Lower Bound for Randomized Linear Decision Tree Recognizing a Union of Hyperplanes in a Generic Position

Dima Grigoriev* Marek Karpinski†

Abstract

Let L be a union of hyperplanes with s vertices. We prove that the runtime of a probabilistic linear search tree recognizing membership to L is at least $\Omega(\log s)$, provided that L satisfies a certain condition which could be treated as a generic position. A more general statement, namely without the condition, was claimed by F. Meyer auf der Heide [1], but the proof contained a mistake.
1 Families of hyperplanes in a generic position

Let $L = \bigcup_{1 \leq i \leq m} H_i \subset \mathbb{R}^k$ be a union of hyperplanes. We intend to define a version of what does it mean that L is in a generic position.

If $Q = \bigcap_{1 \leq j \leq l} H_{i_j}$ has the dimension $\dim Q = l$ we call Q l-face of L. Also 0-faces we call vertices. If a hyperplane H contains some l-face for rather l then H contains many vertices of L. The generic position for L means, informally speaking, that this is the only reason for H to contain many vertices of L.

Definition. We say that L is in a generic position if for some $c_1 > c_2 > 0$, $c_3 > 0$ and any hyperplane $H \subset \mathbb{R}^k$

1) L has $s \geq m^{c_1 n}$ vertices;

2) each vertex belongs to exactly n hyperplanes of L.

3) the number of vertices v lying in H for which there is no l-face contained in H such that this l-face contains v, where $l \geq c_3 n$, does not exceed $m^{c_2 n}$.

One can show that if H_1, \ldots, H_m satisfy the property of algebraically independence, namely, that $m \cdot n$ coefficients a_{ij} of all linear equations for H_1, \ldots, H_m (i.e. $H_i = \{ \sum_{1 \leq j \leq n} a_{ij} x_j = 1 \}$) are algebraically independent over Q then L is in a generic position.

Moreover, one can prove in this case the following. Let Q_1, \ldots, Q_t be all maximal (in the sense of inclusion) faces of L contains in H, then $\sum_{1 \leq i \leq t} \dim(Q_i + 1) \leq n$. Thus, the number of vertices in the item considered in the item 3 of the definition does not exceed $n \cdot m^{c_2 n}$ since any l-face cannot contain more than m^l vertices of L.

Let D be a probabilistic linear search algorithm (or briefly α-PLSA) recognizing L with two-sided error $\alpha < 1/2$ (one can find in [1], [2] the concepts used in the present paper).

Theorem. If L is in a generic position then the runtime of D is greater than $\Omega(n \log m)$.

Note that the similar result was claimed in [1] even without the condition 3) from the definition of a generic position, but the proof contained a mistake.

For a value of the random parameter $0 \leq \gamma \leq 1$ by D_γ we denote the corresponding LSA (cf. [1]).

Recall that in [2] it is proved that one can obtain β-PLSA recognizing the same language L as D for any constant $\beta > 0$ increasing the runtime of D by at most a constant factor. We shall use this remark to make α as small as desired.

As in [1] one shows that for any vertex of L there exists $\epsilon > 0$ such that each hyperplane occurring as a testing one in D which intersects the closed ball $B_\epsilon(v)$ of the radius ϵ and with the center in v, should pass through v.

Similar to [1] select from D all the testing hyperplanes passing through v. Then the obtained thereby D' is an $-PLSA$ recognizing the language $L \cap B_r(v)$, when being restricted on $B_r(v)$.

Making a suitable affine transformation, we can assume that v is the coordinate origin and besides, the hyperplanes from L passing through v are just the coordinate hyperplanes $\{X_1 = 0\}, \ldots, \{X_n = 0\}$.

For any $0 \leq \gamma \leq 1$ each leaf of D_γ' provides a polyhedra V of the form
\[\{L_1 = 0\} \cap \ldots \cap \{L_{q_1} = 0\} \cap \{L_{q_1+1} > 0\} \cap \ldots \cap \{L_q > 0\} \]
for some testing hyperplanes L_1, \ldots, L_q. Then $P = \{L_1 = \ldots = L_q = 0\}$ is the minimal (in the sense of inclusion) face of the closure of V. If $q_1 = 0$ then V is open. Polyhedra corresponding to all the leaves of D_γ' form the partition \mathbb{R}^ω.

For the time being we fix $0 \leq \gamma \leq 1$ and an open polyhedron V. Denote by $\Delta(V)$ the maximal dimension of the faces of L passing through v which are contained in P. Any such face of L has the form $\bigcap_{i \in I} \{X_i = 0\}$ for a certain subset $I \subseteq \{1, \ldots, n\}$. Observe that if two faces $\bigcap_{i \in I} \{X_i = 0\}$ and $\bigcap_{i \in I \cap J} \{X_i = 0\}$ of L are contained in P then the face $\bigcap_{i \in I \cap J \cap K} \{X_i = 0\}$ is contained in P as well. Thus, there is the unique maximal face of the form $\bigcap_{i \in I} \{X_i = 0\}$ contained in P and its dimension equals to $\Delta(V)$.

2 Estimating spherical measure of intersections of a polyhedron with the coordinate hyperplanes

For any set $W \subseteq \mathbb{R}^\omega$ consider its cone $C(W)$ with the vertex in the origin and by $\delta_n(W) = \mu_n(C(W) \cap B_1)/\mu_n(B_1)$ where μ_n is the usual Borel measure in \mathbb{R}^ω and the ball $B_1 = B_1(0)$ (we consider only measurable sets).

Take any line $h \in P$ passing through the origin (provided that $\dim P > 0$ and such a line does exist) and let H be a hyperplane orthogonal to h and passing through the origin.

Lemma 1. $\delta_n(V) = \delta_{n-1}(V \cap H)$

Proof. Actually, a more general statement holds. For any subset $U \subseteq H$ for the direct product $U \times h \subseteq \mathbb{R}^\omega$ we have $\delta_n(U \times h) = \delta_{n-1}(U)$. To prove the latter statement one can consider a partition of $H \cap B_1 = U \cup U \ldots \cup U_t$ into "small" pieces where $U_i = R_i(U_0)$, $1 \leq i \leq t$ for appropriate rotations R_i of H. Extend every R_i to the rotation R_i of \mathbb{R}^ω by leaving h invariant. Then $1 = \delta_n(B_1) = (t+1)\delta_n(U_0 \times h)$ and $1 = \delta_{n-1}(H \cap B_1) = (t+1)\delta_{n-1}(U_0)$. The standard arguing with approximation of U by a partitioning into "small" pieces completes the proof of the lemma.

\[\square \]
Lemma 2. If α-PLSA D^l recognizes the language $L \cap B_r(v)$ (where L is in a generic position), being restricted on $B_r(v)$, where v is a vertex of L, then with a probability $\geq p = 1 - \frac{2n}{cn}$ (thus, we assume that $\alpha < \frac{c^2}{2}$, see the remark in section 1), a certain leaf of D^l_V provides an open polyhedron V with $\Delta(V) \leq c_3 n$.

Proof. Suppose the contrary. Recall that we assume that v coincides with the origin and among the hyperplanes H_1, \ldots, H_m there are $\{X_1 = 0\}, \ldots, \{X_n = 0\}$. Then $1 = \sum \delta_n(V)$ where the summation ranges over all open polyhedra V provided by the leaves of D^l_V. Assume that for a particular value of the random parameter $0 \leq \gamma \leq 1$ for all open V we have $\Delta(V) > c_3 n$.

Let P be the minimal face of V, then $P \subset \{X_{i_1} = \ldots = X_{i_l} = 0\}$ for some indices $1 \leq i_1, \ldots, i_l \leq n$ with $l < (1 - \alpha) n$. For any index $j \notin \{i_1, \ldots, i_l\}$ lemma 1 entails $\delta_{n-1}(V \cap \{X_j = 0\}) = \delta_{n}(V)$. Therefore $\sum_{V} \sum_{1 \leq l \leq n} \delta_{n-1}(V \cap \{X_l = 0\}) > c_3 n$. By the supposition the expectation of the latter sum over the values of the random parameter $0 \leq \gamma \leq 1$ is greater than

$$E \left(\sum_{V} \sum_{1 \leq l \leq n} \delta_{n-1}(V \cap \{X_l = 0\}) \right) > (1 - p)c_3 n = 2\alpha n.$$

This contradicts to the definition of α-PLSA taking into account that for any point from $V \cap \{X_l = 0\}$ the output of D^l_V is the same as for the points, from its small neighbourhood, so D^l_V does not distinguish them. The obtained contradiction proves the lemma.

3 Lower bound on the number of faces in PLSA

Now we complete the proof of the theorem, the arguing is similar to one in [1]. Applying lemma 2 to each vertex of L we conclude that there exists a value $0 \leq \gamma \leq 1$ of the random parameters such that for at least $p \gamma$ vertices v of L there is an open polyhedron V provided by corresponding to a leaf of D^l_V such that V has a face P (which could be not a minimal face of P unlike the local situation in section 2) containing v and if some l-face of L is contained in P and contains v then $l \leq c_3 n$. To every such vertex v let us correspond a face p (if there are several such faces then correspond any of them).

Since L is in a generic position (see the definition), any face P of D^l_V could be corresponded to at most $m^c n^2$ vertices of L. Hence there are at least $p \gamma/m^c n^2 = pm(n^{c_1} - c_2 n)$ faces of D^l_V. But on the other hand, the number of faces in D^l_V does not exceed 2^{2T} (cf. [1]), therefore $2^{2T} \geq pm(n^{c_1} - c_2 n)$, this completes the proof of the theorem.
References
