)
basis.

6 Acknowledgements

We ate indebted to Gunter Harder for the algebraic motivation of the prob-
lem, and to Dick Karp, Ronitt Rubinfeld and Volker Strassen for interesting
discussions.

References

(1] Adelman, L.M., Huang, M.A., “Computing the Number of Rational
Points on the Jacobian of a Curve”, manuscript, 1987.



[2] Adelman, L.M., Huang, M.A., “Recognizing Primes in Random Polyno-
mial Time”, Proc. 19" ACM STOC (1987), pp. 462-469.

(3] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill,1968.

(4] Ehrenfeucht, A., Karpinski, M., “The Computational Complexity of
(XOR,AND)-Counting Problems”, preprint, 1989.

[5] Karp, R., Luby, M., “Monte-Carlo Algorithms for Enumeration and
Reliability Problems,” 24" STOC, November 7-9, 1983, pp. 54-63.

[6] Karp, R., Luby, M., Madras, N., “Monte-Carlo Approximation Algo-
rithms for Enumeration Problems,” J. of Algorithms, Vol. 10, No. 3,
Sept. 1989, pp. 429-448.

[7] Kasami, T., Tokura, N., “On the Weight Structure of Reed-Muller
Codes”, IEEE Trans. Inform. Theory IT-16(1970), pp. 752-759.

[8] MacWilliams, F.J., Sloan, N.J.A., The Theory of Error Correcting
Codes, North-Holland, 1981.

[9] Nisan, N., Wigderson, A., “Hardness vs. Randomness”, 29th POCS
(1988), pp. 2-11.

(10] Renyi, A., (1970), Probability Theory, North-Holland, Amsterdam.

[11] Schoof, R.J., “Elliptic Curves Over Finite Fields and the Computation
of square Roots Mod p”, Math. Computation 44(1985), 483-494.



