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Abstract

We develop a new method for proving explicit approximation lower
bounds for the Shortest Superstring problem, the Maximum Compression
problem, the Maximum Asymmetric TSP problem, the (1,2)–ATSP problem
and the (1,2)–TSP problem improving on the best known approximation
lower bounds for those problems.

1 Introduction

In the Shortest Superstring (SSP) problem, we are given a finite set S of strings
and we would like to construct their shortest superstring, which is the shortest
possible string such that every string in S is a proper substring of it.
The task of computing a shortest common superstring appears in a wide variety
of application related to computational biology [L90]. Vassilevska [V05] proved
that approximating the SSP problem with less than 1217/1216 is NP-hard. The
currently best known approximation algorithm is due to Mucha [M12] and yields
an approximation factor of 211

23
.

In this paper, we prove that the Shortest Superstring problem is NP-hard to
approximate within any constant approximation ratio better than 333/332.

In the Traveling Salesperson (TSP) problem, we are given a metric space
(V, d) and the task consists of constructing a shortest tour visiting each vertex
exactly once.

The TSP problem in metric spaces is one of the most fundamental NP-hard
optimization problems. The decision version of this problem was shown early to be
NP-complete by Karp [K72]. Christofides [C76] gave an algorithm approximating
the TSP problem within 3/2, i.e., an algorithm that produces a tour with length
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being at most a factor 3/2 from the optimum. As for lower bounds, a reduction
due to Papadimitriou and Yannakakis [PY93] and the PCP Theorem [ALM+98]
together imply that there exists some constant, not better than 1+10−6, such that it
is NP-hard to approximate the TSP problem with distances either one or two. For
discussion of bounded metrics TSP, see also [T00]. The best known approximation
lower bound for the general version of this problem is due to Lampis [L12]. He
proved that the TSP problem is NP-hard to approximate with an approximation
factor less than 185/184. The restricted version of the TSP problem, in which
the distance function takes values in {1, . . . ,B}, is referred to as the (1,B)–TSP

problem. The (1,2)–TSP problem can be approximated in polynomial time with
an approximation factor 8/7 due to Berman and Karpinski [BK06]. On the other
hand, Engebretsen and Karpinski [EK06] proved that it is NP-hard to approximate
the (1,B)–TSP problem with an approximation factor less than 741/740 for B = 2
and 389/388 for B = 8.

In this paper, we prove that it is NP-hard to approximate the (1,2)–TSP
problem with an approximation factor less than 535/534.

In the Asymmetric Traveling Salesperson (ATSP) problem, we are given
an asymmetric metric space (V, d), i.e., d is not necessarily symmetric, and
we would like to construct a shortest tour visiting every vertex exactly once.
The best known algorithm for the ATSP problem approximates the solution
within O( logn/ log logn), where n is the number of vertices in the metric
space [AGM+10]. On the other hand, Papadimitriou and Vempala [PV06] proved
that the ATSP problem is NP-hard to approximate with an approximation factor
less than 117/116. It is conceivable that the special cases with bounded metric
are easier to approximate than the cases when the distance between two points
grows with the size of the instance. Clearly, the (1,B)–ATSP problem, in which
the distance function is taking values in the set {1, . . . ,B}, can be approximated
within B by just picking any tour as the solution. When we restrict the problem
to distances one and two, it can be approximated within 5/4 due to Bläser [B04].
Furthermore, it is NP-hard to approximate this problem with an approximation
factor better than 321/320 [EK06]. For the case B = 8, Engebretsen and Karpin-
ski [EK06] constructed a reduction yielding the approximation lower bound
135/134 for the (1,8)–ATSP problem.

In this paper, we prove that it is NP-hard to approximate the (1,2)–ATSP
problem with an approximation factor less than 207/206.

In the Maximum Compression (MAX–CP) problem, we are given a collec-
tion of strings S = {s1, . . . , sn}. The task is to find a superstring for S with
maximum compression, which is the difference between the sum of the lengths of
the given strings and the length of the superstring.

In the exact setting, an optimal solution to the Shortest Superstring problem is
an optimal solution to this problem, but the approximate solutions can differ signif-
icantly in the sense of approximation ratio. The Maximum Compression problem
arises in various data compression problems (cf. [S88]). The best known approx-
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imation upper bound is 3/2 [KLS+05] by reducing it to the MAX-ATSP problem,
which is defined below.

On the approximation lower bound side, Vassilevska [V05] proved that it is
NP-hard to approximate this problem with a constant approximation factor better
than 1072/1071.

In this paper, we prove that approximating the Maximum Compression
problem with an approximation ratio less than 204/203 is NP-hard.

In the Maximum Asymmetric Traveling Salesperson (MAX–ATSP) Prob-
lem, we are given a complete directed graph G and a weight function w assigning
each edge of G a nonnegative weight. The task is to find a tour of maximum
weight visiting every vertex of G exactly once .

This problem is well-known and motivated by several applications (cf.
[BGS02]). A good approximation algorithm for the MAX–ATSP problem yields a
good approximation algorithm for many other optimization problems such as the
Shortest Superstring problem, the Maximum Compression problem and the (1,2)–
ATSP problem. In particular, an α–approximation algorithm for the Max–ATSP
problem implies an α–approximation algorithm for the Maximum Compression
problem (cf. [KLS+05]).

The MAX–(0,1)–ATSP problem is the restricted version of the MAX–ATSP
problem, in which the weight function w takes values in the set {0,1}. Vish-
wanathan [V92] constructed an approximation preserving reduction proving that
any (1/α)–approximation algorithm for the MAX–(0,1)–ATSP problem transforms
in a (2−α)– approximation algorithm for the (1,2)–ATSP problem. Due to the ex-
plicit approximation lower bound for the (1,2)–ATSP problem given in [EK06], it
is NP-hard to approximate the MAX–(0,1)–ATSP problem with an approximation
factor less than 320/319.

The best known approximation algorithm for the restricted version of this prob-
lem is due to Bläser [B04] and achieves an approximation ratio 5/4.

For the general problem, Kaplan et al. [KLS+05] designed an algorithm for the
MAX–ATSP problem yielding the best known approximation upper bound of 3/2.
Elbassioni, Paluch and v. Zuylen [EPZ12] gave a simpler approximation algorithm
for the problem with the same approximation ratio.

In this paper, we prove that approximating the MAX–ATSP problem with an
approximation ratio less than 204/203 is NP-hard.

2 Preliminaries

Throughout, for i ∈ N, we use the abbreviation [i] for the set {1, . . . , i}. Given
an finite alphabet Σ, a string is an element of Σ∗. Given a string v, we denote
the length of v by ∣v∣. For two strings x and y, we define the overlap of x and y,
denoted ov(x, y), as the longest suffix of x that is also a prefix of y. Furthermore,
we define the prefix of x with respect to y, denoted pref(x, y), as the string u with
x = u ov(x, y).
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In this paper, an instance (V, d) of the (1,2)–ATSP problem is specified by means
of a directed graph DV = (V,A), where (x, y) ∈ A if and only if d(x, y) = 1. In
addition, we refer to an arc (x, y) ∈ V × V as a z-arc if d(x, y) = z ∈ {1,2}. In order
to specify an instance of the (1,2)-TSP problem, we will use undirected graphs.

3 Hybrid Problem

Berman and Karpinski [BK99] introduced the following Hybrid problem and
proved that this problem is NP-hard to approximate with some constant.

Definition 1 (Hybrid problem). Given a system of linear equations mod 2 containing

n variables, m2 equations with exactly two variables, and m3 equations with exactly

three variables, find an assignment to the variables that satisfies as many equations

as possible.

The following result is due to Berman and Karpinski [BK99].

Theorem 1 ([BK99]). For any constant δ ∈ (0,1/2), there exists instances of the

Hybrid problem H(ν) with 42ν variables, 60ν equations with exactly two variables,

and 2ν equations with exactly three variables such that: (i) Each variable occurs

exactly three times. (ii) Either there is an assignment to the variables that leaves at

most δ ⋅ ν equations unsatisfied, or else every assignment to the variables leaves at

least (1 − δ)ν equations unsatisfied. (iii) It is NP-hard to decide which of the two

cases in item (ii) above holds. (iv) An optimal assignment to the variables in H(ν)
can be transformed in polynomial time into an optimal assignment satisfying all 60ν

equations with two variables in H(ν).

The instances of the Hybrid problem produced in Theorem 1 have an even more
special structure, which we are going to describe. The equations containing three
variables are of the form x ⊕ y ⊕ z = {0,1}. These equations stem from the Theo-
rem of Håstad [H01] dealing with the hardness of approximating equations with
exactly three variables. We refer to it as the MAX–E3–LIN problem, which can be
seen as a special instance of the Hybrid problem.

Theorem 2 ([H01]). For any constant δ ∈ (0,1/2), there exists systems of linear

equations mod 2 with 2 ⋅ ν equations and exactly three unknowns in each equation

such that:

(i) Each variable in the instance occurs a constant number of times, half of them

negated and half of them unnegated.

(ii) Either there is an assignment satisfying all but at most δ ⋅ ν equations, or every

assignment leaves at least (1 − δ)ν equations unsatisfied.

(iii) It is NP-hard to distinguish between these two cases.

Let us describe briefly the reduction from the MAX–E3–LIN problem to the Hy-
brid problem. For a detailed description, we refer to [BK99], [BK03] and [K01].
For every variable x of the original instance I of the MAX–E3–LIN problem, we
introduce a corresponding set of variables Vx. If the variable x occurs tx times
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in I, then, Vx contains n = 7tx new variables x1, . . . , xn. The variables contained
in {x7⋅i ∣ i ∈ [tx]} are called contact variables, whereas the remaining variables in
Vx are called checker variables. All variables in Vx are connected by equations of
the form xi ⊕ xi+1 = 0 with i ∈ [n − 1] (cirle equations) and x1 ⊕ x7tx = 0 (circle
border equation). In addition, there exists equations of the form xi ⊕ xj = 0 with
{i, j} ∈Mx (matching equations), where the set Mx induces a perfect matching on
the indexset of checker variables. In the remainder, we refer to this construction
as the circle Cx containing the variables xi ∈ Vx. Every occurrence of the variable
x in an equation with three variables in I is replaced by a corresponding contact
variable in Vx. Accordingly, every variable in the corresponding instance IH of the
Hybrid problem occurs exactly three times.

4 Our Results

We now formulate our results.

Theorem 3. Let H be an instance of the Hybrid problem with n circles, 60ν equa-

tions with two variables and 2ν equations with exactly three variables satisfying the

properties described in Theorem 1.

1. It is possible to construct in polynomial time an instance (VH, dH) of the (1,2)-
ATSP problem such that:

(i) If there exists an assignment φ to the variables of H which leaves at most δν

equations unsatisfied for some δ ∈ (0,1), then, there exist a tour with length at most

3 ⋅ 60ν + 13 ⋅ 2ν + n + 1 + δν.

(ii) From every tour in (VH, dH) with length 206 ⋅ ν + n + 1 + δν, we can construct in

polynomial time an assignment that leaves at most δ ⋅ ν equations in H unsatisfied.

2. It is possible to construct in polynomial time an instance (VH, dH) of the (1,2)-
TSP problem such that:

(i) If there exists an assignment φ to the variables of H which leaves at most δν

equations unsatisfied for some δ ∈ (0,1), then, there exist a tour with length at most

8 ⋅ 60ν + 27 ⋅ 2ν + 3(n + 1) + 1 + δν.

(ii) From every tour σ in (VH, dH) with length 534 ⋅ ν + 3(n + 1) + 1 + δν, we can

construct in polynomial time an assignment that leaves at most δ ⋅ ν equations in H
unsatisfied.

3. It is possible to construct in polynomial time an instance SH of the Shortest

Superstring problem such that:

(i) If there exists an assignment φ to the variables of H which leaves at most δν

equations unsatisfied for some δ ∈ (0,1), then, there exist a superstring sφ for SH with

length at most 5 ⋅ 60ν + 16 ⋅ 2ν + 7n + δν.

(ii) From every superstring s for SH with length ∣s∣ = 332ν + u + 7n + δν, we can

construct in polynomial time an assignment to the variables of H that leaves at most

δν equations in H unsatisfied.

4. It is possible to construct in polynomial time an instance SH of the Maximum

Compression problem such that:

(i) If there exists an assignment φ to the variables of H which leaves at most δν
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equation unsatisfied for some δ ∈ (0,1), then, there exist a superstring sφ for SH with

compression at least 3 ⋅ 60ν + 12 ⋅ 2ν + 5n − δν.

(ii) From every superstring s for SH with compression 204ν+5n−δ ⋅ν, we can construct

in polynomial time an assignment to the variables of H that leaves at most δ ⋅ ν

equations in H unsatisfied.

The former theorem can be used to derive an explicit approximation lower bound
for the (1,2)–ATSP problem.

Corollary 1. For every ǫ > 0, it is NP-hard to approximate the (1,2)–ATSP problem

within any constant approximation ratio better than 207/206− ǫ.

Proof. First of all, we choose k ∈ N and δ > 0 such that 207−δ
206+δ+12/k ≥

207

206
− ǫ holds.

Given an instance E3 of the MAX-E3-LIN problem, we generate k copies of E3 and
produce an instance H of the Hybrid problem. Then, we construct the corre-
sponding instance (VH, dH) of the (1,2)–ATSP problem with the properties de-
scribed in Theorem 3.1. We conclude according to Theorem 1 that there exist a
tour in (VH, dH) with length at most 206νk + δνk + (n + 1) ≤ (206 + δ + 2n

kν
)νk ≤

(206 + δ + 2⋅6
k
)νk or the length of a tour in (VH, dH) is bounded from below by

206νk+(1−δ)νk+n+1 ≥ (206+(1−δ))νk ≥ (207−δ)νk. From Theorem 1, we know
that the two cases above are NP-hard to distinguish. Hence, for every ǫ > 0, it is
NP-hard to find a solution to the Shortest Superstring problem with an approxi-
mation ratio 207−δ

206+δ+12/k ≥
207

206
− ǫ.

Analogously, Theorem 3 can be used to derive approximation lower bounds for
the other problems summarized in Figure 1. The explicit approximation lower
bound for the Max–ATSP problem is obtained by using a well-known approxima-
tion preserving reduction from the Maximum Compression problem to the MAX–
ATSP problem (cf. [KLS+05]).

Problem Our Results Previously known
(1,2)–ATSP 207/206 321/320 [EK06]
(1,2)–TSP 535/534 741/740 [EK06]
MAX–ATSP 204/203 320/319 [EK06]
MAX–CP 204/203 1072/1071 [V05]

SSP 333/332 1217/1216 [V05]

Figure 1: Comparison of our results to previously known explicit approximation
lower bounds.

For other details and explicit approximation lower bounds for related problems,
see [KS11] and [KS12].

5 The (1, 2)–ATSP problem

Given an instance of the Hybrid problem H, we want to transform H into an
instance of the (1,2)–ATSP problem. Fortunately, the special structure of the linear
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equations in the Hybrid problem is particularly well-suited for our reduction, since
a part of the equations with two variables form a cycle and every variable occurs
exactly three times. The main idea of our reduction is to make use of the special
structure of the circles in H. Every circle Cl in H corresponds to a subgraph Dl in
the instance DH of the (1,2)-ATSP problem. Moreover, Dl forms almost a cycle. An
assignment to the variable xl will have a natural interpretation in this reduction.
The parity of xl corresponds to the direction of movement in Dl of the underlying
tour. The circle graphs D1, . . . ,Dn of DH are connected and build together the

inner loop

outer loop

D3

1

D4 D5

D6

D3

2

D2

D3

D1

Figure 2: An illustration of DH and a tour in DH.

inner loop of DH (Figure 2). Every variable xli in a circle Cl possesses an associated
parity graph P l

i (Figure 3(a)) inDl as a subgraph. The two natural ways to traverse
a parity graph will be called 0/1-traversals (Figure 3(b)&(c)) and correspond to
the parity of the variable xli. Some of the parity graphs in Dl are also contained
in graphs D3

c (Figure 5 and Figure 6 for a more detailed view) corresponding to
equations with three variables of the form g3c ≡ x⊕ y⊕ z = 0. (We may assume that
equations with three variables are of the form x ⊕ y ⊕ z = 0 or x̄ ⊕ y ⊕ z = 0 due
to the transformation x̄ ⊕ y ⊕ z = 0 ≡ x ⊕ y ⊕ z = 1.) These graphs are connected
and build the outer loop of DH. The outer loop of the tour checks whether the
0/1-traversals of the parity graphs correspond to a satisfying assignment of the
equations with three variables. If an underlying equation is not satisfied by the
assignment defined via 0/1-traversals of the associated parity graphs, it will be
punished by using a costly arc with distance 2.

vl0i vl�
i

vl1i vl0i vl�
i

vl1i vl0i vl�
i

vl1i

(a) Graph P l
i (b) 1-traversal (c) 0-traversal

Figure 3: Traversals of the parity graph P l
i . Traversed arcs are illustrated by thick

arrows.

Constructing DH from the Instance H
Given a instance of the Hybrid problem H, we are going to construct the cor-
responding instance DH of the (1,2)-ATSP problem. For every type of equation
in H, we will introduce a specific graph or a specific way to connect the so far
constructed subgraphs. In particular, we will distinguish between graphs corre-
sponding to circle equations, matching equations, circle border equations and
equations with three variables. First of all, we introduce graphs corresponding to
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the variables in H.

vl0i vl1ivl�
i

vl0i+1 vl1i+1vl�
i+1

vl�e

v
lj
e

v
l(i+1)
e

vl1j+1 vl�
j+1

vl0j+1

vl1j vl0jvl�
j

Figure 4: Connecting the parity graph P l
e.

Variable Graphs: For every variable xli in H, we introduce the parity graph P l
i

consisting of the vertices {vl1i , v
l�
i , v

l0
i } and is displayed in Figure 3(a).

sc v
1

c
sc+1

v
3

c

v
2

c

Figure 5: Gadget for x⊕ y ⊕ z = 0.

Matching and Circle Equations: Let H be an instance of the hybrid problem, Cl
a circle in H and Ml the associated perfect matching. Furthermore, let xli ⊕ x

l
j = 0

with e = {i, j} ∈ Ml and i < j be a matching equation. Due to the construction of
H, the circle equations xli ⊕ x

l
i+1 = 0 and xlj ⊕ x

l
j+1 = 0 are both contained in Cl.

Then, we introduce the associated parity graph P l
e consisting of the vertices vlje ,

vl�e and v
l(i+1)
e . In addition, we connect the parity graphs P l

i , P
l
i+1, P

l
j , P

l
j+1 and P l

e

as depicted in Figure 4.

Equations with Three Variables: Let g3c ≡ x
l
i⊕x

s
j⊕x

k
t = 0 be an equation with three

variables in H. Then, we introduce the graph D3
c (Figure 5) corresponding to the

equation g3c . The graph D3
c includes the vertices sc, v1c , v2c , v3c and sc+1. Engebretsen

and Karpinski [EK06] used this graph in their reduction and proved the following
statement.

Proposition 1 ([EK06]). There is a Hamiltonian path from sc to sc+1 in the graph

displayed in Figure 5 if and only if an even number of dashed arcs is traversed.

This construction is extended by replacing the dashed arcs with the parity
graphs P l

e, P
s
b and P k

a , where e = {i, i+1}, b = {j, j+1} and a = {t, t+1}. In Figure 6,
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we display D3
c with its connections to the graph corresponding to xli ⊕ x

l
i+1 = 0. (In

case of g3c ≡ x̄
l
i ⊕ x

s
j ⊕ x

u
k = 0, we create (vl1i , v

l1
e ), (v

l0
i+1, v

l1
i ) and (vl0e , v

l0
i+1) instead.)

sc v
1

c

v
l0
e

v
l�
e

v
l1
e

v
l�
i

v
l0
i

v
l�
i+1v

l1
i+1

v
l0
i+1

v
l1
i

v
k1
a

v
k0
a

v
k�
a

v
s1
b

v
s�
b

v
s0
b

v
3

c

sc+1

v
2

c

Figure 6: The graph D3
c corresponding to g3c ≡ x

l
i ⊕ x

s
j ⊕ x

u
t = 0 connected to graphs

corresponding to xli ⊕ x
l
i+1 = 0.

Circle Border Equations: Let Cl and Cl+1 be circles in H. In addition, let xl
1
⊕xln = 0

be the circle border equation of Cl. Recall that xln also occurs in an equation g3c
with three variables in H. Assuming g3c ≡ x

l
n ⊕ y ⊕ z = 0, we introduce the vertex bl,

bl+1 and the parity graph P l
{n,1}

. Then, we create (bl, vl1{n,1}), (v
l0
{n,1}

, vl1n ), (bl, v
l0
1
),

(vl0
1
, bl+1) and (vl1n , bl+1). (In case of g3c ≡ x̄

l
n ⊕ y ⊕ z = 0, we add (bl, vl01 ), (v

l0
1
, bl+1),

(bl, vl1n ), (v
l1
n , v

l0
{n,1}
) and (vl1

{n,1}
, bl+1) instead.) Finally, we set bm+1 = s1, where s1 is

the starting vertex of D3

1
.

Constructing a Tour from an Assignment
Let H be an instance of the Hybrid problem consisting of the circles C1,C2, . . . ,Cm,
60ν equations with 2 variables and 2ν equations with three variables. Given an
assignment φ to the variables of H leaving δ ⋅ν equations unsatisfied for a constant
δ ∈ (0,1), we are going to construct the associated Hamiltonian tour σφ in DH.
According to Theorem 1, we may assume that all equations with 2 variables in H
are satisfied by φ. Thus, all variables associated to a circle have the same value.
Then, the Hamiltonian tour σφ in DH starts at the vertex b1. From a high-level
view, σφ traverses all graphs corresponding to the equations associated with the
circle C1 using the φ(x1

1
)-traversal of all parity graphs corresponding to circle

equations of C1 ending with the vertex b2. Successively, it passes all graphs for
each circle in H until it reaches the vertex bm+1 = s1 as s1 is the starting vertex of
the graph D3

1
.

At this point, the tour begins to traverse the remaining graphs D3
c , which are

simulating the equations with three variables in H. By now, some of the parity
graphs appearing in graphs D3

c already have been traversed in the inner loop of
σφ. The outer loop checks whether for each graph D3

c , an even number of parity
graphs has been traversed in the inner loop. In every situation, in which φ does
not satisfy the underlying equation, the tour needs to use a 2-arc.

Constructing an Assignment from a Tour
Let H be an instance of the Hybrid problem, DH = (VH,AH) the associated
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instance of the (1,2)-ATSP problem and σ a tour in DH. We are going to define
the corresponding assignment ψσ to the variables in H. In addition, we establish a
connection between the length of σ and the number of satisfied equations by ψσ.
First of all, we introduce the notion of consistent tours.

Definition 2 (Consistent Tour). Let H be an instance of the Hybrid problem and DH
the associated instance of the (1,2)–ATSP problem. A tour in DH is called consistent

if the tour uses only 0/1-traversals of all in DH contained parity graphs.

Due to the following proposition, we may assume that the underlying tour is
consistent.

Proposition 2. Let H be an instance of the Hybrid problem and DH the associated

instance of the (1,2)–ATSP problem. Any tour σ in DH can be transformed in poly-

nomial time into a consistent tour with at most the same length as σ.

Proof. For every parity graph contained in DH, it can be seen by considering all
possibilities exhaustively that any tour in DH that is not using the corresponding
0/1-traversals can be modified into a tour with at most the same number of 2-arcs.
The less obvious cases are shown in the full version [KS12].

Let us define the corresponding assignment ψσ given a tour σ in DH.

Definition 3 (Assignment ψσ). Let H be an instance of the Hybrid problem,

DH = (VH,AH) the associated instance of the (1,2)-ATSP problem. Given a con-

sistent tour σ in DH, the corresponding assignment ψσ is defined as ψσ(xli) =
1 if σ uses a 1-traversal of P l

i , and 0 otherwise.

Let us start with the analysis. In the remainder, we assume that the underlying
tour σ is consistent.

Matching Equations: Given the equations xi ⊕ xi+1 = 0, xi ⊕ xj = 0, xj ⊕ xj+1 = 0
and a tour σ, we are going to analyze the relation between the length of the tour
and the number of satisfied equations by ψσ.

1.Case (ψσ(xi) ⊕ ψσ(xi+1) = 0, ψσ(xi) ⊕ ψσ(xj) = 0 & ψσ(xj) ⊕ ψσ(xj+1) = 0):
Given ψσ(xi) = ψσ(xj) = ψσ(xj) = ψσ(xj+1) = 1, the cost of a tour traversing
this part of DH can be bounded from below by 5. In this case, σ con-

tains (vl1i , v
l0
i+1), (v

l1
j , v

lj
e ), (v

lj
e , vl�e ), (v

l�
e , v

l(i+1)
e ) and (v

l(i+1)
e , vl0j+1). The case

ψσ(xi)=ψσ(xi+1)=ψσ(xj)=ψσ(xj+1)=0 can be discussed analogously. In both cases,
we obtain the local length 5 for this part of σ while ψσ satisfies all 3 equations.
2.Case (ψσ(xi)⊕ψσ(xi+1) = 0, ψσ(xi)⊕ψσ(xj) = 1 & ψσ(xj)⊕ψσ(xj+1) = 0): In both
cases, we associate only the cost of one 2-arc yielding a lower bound of 6 on the
local length, which corresponds to the fact that ψσ leaves the equation xi ⊕ xj = 0
unsatisfied. Note that a similar situation holds in case of ψσ(xi) = ψσ(xi+1) = 0 and
ψσ(xj) = ψσ(xj+1) = 1.

3. Case (ψσ(xi) ⊕ ψσ(xi+1) = 0, ψσ(xi) ⊕ ψσ(xj) = 0 & ψσ(xj) ⊕ ψσ(xj+1) = 1):
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z

vl�
e

vl0
j+1

vlj
e

v
l(i+1)
e

vl1
i

vl0
i+1

vl1
j−1

x

vl1
j2

2

z

vl�
e

vl0
j+1

vlj
e
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Figure 7: 5.Case with ψσ(xi) = ψσ(xi+1) = 1 and ψσ(xj) ≠ ψσ(xj+1) = 1.

Given ψσ(xi) = ψσ(xi+1) = 1 and ψσ(xj) ≠ ψσ(xj+1) = 0, we are forced to use two
2-arcs increasing the cost by 2. Thus, we obtain a lower bound of 4 + 2. The case
ψσ(xi) = ψσ(xi+1) = 0 and ψσ(xj) ≠ ψσ(xj+1) = 1 can be analyzed analogously. A
similar argumentation holds for ψσ(xi) ⊕ ψσ(xi+1) = 1, ψσ(xi) ⊕ ψσ(xj) = 0 and
ψσ(xj)⊕ψσ(xj+1) = 0.

4.Case ( ψσ(xi) ⊕ ψσ(xi+1) = 1, ψσ(xi) ⊕ ψσ(xj) = 0 & ψσ(xj) ⊕ ψσ(xj+1) = 1):
Given ψσ(xi) ≠ ψσ(xi+1) = 0 and ψσ(xj) ≠ ψσ(xj+1) = 0, we are forced to use four
2-arcs in order to connect all vertices. Consequently, it yields the lower bound of
7. The case, in which ψσ(xi) ≠ ψσ(xi+1) = 0 and ψσ(xj) ≠ ψσ(xj+1) = 0 holds, can be
discussed analogously.

5.Case (ψσ(xi) ⊕ ψσ(xi+1) = 0, ψσ(xi) ⊕ ψσ(xj) = 1 & ψσ(xj) ⊕ ψσ(xj+1) = 1): Let
the tour σ be characterized by ψσ(xi) = ψσ(xi+1) = 1 and ψσ(xj) ≠ ψσ(xj+1) = 1. Let
us assume that σ uses the arc (vl1i , v

l0
i+1). The corresponding situation is illustrated

in Figure 7(a). We transform σ such that it traverses the parity graph P l
j in the

other direction and obtain ψσ(xj) = 1. This transformation induces a tour with
at most the same cost. On the other hand, the corresponding assignment ψσ

satisfies at least 2 − 1 more equations since xlj ⊕ x
l
j−1 = 0 might get unsatisfied.

In this case, we associate the local costs of 6 with σ. In the other cases, in
which ψσ(xi) = ψσ(xi+1) = 0 & ψσ(xj) ≠ ψσ(xj+1) = 0 or ψσ(xi) ⊕ ψσ(xi+1) = 1,
ψσ(xi)⊕ψσ(xj) = 1 & ψσ(xj)⊕ψσ(xj+1) = 0 holds, we may argue similarly.

6.Case (ψσ(xi) ⊕ ψσ(xi+1) = 1, ψσ(xi) ⊕ ψσ(xj) = 1 and ψσ(xj) ⊕ ψσ(xj+1) = 1):

Given a tour σ with ψσ(xi) ≠ ψσ(xi+1) = 1 and ψσ(xj) ≠ ψσ(xj+1) = 0, we transform
σ such that it traverses the parity graph P l

j in the opposite direction meaning

ψσ(xj) = 0. This transformation enables us to use the arc (vl0j+1, v
l1
j ). Furthermore,

it yields at least one more satisfied equation in H. In order to connect the remain-
ing vertices, we are forced to use at least two 2-arcs. In summary, we associate
the local length 7 with this situation in conformity with the at most 2 unsatisfied
equations by ψσ. The case, in which ψσ(xi) ≠ ψσ(xi+1) = 0 & ψσ(xj) ≠ ψσ(xj+1) = 1
holds, can be discussed analogously.

In summary, we obtain the following statement.

11



Proposition 3. Let E = {xli ⊕ x
l
i+1 = 0, xli ⊕ x

l
j = 0, xlj ⊕ x

l
j+1 = 0} be a subset of H

with {i, j} ∈ Ml. Then, it is possible to transform in polynomial time a given tour σ

passing through the graphs corresponding to g ∈ E into a tour π that has local cost

(5 + α) and the number of unsatisfied equations in E by ψπ is at most α.

Equations with Three Variables: Let g3c ≡ x
l
i⊕x

s
j⊕x

r
k = 0 be an equation with three

variables inH. Furthermore, let Cl be a circle inH and xli⊕x
l
i+1 = 0 a circle equation.

For notational simplicity, we set e = {i, i + 1}. We are going to analyze the number
of satisfied equations by ψσ in dependence to the local length of σ in the graphs
P l
i , P

l
i+1, P

l
e and D3

c . First, we transform the tour traversing the graphs P l
i , P

l
i+1 and

P l
e such that it uses the ψσ(xli)-traversal of P l

e. Afterwards, due to the construction
of D3

c and Proposition 1, the tour can be transformed such that it has local length
of 3 ⋅ 3 + 4 if it passes an even number of parity graphs P ∈ {P l

e, P
s
{j,j+1}

, P r
{k,k+1}

}

while using a simple path through D3
c . Otherwise, it yields a local length of 13+ 1.

v
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(a) (b)

Figure 8: Case ψσ(xli) = 1 and ψσ(xli+1) = 1

Let us start to analyze the local cost of σ in the graph corresponding to xli⊕x
l
i+1 = 0:

1. Case (ψσ(xli) ⊕ ψσ(xli+1) = 0): In both cases, we transform the tour such
that it uses the ψσ(xli)-traversal of P l

e without increasing its length. Exemplary, we
display such a scenario for the case (ψσ(xli) = 1 & ψσ(xli+1) = 1) in Figure 8(a) and
(b) (transformed tour in Figure 8(b)). For both cases, we associate a lower bound
of 1 on the local cost.
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Figure 9: Case (ψσ(xli) = 1, ψσ(xli+1) = 0 and ψσ(xli)⊕ ψσ(xsj)⊕ ψσ(xrk) = 1).

2.Case (ψσ(xli) = 1 & ψσ(xli+1) = 0): Let us assume that ψσ(xli)⊕ψσ(xsj)⊕ψσ(xrk) = 0
holds. Due to Proposition 1, it is possible to transform the tour such that it uses
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the 0-traversal of the parity graph P l
e without increasing the length. In the

other case, i.e. ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 1, we will change the value of

ψσ(xli) achieving in this way at least 2 − 1 more satisfied equation. Let us
examine the scenario and the corresponding transformation in Figure 9(a) and
(b), respectively. Accordingly, the tour uses the 0-traversal of the parity graph
P l
e, which enables σ to pass the parity check in D3

c . In both cases, we obtain
the local length of 2 in conformity with the at most one unsatisfied equation by ψσ.

3.Case (ψσ(xli) = 0 & ψσ(xli+1) = 1): Assuming ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0,

the tour will be modified such that the parity graphs P l
i and P l

e are traversed
in the same direction. Since we have ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0, we are able
to uncouple the parity graph P l

e from the tour σ through D3
c without increasing

the length of σ. Assuming ψσ(xli) ⊕ ψσ(xli) ⊕ ψσ(xli) = 1, we transform σ such
that the parity graph P l

e is traversed when σ is passing through D3
c meaning

v3c → vl0e → vl�e → vl1e → v2c is a part of the tour. In addition, we change the value of
ψσ(xli) yielding at least 2 − 1 more satisfied equations. In both cases, we associate
the local length of 2 with σ. On the other hand, ψσ leaves at most one equation
unsatisfied.

The construction for xrk ⊕ x
r
k+1 = 0 and xsj ⊕ x

s
j+1 = 0 can be analyzed analo-

gously yielding the following statement.

Proposition 4. Let E = {xli ⊕ x
s
j ⊕ x

r
k
= 0, xli ⊕ x

l
i+1 = 0, x

s
j ⊕ x

s
j+1 = 0, x

r
k
⊕ xr

k+1 = 0}
be a subset of H. Then, it is possible to transform in polynomial time a given tour σ

passing through the graph corresponding to g ∈ E into a tour π that has local length

(4 + 3 ⋅ 3 + 3 + α) and the number of unsatisfied equations in E by ψπ is at most α.

The construction for circle border equations can be analyzed similarly to the
the construction for equations with three variables. We obtain the following state-
ment.

Proposition 5. Let xl
1
⊕xln = 0 be a circle border inH. Then, it is possible to transform

in polynomial time a given tour σ passing through the graph corresponding to xl
1
⊕

xln = 0 into a tour π that has local length at least 2 if xl
1
⊕ xln = 0 is satisfied by ψπ,

and at least 3 otherwise.

Thus far, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let H be an instance of the Hybrid problem con-
sisting of n circles, 60ν equations with two variables and 2ν equations with three
variables. Then, we construct in polynomial time the corresponding instance DH
of the (1,2)-ATSP problem.
(i) Let φ be an assignment to the variables in H leaving δν equations in H

unsatisfied for a constant δ ∈ (0,1). Then, it is possible to construct in polynomial
time a tour with length at most 3 ⋅ 60ν + (4 + 3 ⋅ 3) ⋅ 2ν + n + 1 + δν.
(ii) Let σ be a tour in DH with length 206ν+n+1+δν. Due to Proposition 2 we

may assume that σ uses only 0/1-traversals of every parity graph included in DH.
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According to Definition 3, we associate the corresponding assignment ψσ with the
underlying tour σ. Recall from Proposition 3 – 5 that it is possible to convert σ in
polynomial time into a tour π without increasing the length such that ψπ leaves at
most δν equations in H unsatisfied.

6 The (1, 2)-TSP Problem

In order to prove Theorem 3.2, we apply the reduction method used in the pre-
vious section to the (1,2)–TSP problem. As for parity gadget, we use the graph
displayed in Figure 10 with its corresponding traversals. The traversed edges are
illustrated by thick lines.

Parity graph P l
i 0-traversal 1-traversal

Figure 10: 0/1-Traversals of the graph P l
i .

Let H be an instance of the hybrid problem and xli ⊕ x
l
j = 0 a contained matching

equation. Let xli ⊕ x
l
i+1 = 0 and xlj ⊕ x

l
j+1 = 0 be the corresponding circle equa-

tions. Then, we connect the associated parity graphs P l
i , P

l
i+1, P

l
{i,j}

, P l
j and P l

j+1 as

displayed in Figure 11.

P l
{i,j}

P l
i+1

P l
j

P l
j+1

P l
i

Figure 11: Graphs corresponding to equations xli⊕x
l
j = 0, xli⊕x

l
i+1 = 0 and xlj⊕x

l
j+1 =

0.

For equations with three variables g3c ≡ x ⊕ y ⊕ z = 0 in H, we use the graph G3
c

depicted in Figure 12. For this graph, Engebretsen and Karpinski [EK06] proved
the following statement.

Proposition 6 ([EK06]). There is a simple path from sc to sc+1 in Figure 12 contain-

ing v1c and v2c if and only if an even number of parity graphs is traversed.

Let Cl and Cl+1 be circles in H. Let xl
1
, . . . , xlm be the variables contained in Cl.

For the circle border equation of Cl, we introduce the path pl = b1l − b
2

l − b
3

l and
the parity graph P l

{1,m}
. In addition, we connect b3l and b1l+1 to the parity graphs

P l
1
, P l

n and P l
{1,m}

in a similar way as in the reduction from the Hybrid problem

to the (1,2)–ATSP problem. Let Cn be the last circle in H. Then, we introduce
the path pn+1 = b1n+1 − b

2

n+1 − s1, where s1 is a vertex of the graph G3

1
associated

to the equation g3
1

with three variables in H. This is the whole description of the
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sc sc+1

v
1

c

v
2

c

Figure 12: Graph G3
c corresponding to x⊕ y ⊕ z = 0.

corresponding graph GH.

We are ready to give the proof of Theorem 3.2.

Proof of Theorem 3.2. Given H an instance of the Hybrid problem consist-
ing of n circles, 60ν equations with two variables and 2ν equations with three
variables, we construct in polynomial time the associated instance GH of the
(1,2)–TSP problem.
(i) Given an assignment φ to the variables ofH leaving δν equations unsatisfied

in H for a constant δ ∈ (0,1), then, there is a tour in GH with length at most
8 ⋅ 60ν + (3 ⋅ 8 + 3) ⋅ 2ν + 3 ⋅ (n + 1) + 1 + δν.
(ii) On the other hand, if we are given a tour σ in GH with length 534ν + 3(n +

1) + 1 + δν, it is possible to transform σ in polynomial time into a tour σ′ such that
it uses only 0/1-traversals of all contained parity graphs in GH without increasing
the length. Some cases are displayed in in the full version [KS12]. The remaining
transformations described in the previous section can be straightforwardly adapted
to the symmetric case since they only work with the connection edges of the parity
graphs. Moreover, we are able to construct in polynomial time an assignment to
the variables of H, which leaves at most δν equations in H unsatisfied.

7 The Shortest Superstring Problem

In order to apply the arguments given in Section 5, we first describe a well-known
reduction from the SSP problem to the ATSP problem. Let S be a collection of
strings over Σ such that no string is a proper substring of another string in S. Then,
we define an instance of the ASTP problem by (VS, dS), where VS = S ∪ {Γ} with
Γ /∈ Σ and dS(si, sj) = ∣pref(si, sj)∣ for all si, sj ∈ VS. Note that we can construct
from a shortest tour in (VS, dS) of length ℓ+1 a shortest superstring for S of length
ℓ.

We first give a high-level view of the reduction in order to build some intuition.
Let xi ⊕ xi+1 = 0 be a circle equation of an instance H of the Hybrid problem such
that xi and xi+1 appears only in equations with two variables. The parity gadget
of xi ⊕ xi+1 = 0 consists of two strings s1i and s2i , which can be overlapped by two
letters in two different ways. These two alignments, called 0/1-alignments, define
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the assigned value to xi. For any other string s in the corresponding instance SH,
both s1i and s2i can be aligned with s by at most 1 letter. Then, a tour in (VSH , dSH)
is called consistent with the parity gadget for xi ⊕ xi+1 = 0 if the tour contains the
arc (s1i , s

2

i ) or (s2i , s
1

i ), i.e. a 0/1-alignment of the strings s1i and s2i . Moreover, it is
not hard to see that a tour σ in (VSH , dSH) can be transformed into a tour π that is
consistent with the parity gadget for xi ⊕ xi+1 = 0 without increasing the length.

Let us start with the description of SH. For every equation g ∈ H, we define a
set S(g) of corresponding strings.

Strings for Circle Border Equations: Given a circle Cx and its border equation
x1 ⊕ xn = 0, we introduce six associated strings. Recall that xn appears in an
equation g3j with three variables. The strings differ by the type of equation
xn ⊕ y ⊕ z = {0,1}. We begin with the case xn ⊕ y ⊕ z = 0: The string LxC l

x is
used as the initial part of the superstring corresponding to this circle, whereas
Cr

xRx is used as the end part. Furthermore, we introduce strings that repre-
sent an assignment that sets either the variable x1 to 0 or the variable xn to
1. The corresponding two strings are C l

xx
m0

1
xl1nC

r
x and xl1nC

r
xC

l
xx

m0

1
. Finally,

we introduce C l
xx

r1
1
xm0
n Cr

x and xm0
n Cr

xC
l
xx

r1
1

having a similar interpretation.
The following two alignments are called the 0-alignment of the four strings.

C l
xx

m0

1
xl1nC

r
xC

l
xx

m0

1
and xm0

n Cr
xC

l
xx

r1
1
xm0
n Cr

x. On the other hand, we the define the

1-alignment as xl1nC
r
xC

l
xx

m0

1
xl1nC

r
x and C l

xx
r1
1
xm0
n Cr

xC
l
xx

r1
1

. For equations of the form

g3j ≡ xn ⊕ y ⊕ z = 1, we use LxC l
x, Cr

xRx, C l
xx

m0

1
xm1
n Cr

x, xm1
n Cr

xC
l
xx

m0

1
C l

xx
r1
1
xl0nC

r
x

and xl0nC
r
xC

l
xx

r1
1

(The bars above indicate original strings).

Strings Corresponding to Matching Equations: Let xi ⊕ xj = 0 be a matching
equation in H with i < j. Then, we introduce xr0j x

l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j . We

define the 0-alignment and 1-alignment as xr0j x
l0
j x

r1
i x

l1
i x

r0
j x

l0
j and xr1i x

l1
i x

r0
j x

l0
j x

r1
i x

l1
i ,

respectively.

Strings for Equations with Three Variables: Let g3j be an equation with
three variables in H. For every equation g3j , we define two corresponding sets
Sα(g3j ) and Sβ(g3j ), both containing three strings. Finally, the set S(g3j ) is defined
as the union SA(g3j ) ∪ S

B(g3j ). An equation of the form x⊕ y ⊕ z = 0 is represented
by Sα(g3j ) containing the strings xr1αxl1yr1yl1 , yr1yl1xm0Cj, xm0Cjxr1αxl1.
The strings included in Sβ(g3j ) are xr1βxl1zr1zl1, zr1zl1Cjxm0, Cjxm0xr1βxl1. The
strings in Sα(g3j ) can be overlapped by two letters in a cyclic fashion to obtain three
different constellations. A suitable constellation can be used to connect with 0/1-

alignments corresponding to circle equations. The string xr1αxl1yr1yl1xm0Cjx
r1αxl1

represents the assignment x = 1, whereas the constellation yr1yl1xm0Cjxr1αxl1yr1yl1

is representing y = 1. Finally, the string xm0Cjx
r1αxl1yr1yl1xm0Cj can be used to
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overlap with Cjxm0xr1βxl1zr1zl1Cjxm0 consisting of the strings in Sβ(g3j ) in the

case (x = 0, y = 0, and z = 0). zr1zl1Cjx
m0xr1βxl1zr1zl1 is used in the case z = 1.

The sets Sα(g3j ) and Sβ(g3j ) representing equations of the form g3j ≡ x ⊕ y ⊕ z = 1
can be constructed analogously.

Strings for Circle Equations: Let Cx be a circle in H and Mx its associated
matching. Furthermore, let {i, j} and {i + 1, j′} be both contained in Mx. We
assume that i < j. Then, we introduce the corresponding strings for xi ⊕ xi+1 = 0.
If i + 1 < j′, we have xm0

i xm0

i+1x
l1
i x

r1
i+1 and xl1i x

r1
i+1x

m0

i xm0

i+1. We define the 0-alignment

and 1-alignment as xm0

i xm0

i+1x
l1
i x

r1
i+1x

m0

i xm0

i+1 and xl1i x
r1
i+1x

m0

i xm0

i+1x
l1
i x

r1
i+1, respectively. In

the case (i + 1 > j′), we use xm0

i xr0i+1x
l1
i x

m1

i+1 and xl1i x
m1

i+1x
m0

i xr0i+1. The strings for the
remaining cases can be defined analogously.
If the variable xi is contained in an equation xi ⊕ y ⊕ z = 0, we introduce
three strings for the equation xi−1 ⊕ xi = 0: xl1i−1x

r1β
i xl1i−1x

r1α
i , xl1i−1x

r1α
i xm0

i−1x
m0

i and

xm0

i−1x
m0

i xl1i−1x
r1β
i . The strings for the case g3j ≡ x ⊕ y ⊕ z = 1 can be constructed

analogously.

We are ready to give the proof of Theorem 3.3 and 3.4.

Proof of Theorem 3.3 and 3.4. Given H an instance of the Hybrid prob-
lem consisting of n circles, 60ν equations with two variables and 2ν equations
with three variables, we construct in polynomial time the associated instance SH.
(i) Given an assignment φ to the variables of H leaving δν equations with

three variables unsatisfied for a constant δ ∈ (0,1), we are going to construct
a superstring for SH. Since we may assume that φ assigns to every variable
xli associated to a circle Cl the same value, we use the φ(xl

1
)-alignment of the

strings corresponding to equations contained in Cl. These fragments can be over-
lapped by one letter from both sides. For equations with three variables, we
use the appropriate constellations. It yields an overlap of 5 character if the un-
derlying equation is satisfied, and 4 otherwise. Therefore, the resulting super-
string has a length at most 60ν ⋅ 5 + 7 ⋅ n + 16 ⋅ 2ν + δν and a compression at least
60ν ⋅ 8 + 12 ⋅ n + 28 ⋅ 2ν − (7n + 332ν + δν) = 5n + 60ν ⋅ 3 + 12 ⋅ 2ν − δν.
(ii) Let s be a superstring for SH having length 7 ⋅n+332ν + δν or compression

5n+ 60ν ⋅ 3+ 12 ⋅ 2ν − δν. Recall that s can be transformed into a superstring for SH
using 0/1-alignments without increasing its length. The argumentation given in
Section 5 for the (1,2)–ATSP problem can be adapted to analyze these fragments
(0/1-alignments) and the corresponding instance (VSH , dSH) of the ATSP problem.
Therefore, we define an assignment to the variables in H according to the 0/1-
alignments used in s leaving at most δν equations in H unsatisfied.
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