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Abstract
The number of triangulations of a planar n point set is known to be cn, where the base c lies
between 2.43 and 30. The fastest known algorithm for counting triangulations of a planar n

point set runs in O∗(2n) time. The fastest known arbitrarily close approximation algorithm for
the base of the number of triangulations of a planar n point set runs in time subexponential in
n. We present the first quasi-polynomial approximation scheme for the base of the number of
triangulations of a planar point set.

1 Introduction

A triangulation T of a set S of n points in the Euclidean plane is a maximal set of prop-
erly non-intersecting straight-line segments with both endpoints in S. These straight-line
segments are called edges of T. Let F (S) stand for the set of all triangulations of S.

The problem of computing the number of triangulations of S, i.e., |F (S)|, is easy when
S is convex. Simply, by a straightforward recurrence, |F (S)| = Cn−2, where Ck is the k-th
Catalan number, in this special case. However, in the general case, the problem of computing
the number of triangulations of S is neither known to be #P -hard nor known to admit a
polynomial-time counting algorithm.

It is known that |F (S)| lies between Ω(2.43n) and O(30n). Since the so called flip graph
whose nodes are triangulations of S is connected [7], all triangulations of S can be listed in
exponential time by a standard traversal of this graph. Only recently, Alvarez and Seidel
have presented an elegant algorithm for the number of triangulations of S running in O∗(2n)
time [4] which is substantially below the aforementioned lower bound on |F (S)| (the O∗
notation suppresses polynomial in n factors).

Also recently, Alvarez, Bringmann, Ray, and Seidel [3] have presented an approxima-
tion algorithm for the number of triangulations of S based on a recursive application of
the planar simple cycle separator [6]. Their algorithm runs in subexponential 2O(

√
n logn)

time and over-counts the number of triangulations by at most a subexponential 2O(n
3
4
√

logn)

factor. It also yields a subexponential-time approximation scheme for the base of the num-
ber of triangulations of S, i.e., for |F (S)| 1n . The authors of [3] observe also that just the
inequalities Ω(2.43n) ≤ |F (S)| ≤ O(30n) yield the large exponential approximation factor
O(
√

30× 2.43
n
) for |F (S)| trivially computable in polynomial time.

1.1 Our contribution
We take a similar approximation approach to the problem of counting triangulations of
S as Alvarez, Bringmann, Ray, and Seidel in [3]. However, importantly, instead of using
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recursively the planar simple cycle separator [6], we apply recursively the so called balanced
α-cheap l cuts of maximum independent sets of triangles within a dynamic programming
framework developed by Adamaszek and Wiese in [1, 2]. By using the aforementioned
techniques, the authors of [1] designed the first quasi-polynomial time approximation scheme
(QPTAS) for the maximum weight independent set of polygons belonging to the input set
set of polygons with poly-logarithmically many edges.

Observe that a triangulation of S can be viewed as a maximum independent set of
triangles drawn from the set of all triangles with corners in S that are free from other points
in S (triangles, or in general polygons, are identified with their open inferiors). This simple
observation enables us to use the aforementioned balanced α-cheap l cuts recursively in
order to bound an approximation factor of our approximation algorithm. The parameter α
specifies the maximum fraction of an independent set of triangles that can be destroyed by
the l-cut, which is a polygon with at most l corners in a specially constructed set of points
of polynomial size.

Similarly as the approximation algorithm from [3], our algorithm may over-count the true
number of triangulations because the same triangulation can be be partitioned recursively in
many different ways. In contrast with the approximation algorithm in [3], our algorithm may
also under-count the number of triangulations of S, since our partitions generally destroy a
fraction of triangles in a complete triangulation of S.

Our approximation algorithm for the number of triangulations of a set S of n points with
integer coordinates in the plane runs in n(logn/ε)O(1) time. For ε > 0, it returns a number at
most 2εn times smaller and at most 2εn times larger than the number of triangulations of
S. Note that even for ε = (log n)−O(1), the running time is still quasi-polynomial.

As a corollary, we obtain a quasi-polynomial approximation scheme for the base of the
number of triangulations of S, i.e., for |F (S)| 1n . This implies that the problem of approxi-
mating |F (S)| 1n cannot be APX-hard (under standard complexity theoretical assumptions).

1.2 Organization of the paper

In Preliminaries, we introduce basic concepts of the dynamic programming framework from
[2]. Section 3 presents our approximation counting algorithm for the number of triangula-
tions of S. In Section 4, the time complexity of the algorithm is examined while in Sections
5, upper bounds on the under-counting and the over-counting of the algorithm are derived,
respectively. In Section 6, our main results are formulated. We conclude with a short
discussion on possible extensions of our results in Section 7.

2 Preliminaries

The Maximum Weight Independent Set of Polygons Problem (MWISP) is defined as follows
[1]. We are given a set Q of n polygons in the Euclidean plane. Each polygon has at
most k vertices, each of the vertices has integer coordinates. Next, each polygon P in Q

is considered as an open set, i.e., it is identified with the set of points forming its interior.
Also, each polygon P ∈ Q has weight w(P ) > 0 associated with it. The task is to find a
maximum weight independent set of polygons in Q, i.e., a maximum weight set Q′ ⊆ Q such
that for all pairs Pi, Pj of polygons in Q′, if Pi 6= Pj then it holds Pi ∩ Pj = ∅.

The bounding box of Q is the smallest rectilinear square containing all polygons in Q.
Note that in particular if Q consists of all triangles with corners in a finite planar point

set S such that no other point in S lies inside them or on their perimeter, each having
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weight 1, then the set of all maximum independent sets of polygons in Q is just the set of
all triangulations of S. We shall denote the latter set by F (S).

Adamaszek and Wiese have shown that if k = poly(log n) then MWISP admits a QPTAS
[1].
Fact 1[1]. Let k be a positive integer. There exists a (1 + ε)-approximation algorithm with
a running time of (nk)( kε logn)O(1) for the Maximum Weight Independent Set of Polygons
Problem provided that each polygon has at most k vertices.
Recently, Har-Peled generalized Fact 1 to include arbitrary polygons [5].

I Definition 1. Let l ∈ N and α ∈ R where 0 < α < 1. Let T be a set of pairwise
non-touching triangles. A polygon Γ is a balanced α-cheap l-cut of T if

Γ has at most l edges,
the total weight of all triangles in T that intersect Γ does not exceed the α fraction of
the total weight of triangles in T,
the total weight of the triangles in T contained in Γ does not exceeds two thirds of the
total weight of triangles in T,
the total weight of the triangles in T outside Γ does not exceeds two thirds of the total
weight of triangles in T.

For a set of triangles T in the plane, the set of DP-points consists of basic DP-points and
additional DP-points. The set of basic DP-points contains the four corners of the bounding
box of T and each intersection of a vertical line passing through a corner of a triangle in
T with any edge of a triangle in T or a horizontal edge of the bounding box. The set of
additional DP-points consists of all intersections of pairs of straight-line segments whose
endpoints are basic DP-points. The authors of [1] observe that the number of all DP-points
is O((3n)4).

Fact 2[1]. Let δ > 0 and let T be a set of pairwise non-touching triangles in the plane such
that the weight of none triangle in T exceeds one third of the weight of T. Then there exists
a balanced O(δ)-cheap ( 1

δ )O(1)-cut with corners at basic DP-points.

3 Dynamic programming

The QPTAS of Adamaszek and Wiese for maximum weight independent set of polygons [1]
is based on dynamic programming. For each polygon with at most k edges and vertices at
the DP points induced by the input polygons (termed a DP cell), an approximate maximum
weight independent subset of the input polygons contained in the DP cell is computed.
The computation is done by considering all possible partitions of the DP cell into at most
k smaller DP cells. For each such partition, the union of the approximate solutions for
the component DP cells is computed. Then, a maximum weight union is picked as the
approximate solution for the DP cell.

Our dynamic programming algorithm, termed Algorithm 1 and depicted in Fig. 1., is
in part similar to that of Adamaszek and Wiese [1]. The set of input polygons consists
of all triangles with three corners in the input planar point set S that do not contain any
other point in S. For each DP cell, an approximate number of triangulations within the cell
is computed instead of an approximate maximum number of non-touching triangles within
the cell. Further modification of the dynamic programming of Adamaszek and Wiese are as
follows.
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Input: A set S of n points with integer coordinates in the Euclidean plane and natural
number parameters k and ∆.

Output: An approximate number of triangulations of S.
1: T ← the set of all triangles with corners in S that do not contain any other point in S;
2: P ← a list of polygons (possibly with holes) with at most k corners in total at DP points

induced by T, topologically sorted with respect to geometric containment;
3: for each polygon set Q ∈ P containing at most ∆ points in S do
4: tr(Q)← exact number of maximal triangulations of points in S ∩ P within P ;
5: end for
6: for each polygon set Q ∈ P containing more than ∆ points in S do
7: tr(Q)← 0;
8: for each partition of Q into polygons Q1, ..., Ql ∈ P, where l ≤ k, no Qj contains more

than two thirds of points in S ∩Q, and tr(Q1) through tr(Ql) are defined do
9: tr(Q)← tr(Q) +

∏l
j=1 tr(Qj);

10: end for
11: end for
12: Output tr(B), where B is the bounding box of T.

Figure 1 Algorithm 1 for approximately counting triangulations of a finite planar point set.

1. Solely those partitions of a DP cell into at most k component DP cells are considered
where no component cell contains more than two thirds of the input points (i.e., the
corners of the input triangles) in the partitioned cell.

2. While a partition of a DP cell into at most k cells is processed, instead of the union of
the solutions to the subproblems for these cells, the product of the numerical solutions
for the component DP cells is computed.

3. Instead of taking the maximum of the solutions induced by the partition of a DP cell
into at most k DP-cells, the sum of the numerical solutions induced by these partitions
is computed.

4. When the number of points contained in a DP cell does not exceed the threshold number
∆ then the exact number of maximal triangulations within the cell is computed.

Algorithm 1 also in part resembles the approximation counting algorithm for the number
of triangulations of a planar point set due to Alvarez, Bringmann, Ray, and Seidel [3]. The
main difference is in the used implicit recursive partition tool. Algorithm 1 uses balanced
α-cheap l-cuts within the dynamic programming framework from [2] instead of the simple
cycle planar separator theorem [3, 6]. Thus, Algorithm 1 recursively partitions a DP cell
defining a subproblem into at most k smaller DP-cells while the algorithm in [3] recursively
splits a subproblem by a simple cycle that yields a balanced partition.

4 Time complexity

The cardinality of T does not exceed n3. Then, by the analogy with the dynamic program-
ming algorithm of Adamaszek and Wiese for nearly maximum independent set of triangles,
the number of DP cells is (3n3)O(k) = nO(k) (see Proposition 2.1 in [1]). Consequently, the
number of possible partitions of a DP cell into at most k DP cells is O(

(
nO(k)

k

)
) which is

nO(k2).

It follows that if we neglect the cost of computing the exact number of triangulations
contained with a DP cell including at most ∆ input points, then Algorithm 1 runs in nO(k2)
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Figure 2 An example of a maximal triangulation within a DP cell and a partition of the DP cell
into smaller DP cells Q,...,Q5 crossing some triangles in the triangulation.

time.
We can compute the exact number of maximal triangulations contained within a DP

cell with at most ∆ input points by listing all complete triangulations of these points and
counting only their maximal fragments lying within the cell. To list the complete triangu-
lations of the input points within a DP cell we can apply any traversal algorithm, like BFS
or DFS, to the so called flip graph of the triangulations which is known to be connected [7].
Hence, the listing takes time proportional to the number of the triangulations, which is at
most 30∆ by [8]. It follows that extracting the maximal fragments and counting them can
be done also in 2O(∆)nO(1) time.

We conclude with the following lemma.

I Lemma 2. Algorithm 1 runs in nO(k2)2O(∆) time.

5 Approximation factor

5.1 Under-counting
The potential under-counting stems from the fact that when a DP cell is partitioned into at
most k smaller DP cells then the possible combinations of triangulation edges crossing the
partitioning edges are not counted. Furthermore, in the leaf DP cells, i.e., those including
at most ∆ points from S, we count only maximal triangulations while the restriction of a
triangulation of S to a DP cell does not have to be maximal. See Fig. 2.

Intuitively, the general idea of the proof of our upper bound on under-counting is as
follows. For each triangulation W ∈ F (S), there is triangulation counted by Algorithm 1
that can be obtained by removal O(εn) edges and augmenting with O(εn) other edges. Such
a triangulation is a union of maximal triangulations contained in leaf DP cells.

I Lemma 3. Let S be a set of n points in the plane and let ε > 0. For eachW ∈ F (S), there is
a partial triangulation W ∗ ⊆W of S containing at least a 1−O(ε) fraction of the triangular
faces of W and a partial triangulation M(W ∗) of S which is an extension of W ∗ by O(εn)
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edges such that the estimation returned by Algorithm 1 with k set to logO(1)(n/ε)/εO(1) is
not less than |

⋃
W∈F (S){M(W ∗)}|.

Proof. Let W ∈ F (S). By adapting the idea of the proof of the approximation ratio of the
QPTAS in [1], consider the following tree U of DP cells obtained by recursive applications
of balanced α-cheap l-cuts.

At the root of U , there is the bounding box. By Fact 2, there is a balanced α-cheap
l-cut, where l = α−O(1), that splits the box into at most k children DP cells such that only
α fraction of the triangular faces ofW is crossed by the cut. The construction of U proceeds
recursively in children DP cells and stops in DP cells that contain at most ∆ points.

Note that the that height of U is not greater than log3/2 n.

For a node u of U, let Wu be the maximal partial triangulation of the points in the DP
cell Qu associated with u that is a restriction of W (i.e., its set of edges is a subset of that
of W ) and it is contained in Qu. Next, let W ∗u denote the restriction of Wu to the union of
Wt över the the leaves t of the subtree of U rooted at u.

By induction on the height h(u) of u in U, we obtain that the partial triangulation
W ∗u ⊆Wu contains (1−α)h(u) fraction of triangular faces of Wu. Set α to O(ε)

log(n/ε) . It follows
in particular that for the root r of U, W ∗r ⊆W contains at least an (1−α)log3/2 n/ε ≥ 1−O(ε)
fraction of triangular faces in W. Set W ∗ to W ∗r .

For a leaf t of U, let M(Wt) be an extension of Wt to a maximal triangulation within
the leaf cell Dt. For a node u of U , let M(W ∗u ) be a partial triangulation within Qu that
is the union of M(Wt) over the leaves t of the subtree of U rooted at u. We have also
M(W ∗) = M(W ∗r ) by W ∗ = W ∗r .

By the definition of M(W ∗), M(W ∗) is an extension of W ∗. By the definition of W ∗,
any edge of M(W ∗) that is not an edge of W ∗ has both endpoints at corners of triangles in
W that are missing in W ∗. It follows that the number of edges in M(W ∗) \W ∗ is at most
3×O(εn) = O(εn).

We shall show by induction on h(u) that Algorithm 1 while computing an estimation for
Qu approximately counts the number of M(W ∗u ).

If h(u) = 0, i.e., u is a leaf in U thenW ∗u = Wu and consequently in particularM(W ∗u ) =
M(Wu) is counted by Algorithm 1.

Suppose in turn that u is an internal node in U with l children u1, ..., ul. When the
estimation for Qu is computed by Algorithm 1, the sum of products of estimations yielded
by different partitions of Qu into at most k DP cells is computed. In particular, the partition
into Qu1 , ..., Qul is considered. By the induction hypothesis, the estimation for Quj includes
M(W ∗uj ) for j = 1, ..., l. Hence, the product of these estimations counts also M(W ∗u ) =⋃l
j=1M(W ∗uj ).
By M(W ∗) = M(W ∗r ), to obtain the lemma it remains to show that the bound

logO(1)(n/ε)/εO(1) on k is sufficiently large. Following the proof of Lemma 2.1 in [1], observe
that each DP cell Qu at each level of U is an intersection of at most O(log(n/ε)) polygons,
each with at most l edges and corners at basic DP points. Hence, by α = O(ε)

log(n/ε) and
l = α−O(1), the resulting polygons have at most O(l2 log2(n/ε)) = logO(1)(n/ε)/εO(1) edges
and corners at basic and additional DP points. J

I Theorem 4. The under-counting factor of Algorithm 1 with k set to logO(1)(n/ε)/εO(1) is
at most 2O(εn logn).

Proof. Consider any triangulationW ∈ F (S). By Lemma 3, the partial triangulationW ∗ ⊆
W contains at least an 1 − O(ε) fraction of the triangular faces of W . Hence, the edges
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completing W ∗ to any triangulation in F (S) can be incident only to the corners of the
triangular faces in W that do not occur in W ∗. The number of the latter is at most 3 ×
O(εn) = O(εn). It follows that the number of ways of completing W ∗ to a full triangulation
in F (S) is not greater than the number of full triangulations on O(εn) vertices which is not
greater than 30O(εn) = 2O(εn).

By Lemma 3, the estimation returned by Algorithm 1 with k set to logO(1)(n/ε)/εO(1)

is not less than |
⋃
W∈F (S){M(W ∗)}|.

Now it remains to show that the maximum number of partial triangulations (W ′)∗,
W ′ ∈ F (S), for which M((W ′)∗) = M(W ∗) is at most 2O(εn logn). To see this observe that
the edges extending (W ′)∗ to M((W ′)∗) are incident to at most O(εn) corners of the O(εn)
triangular faces of W ′ that are missing in (W ′)∗. Consequently, the maximum number of
such partial triangulations (W ′)∗ is upper bounded by the number of subsets of at most
O(εn) edges of M(W ∗) (whose removal may form a partial triangulation (W ′)∗ satisfying
M((W ′)∗) = M(W ∗) ). The latter number is 2O(εn logn).

We conclude that for W ∈ F (S), the number of other triangulations W ′ ∈ F (S) for
which M((W ′)∗) = M(W ∗) is at most 2O(εn)2O(εn logn) = 2O(εn logn). Now, the theorem
follows from Lemma 3. J

5.2 Over-counting
The reason for over-counting in the estimation returned by our algorithm is that the same
triangulation within a DP cell may be cut in the number of ways proportional to the number
of considered partitions of the DP cell into at most k smaller DP-cells. The reason is
similar to that for over-counting of the approximation triangulation counting algorithm of
Alvarez, Bringmann, Ray, and Seidel [3] based on the planar simple cycle separator theorem.
Therefore, our initial recurrences and calculations are similar to those derived in the analysis
of the over-counting from [3].

I Lemma 5. Let Q be an arbitrary DP cell processed by Algorithm 1 which contains more
than ∆ input points. Recall the calculation of the estimation for Q by summing the products
of estimations for smaller DP cells Q1, ..., Ql over nO(k2) partitions of Q into Q1, ..., Ql,

l ≤ k. Substitute the true value of the number of maximal triangulations within each such
smaller cell Qi for the estimated one in the calculation. Let r be the resulting value. The
number of maximal triangulations within Q is at least r/nO(k2).

Proof. Note that r is the sum of the number of different combinations of maximal trian-
gulations within smaller DP cells Q1, ..., Ql over nO(k2) partitions of Q into smaller cells
Q1, ..., Ql, l ≤ k. Importantly, each such combination can be completed to some maximal
triangulation within Q but no two different combinations coming from the same partition
Q1, ..., Ql can be extended to the same maximal triangulation within Q.

LetM be the set of maximal triangulationsW within Q for which there is a partition into
smaller DP cells Q1, ..., Ql, l ≤ k, such that for i = 1, ..., l, W constrained to Qi is a maximal
triangulation within Qi. Note that for each W ∈ M, the number of the combinations that
can be completed to W cannot exceed that of the considered partitions, i.e., nO(k2), as each
of the combinations has to come from a distinct partition Q1, ..., Ql.

Thus, there is a binary relationship between maximal triangulations within Q that belong
to M and the aforementioned combinations. It is defined on all the maximal triangulations
in M and on all the combinations, and a maximal triangulation in M is in relation with at
most nO(k2) combinations. This yields the lemma. J
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By Lemma 5, we can express the over-counting factor L(Q,∆) of Algorithm 1 for a DP
cell Q by the following recurrence:

L(Q,∆) =
∑

(Q1,...,Ql)

l∏
j=1

L(Qj ,∆) ≤ nO(k2)
l∗∏
j=1

L(Q∗j ,∆)

where the summation is over all partitions of Q into DP cells Q1, ..., Ql, where l ≤ k,

and Q∗1, ..., Q∗l∗ is a partition that maximizes the term
∏l
j=1 L(Qj ,∆). When Q contains at

most ∆ input points, Algorithm 1 computes the exact number of maximal triangulations of
these points within Q. Thus, we have L(Q,∆) = 1 in this case.

Following [3], it will be more convenient to transform our recurrence by taking logarithm
of both sides. For any DP cell P, let L′(P,∆) = logL(P,∆). We obtain now:

L′(Q,∆) ≤ O(k2 log n) +
l∗∑
j=1

L′(Q∗j ,∆)

I Lemma 6. Let B be a bounding box for a set S of n points in the plane. The following
equality holds

L′(B,∆) = O(k2n log2 n/∆)

Proof. Let U be the recurrence tree and let D be the set of direct ancestors of leaves in
U. For each node d ∈ D, the corresponding DP cell includes at least ∆ + 1 points in S.

It follows that |D| ≤ n/∆. Also, any node in D has depth O(log n) in U. Consequently,
the contribution of the subproblems corresponding to nodes in D and their ancestors to the
estimation for L′(B,∆) can be upper bounded by O(k2 log n × (n/∆) log n). Finally, recall
that the subproblems corresponding to leaves of U do not contribute to the estimation. J

Lemma 5 immediately yields the following corollary.

I Theorem 7. Let B be a bounding box for a set of n points in the plane. Set the parameter
k in Algorithm 1 as in Theorem 4. If for ε > 0 the parameter ∆ in Algorithm 1 is set to
c
εk

2 log2 n for sufficiently large constant c then the over-counting factor is at most 2εn.

6 Main result

By combining Lemma 2 with Theorems 4, 7 with ε set to ε/ log n, we obtain our main result.

I Theorem 8. There exists an approximation algorithm for the number of triangulations
of a set S of n points with integer coordinates in the plane with a running time of at most
n(logn/ε)O(1) that returns a number at most 2εn times smaller and at most 2εn times larger
than the number of triangulations of S.

I Corollary 9. There exists a (1+ε)-approximation algorithm with a running time of at most
n(logn/ε)O(1) for the base of the number of triangulations of a set of n points with integer
coordinates in the plane.

Proof. Let cn be the number of triangulations of the input n point set, and let Λ be the
number returned by the algorithm from Theorem 8. We have max{ c

n

Λ ,
Λ
cn } ≤ 2εn by Theorem

8. By taking the n-th root on both sides, we obtain max{ c

Λ
1
n
, Λ

1
n

c } ≤ 2ε. Now it is sufficient
to observe that 2ε < 1 + ε for ε < 1

2 . J
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7 Extensions

Adamaszek and Wiese presented also an extension of their theorem on α-cheap cut of an
independent set of triangles (Fact 2) to include independent polygons with at most K edges
(Lemma 3.1 [1] ). This makes possible to generalize our QPTAS to include the approximation
of the number of maximum weight partitions into K-gons.
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