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Abstract

Using results of D.V. Chudnovsky, G.V. Chudnovsky [3] and W.C. Wa-
terhouse [10] we prove that the rank (=bilinear complexity of multi-
plication) of the finite field Fy» viewed as an F,-algebra is 2n if n
satisfies g+ 1< n < 5(g+ 1+ ¢(q)). Here €(g) is the greatest integer
< 2,/7 which is prime to ¢ if g is not a perfect square and ¢(g) = 2./9
if g is a perfect square.

1 Introduction

Let K be a field and L a simple finite extension field of K. The rank R(L/K)
of L over K is defined to be the bilinear complexity of multiplication in L/K
where K is regarded as the field of scalars [7]. Denoting by L* the dual of L
as a veclor space over I{ we have thus

R(L/K) = min{reN| Ju,v el weLVabel:

ab= 2 u,-{a}v;[ﬁ}w,— }.

i=1
Let n denote the degree (L : K). It is known that R(L/K) > 2n — 1 with
equality holding if and only if |K| > 2n — 2 [6]. The optimal multiplica-
tion algorithms realizing the lower bound 2n — 1 all belong to the class of
interpolation algorithms [11]. These algorithms are based on the principle
of reconstruction of polynomial products by Lagrange-interpolation [3]. In
other words, these algorithms can be viewed as interpolation algorithms on
the projective line over F.



Noticing that a switch to arbitrary algebraic curves results in the exis-
tence of more rational points than in the case of a projective line, D.V. Chud-
novsky and G.V. Chudnovsky generalized the existing algorithms to projec-
tive curves having additional arithmetic properties [3]. Using special well
studied algebraic curves, they were the first to show that for an infinite set
of prime powers g the rank of F - /F, is asymptotically bounded from above
by a linear function of n.

Our paper is concerned with the application of the algorithm invented
by Chudnovsky and Chudnovsky to the first nontrivial class of algebraic
curves, the so called elliptic curves. Elliptic curves play an important role in
different areas of mathematics and computer science and have been studied
very well during the last decades.

Besides classical results about elliptic curves we are interested in the
question of the existence of elliptic curves over the finite field F, with as
many rational points as possible. This question has been answered by Wa-
terhouse [10]. Combining the results of Waterhouse with the mentioned
interpolation algorithm on algebraic curves we are able to compute the exact
rank of ceriain field extensions of the finite field F; (Theorem 5).

The paper is organized as follows: In Section 2 we summarize some well
known results about elliptic function fields (which are the function fields of
the elliptic curves). Section 3 is devoted to the application of a slight modi-
fication of the algorithm presented in [3] to elliptic function fields. Section 4
discusses the question of the existence of elliptic function fields having those
additional arithmetic properties required by the algorithm of Section 3. Sec-
tion 5 is devoted to the formulation and proof of the main theorem.

2 Basic Facts about Elliptic Function Fields

In this section we are going to introduce some basic notations and summarize
well known results about elliptic function fields over finite fields. All these
facts can be found in standard textbooks such as [1, 2, 5, 9].

Let K/F, be an elliptic function field with constant field F,, i.e. F, is
assumed to be algebraically closed in K. By P(K/F,) we denote the set of
prime divisors of K/F,. D(K/F,) denotes the group of divisors of K/F,
defined to be the free abelian group over P(/i/F,). The relation < defined



by
Dap <Y bp &= Vpa<b,
? P

is a partial order on D(K/F,).

For p € P(K/F;) we define Kp to be the residue class field of p. It is well
known that Kp is a finite extension of F,. The index (Kp : F,) is denoted
by deg(p) and is called the degree of p. The map p — deg(p) can be uniquely
extended to D{K/F,) by

deg(}_a,p) := ) a,deg(p).
» P
To every non-vanishing function f in K one can associate the divisor

(£) =3 ordy(f)p

called the principal divisor of f. Here ord,(f) denotes the p-order of f.
The principal divisors form a subgroup H(K/F,) of D(K /F,) isomorphic to
K> /F¥. All principal divisors are of degree zero. For a divisor 2 € D(K/F,)
the set % + H(K/F,) is called the class of 2. Since principal divisors are of
degree zero, the degree map is constant on classes of divisors.

For A € D(K/F,) we denote by (%) the linear space attached to A which
besides 0 contains all non-vanishing functions f of K with (f) > —2. L(A) is
even a vector space of finite dimension dim(%) over F,. The number dim(2)
i5 called the dimension of the divisor 2. Like the degree, the dimension is
also a class function.

The theorem of Riemann-Roch [9, Theorem 5.4] relates the dimension
and the degree of an arbitrary divisor of K/ F,.

Theorem 1 (Theorem of Riemann-Roch) Let K/F, be an elliptic func-
tion field and A € D(K/F,) be an arbitrary divisor. Then we have

0 if deg(2A) < 0,
dim(2) = { 1 if A € H(K/F,),
deg(A) otherwise.

The set of prime divisors of degree one of I{/F, is denoted by P,(K/F,).
Since K /F, is elliptic this set is not empty. Hasse [8] proved the inequality

g+ 1 -2/ <|Py(K/F)| < g+ 1+2/4. (1)
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We shall be interested in elliptic function fields with as many prime divisors
of degree one as possible. For example, if ¢ is a perfect square we ask if there
are elliptic function fields having ¢ + 1 + 2, /7 prime divisors of degree one.

An answer to this question can be given using a more general theorem
of Waterhouse [10] which gives necessary and sufficient conditions for the
existence of an elliptic function field having t + g+ 1 prime divisors of degree
one if ¢ is a given natural number satisfying |t| < 2,/q in view of (1). Before
stating the result, let us introduce the function e defined by

il greatest integer < 2, /g prime to ¢ if ¢ is not a perfect square,
A= 2,/9 if ¢ is a perfect square.

Theorem 2 ( Waterhouse [10]) Let ¢ be a prime power. Then there ez-

ists an elliptic function field over F, having g + 1 + €(q) prime divisors of
degree one.

3 Interpolation in Elliptic Function Fields

In this section we shall discuss a modified version of a bilinear algorithm due
to D.V. Chudnovsky and G.V. Chudnovsky [3] for multiplication in a finite
extension of F,. We shall first state the result.

Theorem 3 Let q be a prime power and n be a natural number. Suppose that
there exists an elliptic function field K/F, satisfying the following conditions:

(1) K contains a prime divisor p of degree n.

(2) K contains a divisor B of degree n the class of which is different from

that of p and for which ordey(B) = 0 for all prime divisors B of degree
one of K/F,.

(3) |Py(K/F;)| > 2n.

Then we have

[

R{Fq“IFqJ E Eﬂ..

Proof. The proof proceeds along the same lines as in [3].
Let p and B be as in the assumptions of the theorem. Since p is of
degree n the residue class field K'p of p is isomporphic to F,. Further, since
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B and p belong to different classes and p is assumed to be prime, we have
ord,(B) = 0 showing that £(B) is contained in the valuation ring of p. Let
% : L{(B) — Kp denote the restriction of the residue class mapping on £{%B).
Thus £ defines a vector space homomorphism. The kernel of & is £{B — p).
Since B and p belong to different classes, 8 — p is not principal. Theorem 1
implies now that L("B — p) is trivial which shows that « is injective. By
Theorem 1 dim({B) = n, hence & is an isomorphism. So there exists a basis
fiy..o, fu of £{'B) which is mapped by x onto a basis of Kp over F,.
Let {g1,.-.,92n} be a bagis of £{2B). Then there exist elements B' €F,

such that

ff: o Z'Bl_jgr

Furthermore, £(2B) is also contained in the valuation ring of p. By abuse of
notation let us denote the extension of  to £(2B) again by x. Then there
exist ¢I* € F, such that we have

kg, ) = i“c:‘n[fm]., T S

Let 377, zik(fi) and 37_, y;&(f;) be two arbitrary elements of Kp =
Then we get

n

(et (Susnt)) = = (55(3 sasmy)r st 2

=1 F=1 m=1 1=1

Let the bilinear forms Zi,..., Z,, be defined by

A Z z;y; B}, r=1,., 20
1,i=1

By (2) every bilinear algorithm of length ! for computing Zi .. . , Zs, produces
an algorithm of length [ for multiplication in Fyn over F,. Hence we have

RIF sfP) S Rl Ziso s B}y

where R({Z,,..., Z3.}) denotes the bilinear complexity of the set of bilinear
forms {Z;,...,Z2a} (certificate [6, Chapter I]).



For the computation of Z,,..., Z;, we are going to use the interpolation
algorithm presented in [3].

Let {P1,...,Pw} be the set of prime divisors of degree one of K/F,.
Further let the matrix I' be defined by

@a(Pr) - anf"pl]
I':= . ! :

Flf‘hN} ves Hznf;:phr]

This matrix is defined since by the assumptions of the theorem ordeg(*B) =10
for all B € P,(K/F,). The rank of I equals 2n: Consider the homomorphism

v: L(2B) — FY
g = (g(B1),...,9(Bw)).

I' is the representation matrix of v with respect to the basis {g1, ... »f2a} In
£(2B) and the canonical basis in FY'. The kernel of v is £(28 — (P, +... +
Bw)) which is trivial by Theorem 1 since N is assumed to be larger than
2n. So 7 is injective meaning that I has rank 2n. Without loss of generality
suppose that the first 2n rows of I' are linearly independent. Denote by Ty
the matrix formed by these rows of I'. We define further

X, = Za:,-f.-[:"]},], b A= Zy_.,fj{‘:ﬂd}, V- 3 —
=1 J=1

Now we compute (X,Y},...,X;,¥5,). This step of the algorithm requires 2n
essential multiplications.
Since by (2) we have

F{.{Z], 1ery Zﬂn:l-r = {Xii/i'l 1y XZnY’En}Tﬁ

we get the desired bilinear forms Z;, ..., Z,, without further essential mul-
tiplications. This proves the theorem. g

Note that in the algorithm presented above B does not need to be mntegral,
a condition assumed in [3].

4 Technical Tools

This section is rather technical and is primarily concerned with the question
which elliptic function fields satisfy the conditions of Theorem 3.
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The first problem we are concerned with is that of the existence of prime
divisors of given degree in an elliptic function field. The next lemma answers
this question.

Lemma 1 Let g be a prime power, ¢ > 4. Further let n be @ natural number
satisfyying n > 3q + 1. Then every elliptic function field over F, contains a
prime divisor of degree n.

Proof. In [3]it is proved that the number N, of prime divisors of degree n
of an algebraic function field of genus g over F, satisfies the inequality

Ny > % (" — (49 + ).

Since the genus of an elliptic function field is one, it suffices to prove the
inequality
qﬂfz = ‘1 +{]'

Because ¢ > 4 is assumed, the stronger inequality ¢"/? > 2¢ also yields the
result. But this inequality is satisfied for all n with n > 2log2/logq + 2.
Now the assertion follows since for ¢ > 4 we have 1g+1 > 2log2/ logq + 2.
|

For proving the existence of the divisor B we first have to show that there
exist two different divisor classes of degree n. This is the content of the next
lemma.

Lemma 2 Let K/F, be an elliptic function field which has at least two dif-
ferent prime divisors of degree one. Then K contains two different divisor
classes of degree n for every natural number n.

Proof. Let o be a divisor of degree one of K/F,. Further let p; and p,
be two different prime divisors of degree one of K/ F, and 2 be a divisor of
degree n of K/F,. Then A+ p, — o0 and A+ p, — o clearly belong to two
different classes of degree n. g

With the foregoing two lemmas at hand we can prove the existence of the
divisor B of Theorem 3.

Theorem 4 Let q be a prime power, ¢ > 4, and n be an integer with n >
1g+ 1. Further let K/F, be an elliptic function field with at least two prime
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divisors of degree one. Then K contains a prime divisor p of degree n and
a divisor B of degree n not belonging to the class of p sueh that for all
P € P1(K/F,) we have ordg(B) = 0.

Proof. The existence of p follows from Lemma 1. Let C, denote the class
of p. By Lemma 2 K contains a class C; of divisors of degree n with C) #£ C,.
By [5, Lemma 1, pp. 71] C; contains a divisor B such that ordg(B) = 0 for
all ¢ € Py(K/F,). This proves the theorem. g

5 The main result

This section is devoted to the formulation and proof of the main theorem of
this paper.

Theorem 5 Let q be a prime power and n an integer satisfying %q +1 <
n < 3q+1+elq)). Then we have

R(F,-/F,) = 2n.

Proof. Since for ¢ € {2,3]} the assertion of the theorem is empty, let us
suppose that g > 4. Let K/F, be an elliptic function field with ¢ + 1 + e(q)
prime divisors of degree one. (The existence of K follows from Theorem 2.)
Since ¢ > 4, the function field K/F, contains more than two prime divisors
of degree one. Applying Lemma 1 and Lemma 2 we get the existence of a
prime divisor p of degree n as well as the existence of the divisor B with
the conditions stated in Theorem 3. Further the assumption on n implies
2n < ¢+ 1 +¢(q). Hence, Theorem 3 yields the assertion R(F;/F,) < 2n.

Now by [6, Theorem 1.4], if ¢ < 2n — 2 we have R(F»/Fg) > 2n - 1. So
the assertion of the theorem follows. g

As a corollary to the above theorem we get the following:

Corollary 1 Let ¢ be a prime power which is a perfect square. Further let
n be an integer satisfying g+ 1<n < He+1+ 2./4). Then we have

R(F,/F,) = 2n.
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