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Abstract

We present some recent results on the computational power and the
basic manipulation properties of the randomized OBDDs (or equiva-
lently, randomized read-once ordered branching programs). We discuss

here their utilizing properties for randomized formal verification and
the model checking.
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Branching programs have recently been found very useful in the field of for-
mal verification and model checking for both hardware and software appli-
cations. The main problem of formal verification is to check whether a hard-
ware circuit or a program has been correctly designed. A standard approach
employed today is to transform independently the circuit or the program
and their function specification to the common intermediate representation,
and then check their equivalence. A model for intermediate representation
must enjoy several formal manipulation properties, like the elosure under
boolean combinations, and the existence of an (efficient) algorithm for its
satisfiability. A most commonly used model for the intermediate represen-
tation today is the model of an OBDD (“ordered binary decision diagram”,
or equivalently, read-once ordered branching program). The obvious boolean
combination properties of OBDDs are necessary for the bottom-up algorithm
that construct the OBDD'’s representation from the circuit or the program
description. This strategy of using OBDDs for verification has an appar-
ent shortcoming, in that we cannot hope to compute in general a small
(polynomial in the size of the original circuit) representation. We recall that
even unrestricted polynomial size branching programs compute the functions
which are in non-uniform logspace. The above problem has largely been ac-
cepted as inherent, and not critical for this approach, since the functions to
be transformed tend to be simple, and be computable in logspace. Indepen-
dently, during the last decade there were several attemps to find manipulable
generalizations of OBDDs for formal verification, strong enough to compute

efficiently more complex funcitons.

The model of randomized OBDDs have been introduced recently by
Ablayev and Karpinski [AK96], and proven to be exponentially more pow-
erful than the classical model of the deterministic OBDDs. Surprisingly the
exponential size advantage generalized even to nondeterministic read-k-times
ordered branching programs [AK98a) (cf. also, [S97], [T98]).

One of the most important functions, and at the same time an elemen-
tary bottleneck, in formal deterministic verification, and hardware model
checking, is the integer multiplication (cf., e.g. [P95]). It is well known that



computing the integer multiplication requires exponential size on determin-
istic read-k-times ordered branching programs even if & = o(logn), cf. [B91],
[BSSW93], and [G94]. Ablayev and Karpinski [AK98b] succeeded in design-
ing a small (polynomial size) randomized OBDDs for testing the function of
integer multiplication, and proving at the same time an exponential lower
bound on the size of any randomized OBDD computing exactly the integer
multiplication. Interestingly, it is known that computing the test for integer
multiplication with deterministic OBDDs is as hard as integer factorization
[W94]. We discuss also some direct applications and extensions of the above
results towards the formal verification of other functional problems.

It is not difficult to see that randomized OBDDs are closed under the
boolean combinations. So the important algorithmic issues arise in formal
verification, and the model checking on randomized OBBDs, namely, their
satisfiability and equivalence problems. Agrawal and Thierauf [AT97] have
proven recently that the general satisfiability (and equivalence) problem for
randomized OBDDs is NP-complete, displaying at the same time, a polyno-
mial time algorithm for satisfiability for randomized OBDDs with the very
small (bounded by the inverse of their width) error probability. We discuss
further some randomized algorithmic issues arising from removal of the vari-
able ordering conditions in our model of randomized OBDDs, and also from
the extensions to algebraic (branching condition) OBDDs similar to algebraic
decision trees (cf. [GKY95], [GKMS96], [GKS97]). Very little is known about
the restricted branching program with algebraic decision elements, despite
their potential applications in algebraic and numeric computation, combi-
natorial optimization, and algorithmic geometry. Some open problems are
presented.
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