NEARLY OPTIMAL PARALLEL ALGORITHM FOR

MAXIMUM MATCHING IN PLANAR GRAPHS

Ming Kao
Department of Computer Science

Duke University, Durham, USA

Marek Karpinski
Department of Computer Science

Bonn University, 5300 Bonn 1, West Gernmany

Andrzej Lingas
Department of Computer Science and Numerical Analysis

Lund University, PO Box 118, 22100 Lund, Sweden

Abstract: We present a nearly optimal parallel algorithm for finding a maximum
(cardinality) matching in a planar bipartite graph G. Let € be an arbitrarily small
posite real. It runs in time O(,/nlog® n) on a probabilistic CRCW PRAM with

O(n'*¢) processors.

1. Introduction

Let G = (V, E) be an undirected graph. A matching M C E is a set of edges no
two of which have a common endpoint. A maximum (cardinality) matching is a
matching that has the largest possible number of edges. The problem of finding a
maximum matching in G can be solved in time O(+/nm), where n is the number of
vertices and m is the number of edges in G [PL). It is an outstanding open question
in the complexity theory whether the maximum matching problem or its decision
version are in the class NC, 1.e. whether they admit parallel algorithms running
in poly-log time and using polynomial number of processors. A perfect matching
of G is a matching which for every vertex v of G includes an edge incident to v. It
is known that the problem of finding a perfect matching in a bipartite graph is in
the random class NC [IKUW]. Since the problem of finding a maximum matching
is trivially NC reducible to that of finding a perfect matching, the former

problem iz also in random NC. The fastest known, deterministic parallel al-
gorithm for maximum matching in bipartite graphs runs in time O(n & log®n) using
O({BFS(n,m)) processors [GPV] *, where BFS(n,m) is the number of processors
needed for breadth-first search of the input graph on n vertices and m edges.
For planar bipartite graphs, the problem of finding a perfect matching has been
recently shown to be in NC [MN]. However, the problem of finding a maximum
matching in planar bipartite graphs remains open (see [MN]) since the mentioned
NC' reduction does not preserve planarity. We present a parallel algorithm for
finding a maximum matching in an arbitrary planar bipartite graph G. Our algo-
rithm is faster and more processor efficient than that for arbitrary bipartite graphs
due to Goldberg, Plotkin and Vaidya [GPV]. Let € be an arbitrarily small positive
real. It runs in time O(/n) logﬁ n) on a CRCW PRAM with O(n'"*) processors.
It partially resembles the fastest, known, sequential algorithm for maximum weight
matching (in particular, maximum weight matching) in planar graphs based on
planar separator given in [LT]. Since the sequential algorithm runs in time O(n!-%),

our algorithm is optimal up to an O(n* factor.
2. Preliminaries

We use standard set and graph theoretic notation and definitions. Specifically, we

assume the following set and graph conventions:

1) For a finite set 5, | S | denotes the cardinality of §. For sets S and T, S @ T
denotes the symmetric difference of § and T.

2) For a graph G = (V, E), and a subset U of V, G(U') denotes the subgraph of G
induced by U, i.e. the graph (U, {(v,w) € E | v,w € U}).

3) For a graph G = (V, E), and an integer m, a subset § of V is an m separator of
G if | § |< m, and the vertices in V that are not in § can be partitioned into two
sets A and B such that there is no edge in E from Ato B,and | A |, | B |< (2/3)n.
4) For a graph G = (V| E) and a matching M of G, a path P = (v, v3), (v2,va), ...,

(vz2k—1,v2x)15 called an augmenting path if its endpoints v; and vey are not incident

* The known most efficient parallel algorithms for BFS use matrix multiplica-
tion and therefore their processor-time complexity has the trivial quadratic lower
bound. For planar graphs, the best known upper bound on the number of pro-

cessors used by a parallel algorithm for BFS running in polylog-time is n!-/ log n

(see [GM,PR]).

to edges in M, and its edges are alternately in £ — M and M (see also [HK]).

Our parallel algorithm wall construct a maximum matching of the input planar
graph recursively and incrementally. The mput graph will be recursively divided

using the so called planar separator theorem [LT].
Fact 2.1 [LT): Every planar graph on n vertices has an O(+/n) separator.

The idea of incrementing the current matching in our algorithm will rely on the

following facts.

Fact 2.2 [HK|: If M is a matching and P is an augmenting path relative to M,
then M @ P is a matching, and | M & P |=| M | +1.

Fact 2.3 (see [HK]): M is a maximum matching if and only if there is no augmenting

path relative to M.

3. The algorithm

Algorithm 3.1
Input : a planar graph G on n vertices

Output : a maximum (cardinality) matching of G

procedure MAXCAR(G)
begin

if n < 10 then

begin
find a maximum matching M of G;
goto E

end;

find an O(\/n) separator S in G,

set V] and V5 to the two subsets of V separated by 5;

set G to G(V; U S) and Gy to G(V3);

for: = 1,2 do in parallel

M; — MAXCAR(G;);

M — M, U M,;

while there is an augmenting path with respect to M in G do
begin

find an augmenting path P with respect to M;

set M to M @& P;
end
E: return M

end
The correctness of the above procedure follows from Facts 2.2, 2.3.

In order to analyze the cost of this procedure, we introduce the following notation:
a) T,(n), Ps(n) are respectively the time and the number of processors used to
construct an O(y/n) separator of G.

b) Ta(n), P,(n) are respectively the time and the number of processors used to
find an augmenting path in G with respect to a matching of G.

¢) P(n), T(n) are respectively the number of processors, and the time used by

MAXCAR(G).

By Fact 2.2, 2.3, there are O(y/n) disjoint augmenting paths in G that complete
M, U M; to a maximum cardinality matching. Thus, the number of iterations of

the while block is O(y/n). Hence, we obtain the following recursive inequalities on
T(n) and P(n) :

T(n) < T(2/3n+ O(/n)) + Ologn + Ty(n) + vnTu(n))

P(n) < max(2P(2/3n + O(v/n)), O(n), Py(n), Pa(n))

In our implementation of M AX C AR(G), we employ the following facts. The proof

of the first one is similar to the proof of Lemma 2.7 in [Li].

Fact 3.1: For any positive e, one can find an O(+/n) separator of a planar graph
on n vertices in time O(log” n) using a probabilistic CRCW PRAM with O(n!*¢)
ProCess0rs.

Proof: Let G be a planar graph on n vertices. First suppose that G is two-
connected and its planar embedding is given such that each face is of size O(1).
Then, employing the algorithm due to Gazit and Miller, we can find an O(\/n)
separator of G in the form of a simple cycle in time O(log” n) using a probabilistic
CRCW PRAM with O(n'**) processors [GM].

In the general case, we do not have a planar embedding of G, and G is not necessar-
ily two-connected. On the other hand, we may assume without loss of generality
that G is connected. Otherwise, we could find connected components of G in time

O(logn) using a CRCW PRAM with O{n) processors [SV], and trivially reduce

the problem of finding an O{\/n) separator of G to that of finding an O(y/n)

separator for each of the connected components.

We can find a planar embedding of G by applying an algorithm due to Klein and
Reif [KR] which runs in time O(log® n) on a CREW PRAM with O(n) processors.
Next, we can transform the resulting planar embedding of G to a two-connected
one by partitioning each its face in parallel as follows. First, we pick a vertex
v incident to the face. Next, for any other vertex w on this face that is not
immediately to the right or left of v, we add the edges (v, u), (u,w) to E', where u
1s a new vertex in one-to-one correspondence with the face, v and w. (The reason of
adding the two edges instead of (v, w) is to avoid creating a multigraph). Note that
each of the resulting faces is of size < 5. It is also clear that G' is two-connected
and has O(n) vertices. The final adjacency lists for vertices of G' can be obtained
by sorting the set of old and new edges, for instance, by using Cole’s algorithm
[C]. Now, it is enough to find a cyclic O+ /n) separator in G' in the way described
in the above and delete all vertices that are not original vertices of G from the

separator to obtain an O{./n) separator of G. g

Suppose that our graph G is a bipartite graph (W; UW,, E') where E C Wy x W,
Let M be a matching of G. For ¢ = 1,2, the bipartite digraph G;(M) = (W, U
Wa, Ei(M)), with edges in one-to-one correspondence with edges in E, is obtained
from G by directing the edges in E as follows. Each edge in M is directed from its
endpoint in Wi_; to its endpoint in W;. On the other hand, each edge in £ — M
15 directed from its endpoint in W; to its endpoint in W5_;. The following fact is

well known [HK],

Fact 3.2: Assume the above notation. Let vy, v2 be respectively vertices in W and
W, that are not adjacent to any edge in M. Any directed path in G, (M) starting
from w; and ending at w; is in a one-to-one correspondence with an augmenting

path in G relative to M starting from w; and ending at ws.

By the above fact, if there is an augmenting path in G relative to M starting from
v then we can find such a path by searching G starting from v. To perform such

a search, we shall use the following recent result due to Kao [K].

Fact 3.3[K]: Let W be an arbitrary subset of the set of vertices of a planar digraph
in G. The set of all vertices in G for which there is a directed path starting at a

vertex in W and ending at v can be constructed in time O(log® n) using a CREW

PRAM with n processors.

Fort = 1,2, let E; be the set of exposed vertices in W;. Note that any augmenting
path in G has one endpoint in E; and the other endpoint in Ej. Therefore, by
applying Fact 3.3 to G, (M), we can find an augmenting path as follows. First, we
test whether there is any vertex vy in E; reachable from E; in G1(M). If so, we
bisect E; and find this of the two parts of E| from which v; is reachable in G, (M),
We proceed the bisection procedure O(logn) times until we find a vertex v, in E;
such that v; and vy are endpoints of a common augmenting path in G;(M). Using
again Fact 3.3, we can also construct such an augmenting path.

Thus, for a planar bipartite graph G, we can simultaneously set T,(n) to O(log® n),
and P;(n) to O(n) in the model of CREW PRAM. Also, by Lemma 3.1, we can
simultaneously set T,(n) to Oflog®n), and P,(n) to O(n'*¢), for an arbitrary
€ < 0.5 (again in the model of random CRCW PRAM). It follows from the solution
of the recursive inequalities that for a planar bipartite graph G, we can implement
MAXCAR(G) in time O(\/nlog®n) using a probabilistic CRCW PRAM with

O(n'*¢) processors.

Theorem 3.1; Let G be a planar bipartite graph on n vertices, and let € be an
arbitrarily small positive real. We can find a maximum matching of G in time

O(/nlog® n) using a probabilistic CRCW PRAM with O(n'*+) processors.

Acknowledgements: We would like to express our appreciation to Christos Lev-

copoulos for useful comments.

References

[GM] H. Gazit and G.L. Miller, A parallel algorithm for finding a separator in

planar graphs, Proc. 28th Symp. on Foundations of Computer Science, 1987,

[GPV] A.V. Goldberg, S.A. Plotkin, M. Vaidya, Sublinear deterministic parallel
algorithms for matching and related problem, MIT/LCS/TM-357, June 1988.

[GS] M. Goldberg and T. Spencer, A new parallel algorithm for the maximal
independent set problem, Proc. 28th Symp. on Foundations of Computer Science,

1987.

[HK] J.E. Hoperoft and R.M. Karp, An n*® algorithm for maximum matching in
bipartite graphs, SIAM J. Comp. 2 (1973), pp. 225-231.

[K] M. Kao, P.N. Klein Towards overcoming the transitive-closure bottleneck:

Efficient parallel algorithms for planar digraphs, manuseript July 1989,

[KUW] R.M. Karp, E. Upfal, and A. Wigderson, Constructing a Maximum Match-
ing is in Random NC, Combinatorica, 6(1), (1986) pp. 35-48.

[KR] P.N. Klein, J.H. Reif, An Efficient Parallel Algorithm for Planarity, Proc.
27th Symp. on Foundations of Computer Science, 1986.

[Li] A. Lingas, An Efficient Parallel Algorithm for Planar Directed Reachability,
manuscript, Decemmber 1988, submitted to the same conference.

[Lu] M. Luby, A simple paralle! algorithm for the maximal independent set prob-
lem, SIAM J. Comput., 15(4):1036-1053, November 1986.

[LT] R.J. Lipton and R.E. Tarjan, Applications of a planar separator theorem,
SIAM J. Appl. Math. 36 (1979), pp. 177-189.

[MN] G.L. Miller and J. Naor, Flow in planar graphs with multiple sources and
sinks, manuseript, Univ. of Southern California, 1988.

[PL] P.A. Peterson and M.C. Loui, The General Maximum Matching Algorithm
of Micali and Vazirani, Algorithmica (1988) 3, pp. 511-533.

[PR] V.P. Pan and J. Reif, Extension of the Parallel Nested Dissection Algorithm
to Path Algebra Problems, Proc. FST-TCS, India, 1986, LNCS Springer Verlag.

