Approximability of Combinatorial Optimization Problems on Power Law Networks

Mikael Gast
Dept. of Computer Science and B-IT Research School, University of Bonn
Ph.D. Thesis Defense
September 4, 2013
Real world networks are not random, they have very small diameter and they possess a power law distribution of node degrees.
Example:
Protein interactions of
Arabidopsis Thaliana
Example:
Protein interactions of *Arabidopsis Thaliana*
Example:
Network of Internet Routers
Example:
Network of *Internet Routers*

Degree (i) vs. Frequency (y)

- Degree (i) on the x-axis, ranging from 10^0 to 10^4
- Frequency (y) on the y-axis, ranging from 10^0 to 10^4

The graph shows a power-law distribution, indicating a scale-free network.
Example:
Airport Network in the United States
Example: Airport Network in the United States
Example:
Contact Network of karate club members
Example:

Contact Network of karate club members

Frequency (y_i) vs Degree (i)

10^0 10^1

10^0 10^1
Uniform random graph vs. power law random graph

Number of nodes y_i having degree i: $y_i \sim c \cdot i^{-\beta}$
- Uniform random graph vs. power law random graph
- Number of nodes y_i having degree i: $y_i \sim c \cdot i^{-\beta}$
- Uniform random graph vs. power law random graph
- Number of nodes y_i having degree i: $y_i \sim c \cdot i^{-\beta}$
The study of combinatorial optimization problems on real world networks is motivated by applications.
Example: Dominating Set Problem

Minimum dominating set problem in real world networks:

- Optimal sensor or server placement in wireless mobile networks
- Search for key players or nodes in social networks
Example: Dominating Set Problem

Minimum dominating set problem in real world networks:

- Optimal sensor or server placement in wireless mobile networks
- Search for key players or nodes in social networks
Minimum dominating set problem in real world networks:

- Optimal sensor or server placement in wireless mobile networks
- Search for key players or nodes in social networks
Real world networks display a number of other unique and characteristic topological properties.
Real world networks behave like “Small Worlds”

Existence of bridging links across the network
- Real world networks behave like “Small Worlds”
- Existence of bridging links across the network
Real world networks have large clustering coefficients

Clustering coefficient measures cliquishness
Real world networks have large clustering coefficients.

Clustering coefficient measures cliquishness.

- $C_v = 0$
- Increasing Clustering Coefficient C_v
- $C_v = 1$
- Real world networks have embedded hyperbolic geometries
- Relates to Gromov’s four-point condition for δ-hyperbolicity of a metric space
Real world networks have embedded hyperbolic geometries

Relates to Gromov’s four-point condition for δ-hyperbolicity of a metric space

Spherical: $K > 0$

Euclidean: $K = 0$

Hyperbolic: $K < 0$

Decreasing Curvature K
There exists a large number of generating models for power law graphs.
Evolving random model for PLG’s:

- The Preferential Attachment Model (Barabási and Albert, 1999)

After adding u, probability that u connects to some vertex v:

$$\Pr (\{u, v\}) = \begin{cases} \frac{\deg(v)}{\sum_i \deg(v_i)} - 1 & u \neq v \\ \frac{1}{\sum_i \deg(v_i)} & u = v \end{cases}$$
Evolving random model for PLG’s:

- The Preferential Attachment Model (Barabási and Albert, 1999)

After adding u, probability that u connects to some vertex v:

$$\Pr\{u, v\} = \begin{cases}
\frac{\text{deg}(v)}{\sum_i \text{deg}(v_i)} - 1 & u \neq v \\
\frac{1}{\sum_i \text{deg}(v_i)} - 1 & u = v
\end{cases}$$
Static Degree Sequences

Static random model for PLG’s:

- The $\mathcal{G}_{\alpha,\beta}$ Model or ACL Model (Aiello, Chung, and Lu, 2001)

Ensures power-law degree distribution by fixing a degree sequence $(y_1, y_2, \ldots, y_\Delta)$ via two parameters α, β and then taking the space of random multigraphs with this degree sequence.
Static random model for PLG’s:

- The $G_{\alpha,\beta}$ Model or ACL Model (Aiello, Chung, and Lu, 2001)

Ensures power-law degree distribution by fixing a degree sequence $(y_1, y_2, \ldots, y_\Delta)$ via two parameters α, β and then taking the space of random multigraphs with this degree sequence.
Definition of the ACL Model $G_{\alpha,\beta}$:

For each $1 \leq i \leq \Delta = \lceil e^{\alpha/\beta} \rceil$,

$$y_i = \begin{cases}
\lceil \frac{e^{\alpha}}{i^\beta} \rceil & \text{if } i > 1 \text{ or } \sum_{i=1}^{\Delta} \lceil \frac{e^{\alpha}}{i^\beta} \rceil \text{ is even} \\
\lceil e^{\alpha} \rceil + 1 & \text{otherwise}
\end{cases}$$

- α is the logarithm of the network size, β is the log-log growth rate.
Definition of the ACL Model $G_{\alpha, \beta}$:

For each $1 \leq i \leq \Delta = \lfloor e^{\alpha/\beta} \rfloor$,

$$y_i = \begin{cases}
\left\lfloor \frac{e^\alpha}{i^\beta} \right\rfloor & \text{if } i > 1 \text{ or } \sum_{i=1}^{\Delta} \left\lfloor \frac{e^\alpha}{i^\beta} \right\rfloor \text{ is even} \\
\left\lfloor e^\alpha \right\rfloor + 1 & \text{otherwise}
\end{cases}$$

- α is the logarithm of the network size, β is the log-log growth rate
Definition of the ACL Model $G_{\alpha, \beta}$:

- For each $1 \leq i \leq \Delta = \lceil e^{\alpha/\beta} \rceil$,

$$y_i = \begin{cases}
\left\lfloor \frac{e^\alpha}{i^\beta} \right\rfloor & \text{if } i > 1 \text{ or } \sum_{i=1}^{\Delta} \left\lfloor \frac{e^\alpha}{i^\beta} \right\rfloor \text{ is even} \\
\left\lfloor e^\alpha \right\rfloor + 1 & \text{otherwise}
\end{cases}$$

- α is the logarithm of the network size, β is the log-log growth rate.
Number of vertices:

\[n = \sum_{i=1}^{\Delta} \left\lfloor \frac{e^{\alpha}}{i^\beta} \right\rfloor \approx \begin{cases}
\zeta(\beta) \, e^\alpha & \text{if } \beta > 1 \\
\alpha \, e^\alpha & \text{if } \beta = 1 \\
\frac{e^{\alpha/\beta}}{1-\beta} & \text{if } 0 < \beta < 1
\end{cases} \]

Number of edges:

\[m = \frac{1}{2} \sum_{i=1}^{\Delta} i \left\lfloor \frac{e^{\alpha}}{i^\beta} \right\rfloor \approx \begin{cases}
\frac{1}{2} \zeta(\beta - 1) \, e^\alpha & \text{if } \beta > 2 \\
\frac{1}{4} \alpha \, e^\alpha & \text{if } \beta = 2 \\
\frac{1}{2} \frac{e^{2\alpha/\beta}}{2-\beta} & \text{if } 0 < \beta < 2
\end{cases} \]
ACL Model for PLG’s

- Number of vertices:

\[n = \sum_{i=1}^{\Delta} \left\lfloor \frac{e^\alpha}{i^\beta} \right\rfloor \approx \begin{cases}
\zeta(\beta) e^\alpha & \text{if } \beta > 1 \\
\alpha e^\alpha & \text{if } \beta = 1 \\
\frac{e^{\alpha/\beta}}{1-\beta} & \text{if } 0 < \beta < 1
\end{cases} \]

- Number of edges:

\[m = \frac{1}{2} \sum_{i=1}^{\Delta} i \left\lfloor \frac{e^\alpha}{i^\beta} \right\rfloor \approx \begin{cases}
\frac{1}{2} \zeta(\beta - 1) e^\alpha & \text{if } \beta > 2 \\
\frac{1}{4} \alpha e^\alpha & \text{if } \beta = 2 \\
\frac{1}{2} e^{2\alpha/\beta} \frac{1}{2-\beta} & \text{if } 0 < \beta < 2
\end{cases} \]
The distribution of graphs $G \in \mathcal{G}_{\alpha,\beta}$ over a sequence $(y_1, y_2, \ldots, y_\Delta)$ or $(\deg(v_1), \deg(v_2), \ldots, \deg(v_n))$ is generated as follows:
1. Generate set L of $\deg(v)$ distinct copies for each vertex $v \in V(G)$

2. $M := \text{random matching}$ on the elements of L

3. For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v
1. Generate set L of $\deg(v)$ distinct copies for each vertex $v \in V(G)$.

2. $M := \text{random matching}$ on the elements of L.

3. For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v.

\[\deg(v) = 1 \quad \deg(v) = 2 \quad \deg(v) = 3 \]
1. Generate set L of $\deg(v)$ distinct copies for each vertex $v \in V(G)$

2. $M := \text{random matching}$ on the elements of L

3. For $u, v \in V(G)$ number of edges $\{u, v\}$ equals number of edges $m \in M$ that join copies of u and v
Overview of Main Results
Overview of Results

Presented here:

- Approximation lower bounds for Minimum Dominating Set (Min-DS) in connected PLG’s
- Approximation upper bounds for Minimum Vertex Cover (Min-VC) in random PLG’s

Techniques:

- Connected Embedding Approximation-Preserving (CEAP) reductions
- Transforming hardness results for bounded occurrence CSP’s and Set Cover
Overview of Results

Presented here:

- Approximation lower bounds for \textit{Minimum Dominating Set (Min-DS)} in connected PLG’s
- Approximation \textit{upper bounds} for \textit{Minimum Vertex Cover (Min-VC)} in random PLG’s

Techniques:

- LP-relaxation and deterministic rounding algorithm
- Upper and lower bounds on the size of half-integral solutions in random PLG’s
Overview of Results

Presented here:

- Approximation lower bounds for \textsc{Minimum Dominating Set (Min-DS)} in connected PLG’s
- Approximation upper bounds for \textsc{Minimum Vertex Cover (Min-VC)} in random PLG’s

Further results:

- Approximation lower bounds for \textsc{Min-VC} in connected PLG’s
- Approximation upper bounds for \textsc{Min-DS} for $\beta > 2$
Overview of Results

Presented here:

- Approximation lower bounds for \textsc{Minimum Dominating Set (Min-DS)} in connected PLG’s
- Approximation upper bounds for \textsc{Minimum Vertex Cover (Min-VC)} in random PLG’s

Further results:

- Approximation lower bounds for \textsc{Min-VC} in connected PLG’s
- Approximation \textit{upper bounds} for \textsc{Min-DS} for $\beta > 2$
Techniques and Paradigms Used
Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and Set Cover reduction instances G' into PLG $G_{\alpha,\beta} \in \mathcal{G}_{\alpha,\beta}$
- Achieve connectivity with reasonable cut sizes between G' and $G_{\alpha,\beta} \setminus G'$
- Preserve hardness of approximation in the embedding construction
Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and Set Cover reduction instances G' into PLG $G_{\alpha,\beta} \in \mathcal{G}_{\alpha,\beta}$
- Achieve connectivity with reasonable cut sizes between G' and $G_{\alpha,\beta} \setminus G'$
- Preserve hardness of approximation in the embedding construction
Lower bound technique:

CEAP reductions (high level view)

- Embed bounded occurrence CSP and Set Cover reduction instances G' into PLG $G_{\alpha,\beta} \in \mathcal{G}_{\alpha,\beta}$
- Achieve connectivity with reasonable cut sizes between G' and $G_{\alpha,\beta} \setminus G'$
- Preserve hardness of approximation in the embedding construction
Method: Bounded degree amplifier graphs
(Berman and Karpinski, 1999)
Method: Bounded degree amplifier graphs

(Berman and Karpinski, 1999)

Basic Idea:

Replace nodes corresponding to variables by 3-regular amplifier
From bounded occurrence CSP’s to vertex covers:

- Reduce bounded occurrence **HYBRID** (equations with 2 and 3 variables) to **MIN-VC** on degree \(d \) bounded graphs (**d-MIN-VC**)
 - Yields explicit lower bounds of \(\frac{103}{102} \) for \(d = 3 \) and \(\frac{55}{54} \) for \(d = 4, 5 \) (Berman and Karpinski, 2003)
 - For larger \(d \) assuming UGC: \(2 - (2 + o(1)) \frac{\log \log d}{\log d} \) (Austrin, Khot, and M. Safra, 2009)

- **d-MIN-VC** serves as starting point for our CEAP reduction to **MIN-VC** on PLG’s
From bounded occurrence CSP’s to vertex covers:

- Reduce bounded occurrence HYBRID (equations with 2 and 3 variables) to MIN-VC on degree d bounded graphs (d-MIN-VC)

 ▶ Yields explicit lower bounds of $\frac{103}{102}$ for $d = 3$ and $\frac{55}{54}$ for $d = 4, 5$ (Berman and Karpinski, 2003)

 ▶ For larger d assuming UGC: $2 - (2 + o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)

- d-MIN-VC serves as starting point for our CEAP reduction to MIN-VC on PLG’s
From bounded occurrence CSP’s to vertex covers:

- Reduce bounded occurrence **Hybrid** (equations with 2 and 3 variables) to **MIN-VC** on degree d bounded graphs (d-**MIN-VC**)
 - Yields explicit lower bounds of $\frac{103}{102}$ for $d = 3$ and $\frac{55}{54}$ for $d = 4, 5$ (Berman and Karpinski, 2003)
 - For larger d assuming UGC: $2 - (2 + o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)

- d-**MIN-VC** serves as starting point for our CEAP reduction to **MIN-VC** on PLG’s
From bounded occurrence CSP’s to vertex covers:

- Reduce bounded occurrence HYBRID (equations with 2 and 3 variables) to MIN-VC on degree d bounded graphs (d-MIN-VC)

 ▶ Yields explicit lower bounds of $\frac{103}{102}$ for $d = 3$ and $\frac{55}{54}$ for $d = 4, 5$ (Berman and Karpinski, 2003)

 ▶ For larger d assuming UGC: $2 - (2 + o(1)) \frac{\log \log d}{\log d}$ (Austrin, Khot, and M. Safra, 2009)

- d-MIN-VC serves as starting point for our CEAP reduction to MIN-VC on PLG’s
From set covering to dominating sets:

- $G_{U,S}$ instances will serve as starting point for our CEAP reduction to MIN-DS on PLG’s
Set Cover Paradigm

From set covering to dominating sets:

A Set Cover instance \((U, S)\)

\(G_{U,S}\) instances will serve as starting point for our CEAP reduction to MIN-DS on PLG’s
From set covering to dominating sets:

A Set Cover instance (U, S)

A Min-DS instance $G_{U,S}$

- $G_{U,S}$ instances will serve as starting point for our CEAP reduction to Min-DS on PLG's
From set covering to dominating sets:

A Set Cover instance \((U, S)\)

A Min-DS instance \(G_{U,S}\)

\(G_{U,S}\) instances will serve as starting point for our CEAP reduction to Min-DS on PLG’s
Approximation Lower Bounds for Minimum Dominating Set on Connected Power Law Graphs
Definition (MIN-DS)

Input: A graph $G = (V, E)$

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize $|D|$
Definition (MIN-DS)

Input: A graph $G = (V, E)$

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize $|D|$
Minimum Dominating Set

Definition (MIN-DS)

Input: A graph \(G = (V, E) \)

Output: A subset \(D \subseteq V \) such that for each vertex \(v \in V \) either \(v \in D \) or \(D \cup N(v) \neq \emptyset \)

Objective: Minimize \(|D|\)

Dominating Set

Minimum Dominating Set

Main Results

Approximation Lower Bounds for Min-DS on PLG’s
Definition (MIN-DS)

Input: A graph $G = (V, E)$

Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize $|D|$

Approximability on general graphs:

- **Upper bound:** $\ln n$ (Johnson, 1974; Lovász, 1975)
- **Lower bound:** $(1 - o(1)) \ln n$ (Feige, 1998)
Definition (MIN-DS)

Input: A graph $G = (V, E)$
Output: A subset $D \subseteq V$ such that for each vertex $v \in V$ either $v \in D$ or $D \cup N(v) \neq \emptyset$

Objective: Minimize $|D|$

Approximability on general graphs:

- Upper bound: $\ln n$ (Johnson, 1974; Lovász, 1975)
- Lower bound: $(1 - o(1)) \ln n$ (Feige, 1998)
Definition (MIN-DS)

Input: A graph \(G = (V, E) \)

Output: A subset \(D \subseteq V \) such that for each vertex \(v \in V \) either \(v \in D \) or \(D \cup N(v) \neq \emptyset \)

Objective: Minimize \(|D| \)

Approximability on general graphs:

- **Upper bound:** \(\ln n \) (Johnson, 1974; Lovász, 1975)

- **Lower bound:** \((1 - o(1)) \ln n \) (Feige, 1998)
Approximability on PLG’s:

- For all $\beta > 0$, NP-hard on simple disconnected PLG’s (Ferrante, Pandurangan, and Park, 2008)

- For all $\beta > 1$, APX-hard on disconnected power law multigraphs (Shen et al., 2012)

Explicit inapproximability factors for $1 < \beta \leq 2$:

<table>
<thead>
<tr>
<th>Simple PLG’s</th>
<th>General PLG’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + \frac{1}{300(2e(\beta)^{3/2} - 1)}$</td>
<td>$1 + \frac{1}{31202(\beta)^{3/2}}$</td>
</tr>
</tbody>
</table>
Approximability on PLG’s:

- For all $\beta > 0$, \mathcal{NP}-hard on simple disconnected PLG’s (Ferrante, Pandurangan, and Park, 2008)

- For all $\beta > 1$, \mathcal{APX}-hard on disconnected power law multigraphs (Shen et al., 2012)

- Explicit inapproximability factors for $1 < \beta \leq 2$:

<table>
<thead>
<tr>
<th>Simple PLG’s</th>
<th>General PLG’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + \frac{1}{300(\beta^{1/3} - 1)}$</td>
<td>$1 + \frac{1}{3120(\beta^{1/3} - 1)}$</td>
</tr>
</tbody>
</table>
Approximability on PLG’s:

- For all $\beta > 0$, \mathcal{NP}-hard on simple disconnected PLG’s (Ferrante, Pandurangan, and Park, 2008)
- For all $\beta > 1$, \mathcal{APX}-hard on disconnected power law multigraphs (Shen et al., 2012)

Explicit inapproximability factors for $1 < \beta \leq 2$:

<table>
<thead>
<tr>
<th>Simple PLG’s</th>
<th>General PLG’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + \frac{1}{390(2\zeta(\beta)3^\beta - 1)}$</td>
<td>$1 + \frac{1}{3120\zeta(\beta)3^\beta}$</td>
</tr>
</tbody>
</table>
Approximability on PLG’s:

- For all $\beta > 0$, \mathcal{NP}-hard on simple disconnected PLG’s (*Ferrante, Pandurangan, and Park, 2008*)
- For all $\beta > 1$, \mathcal{APX}-hard on disconnected power law multigraphs (*Shen et al., 2012*)

Explicit inapproximability factors for $1 < \beta \leq 2$:

<table>
<thead>
<tr>
<th>Simple PLG’s</th>
<th>General PLG’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + \frac{1}{390(2\zeta(\beta)3^\beta - 1)}$</td>
<td>$1 + \frac{1}{3120\zeta(\beta)3^\beta}$</td>
</tr>
</tbody>
</table>
Open Questions

- Is Minimum Dominating Set \(\text{NP} \)-hard and \(\text{APX} \)-hard on connected PLG’s?
- Can we close the gap between the constant lower bounds on PLG’s and the general logarithmic lower bound?
- Can we extend the results to the range \(\beta \in [0, 1] \)?

Theorem (Gast, Hauptmann, and Karpinski, 2012)

For all \(\beta \in [0 + \varepsilon, 2] \) and \(\varepsilon > 0 \), \(\text{MIN-DS} \) is hard to approximate within \(\Omega(\ln(n) - c_\beta) \) on connected PLG’s.
Open Questions

- Is \textsc{Minimum Dominating Set} \textit{NP}-hard and \textit{APX}-hard on connected PLG’s?
- Can we close the gap between the constant lower bounds on PLG’s and the general logarithmic lower bound?
- Can we extend the results to the range $\beta \in [0, 1]$?

Theorem \textit{(Gast, Hauptmann, and Karpinski, 2012)}

For all $\beta \in [0 + \epsilon, 2]$ and $\epsilon > 0$, \textsc{Min-DS} is hard to approximate within $\Omega(\ln(n) - c_\beta)$ on connected PLG’s.
Open Questions

- Is \textsc{Minimum Dominating Set} \textit{NP}-hard and \textit{APX}-hard on connected PLG’s?

- Can we close the gap between the constant lower bounds on PLG’s and the general logarithmic lower bound?

- Can we extend the results to the range $\beta \in [0, 1]$?

Theorem (Gast, Hauptmann, and Karpinski, 2012)

For all $\beta \in [0 + \varepsilon, 2]$ and $\varepsilon > 0$, \textsc{Min-DS} is hard to approximate within $\Omega(\ln(n) - c_\beta)$ on connected PLG’s.
Open Questions

- Is **Minimum Dominating Set** \(\text{NP} \)-hard and \(\text{APX} \)-hard on connected PLG’s?
- Can we close the gap between the constant lower bounds on PLG’s and the general logarithmic lower bound?
- Can we extend the results to the range \(\beta \in [0, 1] \)?

Theorem (Gast, Hauptmann, and Karpinski, 2012)

For all \(\beta \in [0 + \varepsilon, 2] \) and \(\varepsilon > 0 \), **Min-DS** is hard to approximate within \(\Omega(\ln(n) - c_\beta) \) on connected PLG’s.
Embedding technique (CEAP reduction):
- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - Number of edges between $G_{U,S}$ and W is $O(\min\{|G_{U,S}|, |W|\})$
- Vertex set Γ separates $G_{U,S}$ from $G_{\alpha,\beta} \setminus G_{U,S}$
 - Hardness on maximal component $G_{U,S}$ is preserved
- Maintain small set X to dominate all vertices in W
 - MIN-DS is polynomially solvable on W
Embedding technique (CEAP reduction):

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - Number of edges between $G_{U,S}$ and W is $O(\min\{|G_{U,S}|, |W|\})$

- Vertex set Γ separates $G_{U,S}$ from $G_{\alpha,\beta} \setminus G_{U,S}$
 - Hardness on maximal component $G_{U,S}$ is preserved

- Maintain small set X to dominate all vertices in W
 - Min-DS is polynomially solvable on W
Embedding technique (CEAP reduction):

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - Number of edges between $G_{U,S}$ and W is $O\left(\min\{|G_{U,S}|, |W|\}\right)$

- Vertex set Γ separates $G_{U,S}$ from $G_{\alpha,\beta} \setminus G_{U,S}$
 - Hardness on maximal component $G_{U,S}$ is preserved

- Maintain small set X to dominate all vertices in W
 - Min-DS is polynomially solvable on W
Embedding technique (CEAP reduction):

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - Number of edges between $G_{U,S}$ and W is $O(\min\{|G_{U,S}|, |W|\})$

- Vertex set Γ separates $G_{U,S}$ from $G_{\alpha,\beta} \setminus G_{U,S}$
 - Hardness on maximal component $G_{U,S}$ is preserved

- Maintain small set X to dominate all vertices in W
 - Min-DS is polynomially solvable on W
Embedding technique (CEAP reduction):

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - Number of edges between $G_{U,S}$ and W is $O(\min\{|G_{U,S}|, |W|\})$

- Vertex set Γ separates $G_{U,S}$ from $G_{\alpha,\beta} \setminus G_{U,S}$
 - Hardness on maximal component $G_{U,S}$ is preserved

- Maintain small set X to dominate all vertices in W
 - Min-DS is polynomially solvable on W
Embedding technique (CEAP reduction):

- Map $G_{U,S}$ to $G_{\alpha,\beta}$ via scaling construction connecting to a multigraph wheel W
 - Number of edges between $G_{U,S}$ and W is $O(\min\{|G_{U,S}|, |W|\})$
- Vertex set Γ separates $G_{U,S}$ from $G_{\alpha,\beta} \setminus G_{U,S}$
 - Hardness on maximal component $G_{U,S}$ is preserved
- Maintain small set X to dominate all vertices in W
 - MIN-DS is polynomially solvable on W
The Reduction

$\Gamma \subseteq V_2$

$G_{U,S}$

W

X
Phase Transitions

Observation

For \(\beta > 2 \), \text{Min-DS} on \(G_{\alpha,\beta} \) PLG’s is in \text{APX}

Analysis of the phase transition:

- Study of functional case \(\beta_f = 2 + \frac{1}{f(n)} \)
 - Hard to approximate within \(\Omega(\ln(n) - c_{\theta}) \) for \(f(n) = \omega(\log(n)) \)
 - In \text{APX} for \(f(n) = o(\log(n)) \) (!)
For \(\beta > 2 \), \(\text{Min-DS} \) on \(G_{\alpha, \beta} \) PLG's is in \(\text{APX} \)

Analysis of the phase transition:

- Study of functional case \(\beta_f = 2 + \frac{1}{f(n)} \)
 - Hard to approximate within \(\Omega(\ln(n) - c_\beta) \) for \(f(n) = \omega(\log(n)) \)
 - In \(\text{APX} \) for \(f(n) = o(\log(n)) \) (!)
Phase Transitions

Observation
For $\beta > 2$, MIN-DS on $G_{\alpha, \beta}$ PLG’s is in \mathcal{APX}

Analysis of the phase transition:
- Study of functional case $\beta_f = 2 + \frac{1}{f(n)}$
 - Hard to approximate within $\Omega(\ln(n) - c_\beta)$ for $f(n) = \omega(\log(n))$
 - In \mathcal{APX} for $f(n) = o(\log(n))$ (!)
For $\beta > 2$, \textit{MIN-DS} on $G_{\alpha,\beta}$ PLG's is in APX

Analysis of the phase transition:

- Study of functional case $\beta_f = 2 + \frac{1}{f(n)}$
 - Hard to approximate within $\Omega(\ln(n) - c_\beta)$ for $f(n) = \omega(\log(n))$
 - In APX for $f(n) = o(\log(n))$ (!)
Approximation Upper Bounds for Minimum Vertex Cover on Random Power Law Graphs
Definition (Min-VC)

Input: A graph \(G = (V, E) \)

Output: A subset \(C \subseteq V \) such that each edge \(\{u, v\} \in E \) has at least one endpoint in \(C \)

Objective: Minimize \(|C| \)
Definition (MIN-VC)

Input: A graph $G = (V, E)$

Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C

Objective: Minimize $|C|$
Minimum Vertex Cover Problem

Definition (Min-VC)

Input: A graph $G = (V, E)$

Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C

Objective: Minimize $|C|$
Definition (MIN-VC)

Input: A graph \(G = (V, E) \)

Output: A subset \(C \subseteq V \) such that each edge \(\{u, v\} \in E \) has at least one endpoint in \(C \)

Objective: Minimize \(|C| \)

Approximability on general graphs:

- Upper bound: \(2 - \Theta(1/\sqrt{\log n}) \) (Karakostas, 2009)
- Lower bounds:
 - \(2 - \varepsilon \) assuming UGC (Khot and Regev, 2008)
 - 1.3606 assuming \(\mathbb{P} \neq \mathbb{NP} \) (Dinur and S. Safra, 2005)
Minimum Vertex Cover Problem

Definition (MIN-VC)

- **Input:** A graph $G = (V, E)$
- **Output:** A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C
- **Objective:** Minimize $|C|$

Approximability on general graphs:

- **Upper bound:** $2 - \Theta(1/\sqrt{\log n})$ \((\text{Karakostas, 2009})\)
- **Lower bounds:**
 - $2 - \varepsilon$ assuming UGC \((\text{Khot and Regev, 2008})\)
 - 1.3606 assuming $\mathbb{P} \neq \mathbb{NP}$ \((\text{Dinur and S. Safra, 2005})\)
Definition (MIN-VC)

Input: A graph $G = (V, E)$
Output: A subset $C \subseteq V$ such that each edge $\{u, v\} \in E$ has at least one endpoint in C

Objective: Minimize $|C|$

Approximability on general graphs:

- Upper bound: $2 - \Theta(1/\sqrt{\log n})$ (Karakostas, 2009)
- Lower bounds:
 - $2 - \varepsilon$ assuming UGC (Khot and Regev, 2008)
 - 1.3606 assuming $\mathcal{P} \neq \mathcal{NP}$ (Dinur and S. Safra, 2005)
Definition (MIN-VC)

Input: A graph \(G = (V, E) \)

Output: A subset \(C \subseteq V \) such that each edge \(\{u, v\} \in E \) has at least one endpoint in \(C \)

Objective: Minimize \(|C| \)

Approximability on general graphs:

- **Upper bound:** \(2 - \Theta\left(\frac{1}{\sqrt{\log n}}\right) \) (Karakostas, 2009)
- **Lower bounds:**
 - \(2 - \varepsilon \) assuming UGC (Khot and Regev, 2008)
 - \(1.3606 \) assuming \(\mathbb{P} \neq \mathbb{NP} \) (Dinur and S. Safra, 2005)
Approximability on PLG’s:

Observation
There exists practical evidence that Min-VC is easier to approximate on PLG’s

- The greedy algorithm often outperforms the 2-approximation algorithm (Park and Lee, 2001)
- Achieves average ratios of \(\sim 1.02 \) on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)
Approximability on PLG’s:

Observation

There exists **practical evidence** that \textsc{Min-VC} is easier to approximate on PLG’s

- The greedy algorithm often outperforms the 2-approximation algorithm (Park and Lee, 2001)
- Achieves average ratios of \(\sim 1.02 \) on real-world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)
Approximability on PLG’s:

Observation

There exists practical evidence that Min-VC is easier to approximate on PLG’s:

- The greedy algorithm often outperforms the 2-approximation algorithm (Park and Lee, 2001)
- Achieves average ratios of ~ 1.02 on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)
Approximability on PLG’s:

Observation

There exists practical evidence that Min-VC is easier to approximate on PLG’s

- The greedy algorithm often outperforms the 2-approximation algorithm (Park and Lee, 2001)
- Achieves average ratios of \(\sim 1.02 \) on real world network topologies (M. O. Da Silva, Gimenez-Lugo, and M. V. G. Da Silva, 2013)
Open Question

Can we give provable guarantees that MIN-VC is easier to approximate on PLG’s?

Theorem (Gast and Hauptmann, 2012)

There exists an approximation algorithm for MIN-VC on random $G_{\alpha,\beta}$ PLG’s with expected approximation ratio

$$\rho \leq 2 - \frac{\zeta(\beta) - 1 - \frac{1}{2^\beta}}{2^\beta \zeta(\beta - 1) \zeta(\beta)}$$
Approximation of Min-VC on PLG’s

Open Question
Can we give provable guarantees that \(\text{MIN-VC} \) is easier to approximate on PLG’s?

Theorem \((\text{Gast and Hauptmann, 2012})\)
There exists an approximation algorithm for \(\text{MIN-VC} \) on random \(G_{\alpha, \beta} \) PLG’s with expected approximation ratio

\[
\rho \leq 2 - \frac{\zeta(\beta) - 1 - \frac{1}{2^\beta}}{2^\beta \zeta(\beta - 1) \zeta(\beta)}
\]
Consider the following LP-Relaxation for Min-VC:
There always exists optimal solution which is half-integral, i.e. \(\forall i : x_i \in \{0, \frac{1}{2}, 1\} \) and \(v_i \in V_0, V_{1/2}, V_1 \), respectively.

A half-integral solution can be computed in polynomial time (using algorithm for Min-VC or Perfect Matching in bipartite graphs).
Half Integral Solutions

\[
\text{minimize } \sum_{i=1}^{n} w_i x_i,
\]

subject to \(x_i + x_j \geq 1\), for all edges \(e = \{v_i, v_j\}\),
\(x_i \geq 0\), for all vertices \(v_i \in V\)

- There always exists optimal solution which is half-integral, i.e. \(\forall i : x_i \in \{0, \frac{1}{2}, 1\}\) and \(v_i \in V_0, V_{1/2}, V_1\), respectively

- A half-integral solution can be computed in polynomial time (using algorithm for Min-VC or Perfect Matching in bipartite graphs)
Half Integral Solutions

\[
\text{minimize} \quad \sum_{i=1}^{n} w_i x_i,
\]

subject to \(x_i + x_j \geq 1, \) for all edges \(e = \{v_i, v_j\}, \)

\(x_i \geq 0, \) for all vertices \(v_i \in V \)

- There always exists optimal solution which is half-integral, i.e. \(\forall i : x_i \in \{0, \frac{1}{2}, 1\} \) and \(v_i \in V_0, V_{1/2}, V_1, \) respectively

- A half-integral solution can be computed in polynomial time (using algorithm for MIN-VC or Perfect Matching in bipartite graphs)
Approximation Algorithm

Start with **half-integral** solution $x : V \rightarrow \{0, 1/2, 1\}$
Approximation Algorithm

Start with half-integral solution \(x : V \rightarrow \{0, 1/2, 1\} \)

Apply new deterministic rounding algorithm to \(x \)

Prove that algorithm achieves ratio of \(\frac{3}{2} \) on subset \(V' \subseteq V \) of low-degree vertices and their neighborhood.

Overall approximation ratio as convex combination of ratio \(\frac{3}{2} \) on \(V' \) and ratio \(2 \) on \(V \setminus V' \).

Prove lower bounds on \(x(V') \) and upper bounds on \(x(V) \) to determine the effect of the rounding on global solution.
Start with half-integral solution \(x : V \rightarrow \{0, 1/2, 1\} \)

Apply new deterministic rounding algorithm to \(x \)

Prove that algorithm achieves ratio of \(\frac{3}{2} \) on subset \(V' \subseteq V \) of low-degree vertices and their neighborhood
Approximation Algorithm

Start with half-integral solution \(x : V \rightarrow \{0, 1/2, 1\} \)

Apply new deterministic rounding algorithm to \(x \)

Prove that algorithm achieves ratio of \(3/2 \) on subset \(V' \subseteq V \) of low-degree vertices and their neighborhood

Prove lower bounds on \(x(V') \) and upper bounds on \(x(V) \) to determine the effect of the rounding on global solution

Main Results
Approximation Upper Bounds for Min-VC on PLG’s
Approximation Algorithm

Start with half-integral solution \(x : V \rightarrow \{0, 1/2, 1\} \)

Apply new deterministic rounding algorithm to \(x \)

Prove that algorithm achieves ratio of \(3/2 \) on subset \(V' \subseteq V \) of low-degree vertices and their neighborhood

Overall approximation ratio as convex combination of ratio \(3/2 \) on \(V' \) and ratio 2 on \(V \setminus V' \)

Prove lower bounds on \(x(V') \) and upper bounds on \(x(V) \) to determine the effect of the rounding on global solution

Main Results
Approximation Upper Bounds for Min-VC on PLG’s
Open Problems and Further Research

- Still **improving** on the presented results
 - Investigating the gap between upper and lower approximation bound for MIN-VC on PLG’s
 - Improving upper bounds for MIN-DS on PLG’s when $\beta \leq 2$ (in random or quasi-random models)

- Exploit network hyperbolicity in biological and Internet based network design problems

- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes
Open Problems and Further Research

- Still improving on the presented results
 - Investigating the gap between upper and lower approximation bound for MIN-VC on PLG’s
 - Improving upper bounds for MIN-DS on PLG’s when \(\beta \leq 2 \) (in random or quasi-random models)

- Exploit network hyperbolicity in biological and Internet based network design problems

- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes
Open Problems and Further Research

- Still improving on the presented results
 - Investigating the gap between upper and lower approximation bound for MIN-VC on PLG’s
 - Improving upper bounds for MIN-DS on PLG’s when $\beta \leq 2$ (in random or quasi-random models)

- Exploit network hyperbolicity in biological and Internet based network design problems

- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes
Open Problems and Further Research

- Still improving on the presented results
 - Investigating the gap between upper and lower approximation bound for MIN-VC on PLG’s
 - Improving upper bounds for MIN-DS on PLG’s when $\beta \leq 2$ (in random or quasi-random models)

- Exploit network hyperbolicity in biological and Internet based network design problems

- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes
Open Problems and Further Research

- Still improving on the presented results
 - Investigating the gap between upper and lower approximation bound for MIN-VC on PLG’s
 - Improving upper bounds for MIN-DS on PLG’s when $\beta \leq 2$ (in random or quasi-random models)

- Exploit network hyperbolicity in biological and Internet based network design problems

- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes
Open Problems and Further Research

- Still improving on the presented results
 - Investigating the gap between upper and lower approximation bound for \(\text{Min-VC} \) on PLG’s
 - Improving upper bounds for \(\text{Min-DS} \) on PLG’s when \(\beta \leq 2 \) (in random or quasi-random models)

- Exploit network hyperbolicity in biological and Internet based network design problems

- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes
Open Problems and Further Research

- Still improving on the presented results
 - Investigating the gap between upper and lower approximation bound for MIN-VC on PLG’s
 - Improving upper bounds for MIN-DS on PLG’s when $\beta \leq 2$ (in random or quasi-random models)

- Exploit network hyperbolicity in biological and Internet based network design problems

- Computational complexity of node and edge deletion problems and information spreading in dynamic networks (especially in biological settings)

- Applicability of graph limit theory in order to gather topological information of PLG generating processes
Thank you!