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Abstract

We study dense cases of several covering problems. An instance of the

set cover problem with m sets is dense if there is � > 0 such that any ele-

ment belongs to at least �m sets. We show that the dense set cover problem

can be approximated with the performance ratio c logn for any c > 0 and

it is unlikely to be NP-hard. We construct a polynomial-time approxima-

tion scheme for the dense Steiner tree problem in n-vertex graphs, i.e. for

the case when each terminal is adjacent to at least �n vertices. We also

study the vertex cover problem in �-dense graphs. Though this problem

is shown to be still MAX-SNP-hard as in general graphs, we �nd a better

approximation algorithm with the performance ratio

2

1+�

. The superdense

cases of all these problems are shown to be solvable in polynomial time.

�

Dept. of Computer Science, University of Bonn, 53117 Bonn, and the International Com-

puter Science Institute, Berkeley. Research partially done while visiting Dept. of Computer

Science, Princeton University. Research supported by DFG Grant KA 673/4-1, and by the

ESPRIT BR Grants 7097 and EC-US 030 and by DIMACS. Email: marek@cs.uni-bonn.de

y

Dept. of Computer Science, University of Bonn, 53117 Bonn. Visiting from Institute of

Mathematics Akademiei 5, Kishinev 277028, and the Dept. of Computer Science, University

of Virginia. Research partially supported by Volkswagen Stiftung and Packard Foundation.

Email: alexz@cs.virginia.edu

1



1 Dense Set Cover Problem

We start with the Dense Set Cover Problem. Let X = fx

1

; :::; x

k

g be a �nite set

and P = fp

1

; :::; p

m

g � 2

X

be a family of its subsets. The Set Cover Problem

(SCP) asks for a minimum size sub-family M of P such that X � [fpjp 2Mg.

The greedy heuristic gives 1 + lnk approximation for SCP [5]. Moreover,

SCP cannot be approximated to within less than ln k-factor unless NP �

DTIME[n

loglogn

] [6].

The B-sparse SCP has a constant upper bound B > 1 on the number of sets

in P which cover the same element of X. The Vertex Cover Problem is a well-

known representative of B-sparse SCP (B=2). There is a simpleB-approximation

algorithm for this problem. From the other side, the B-sparse SCP is MAX SNP-

complete.

In an �-dense SCP, any element of X belongs to at least �jP j sets for some

� < 1.

We will analyze the greedy heuristic applied to �-dense SCP. This heuristic

repeatedly choose a maximum size set in P , remove its elements from X and all

other sets in P . All chosen sets form the output set cover Greedy.

Lemma 1 The size of Greedy is at most log

1=(1��)

k.

Proof. At �rst we will show that the maximum size of a set in P is at least �k.

Consider a bipartite graph G = (P [X;E) where x 2 X and p 2 P are adjacent

if and only if x 2 p. The degree of any x 2 X is at least �m, so the number of

edges in this graph is at least �mk and, therefore, there is a set p 2 P with degree

at least �m.

Each iteration of the greedy heuristic does not decrease density, since all

elements which belong to the chosen set are removed from X. So the size of X

after the ith iteration is at most (1 � �)

i

k}

This lemma shows that the size of the optimal set cover is O(log k). So we

cannot expect that the �-dense SCP is NP -complete, since a simple O(m

O(logk)

)-

time exhaustive search chooses the optimal solution.

Theorem 1 Unless NP � DTIME[n

logn

], the �-dense SCP is not NP -

complete.

Note that O(log k) is the tight bound for the performance ratio of the greedy

heuristic applied to �-dense SCP. To show this for � =

1

2

, we can construct an

instance of this problem with the size of optimal solution of O(log k) and then

add two sets A and B such that A [ B = X, A \ B = ;. On the other hand,

unlike to the general case of SCP, we may decrease the constant factor as far as

we want.

Lemma 2 For any c > 0 and 1 > � > 0, there is a c ln k-approximation algorithm

for �-dense SCP.
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Proof. Indeed, let transform an instance of �-dense SCP to an instance of

(1 � (1 � �)

2

)-dense SCP in the following way. Consider a family P

2

= fp [ q :

p; q 2 Pg. It is easy to see that any solution for SCP with the family P

2

gives

a solution for initial SCP. An �-density means that at most (1� �)m sets do not

contain a given element of X. But then at most (1 � �)

2

m

2

sets in P

2

do not

contain a given element of X.

Lemma 1 implies that such transformation decrease the performance ratio of

the greedy algorithm twice. }

Theorem 1 arises the following two open problems:

Problem 1 Can �-dense SCP be solved in polynomial time?

Problem 2 Can �-dense SCP be approximated in polynomial time to within con-

stant factor?

Further densi�cation leads to polynomial solvability of SCP. The �-superdense

SCP is the case of SCP where each element of X is covered by at least m� o(m

�

)

sets of P for some � < 1.

Theorem 2 The �-superdense SCP can be solved in polynomial time.

Proof. Let each element of X is covered by at least m� m

�

= m(1 � m

��1

)

sets of P for some  < m

1��

. By Lemma 1 for � = 1� m

��1

, the size of optimal

solution is at most

log



�1

m

1��

k =

1

(1 � �)(1� log

m

)

log

m

k:

Thus, exhaustive search for �nding an exact solution has at most k

((1��)�)

�1

cases

to consider. }

2 Dense Steiner Tree Problem

Consider a connected graph G = (V;E) with a terminal set S � V . The Steiner

Tree Problem (STP) asks for a minimum size tree within G which spans all

terminals from S. Further, d(F ) denotes the length of a graph F , jSj = k and

jV j = n. A well-known minimum spanning tree heuristic (MSTH) [9] �nds a

minimum spanning tree M of a weighted complete graph G

0

= (S;E

0

; c), where

the weight of any edge equals to the length of the shortest path between its ends

in G. Then MSTH replaces all edges of M with the corresponding paths in G

and extracts a tree from the subgraph obtained.

An optimal Steiner tree contains also non-terminals. Each such vertex of

degree at least 3 is called a Steiner point. It is easy to see that there are at most

k � 2 Steiner points. Using MSTH we can �nd an optimal Steiner tree if we add

all Steiner points to the terminal set.
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Remark 1 An optimal Steiner tree can be found exactly in O(n

k

) time.

MSTH gives 2-approximation for STP [9] and the best up-today polynomial-

time approximation guarantee is about 1.644 [7]. From the other side, STP is

known to be MAX SNP - complete [4].

In the B-sparse STP the degree of any vertex is bounded by a constant B.

It is known that STP in the rectilinear metric (a sub-case of 4-sparse STP) is

NP -complete but the question whether it is MAX SNP-hard or not is still open.

In an �-dense instance of STP (for some � < 1) any terminal has at least �n

neighbors outside S.

Note that for � >

1

2

, �-dense STP is a sub-case of Network STP with distances

1 and 2 which is still MAX SNP-complete [4]. The Rayward-Smith heuristic [8]

was proposed for the latter problem in [4]. It achieves a better approximation

guarantee (

4

3

) then MSTH which has the tight bound 2 as for the general case.

MSTH also does not di�er the dense and general case of STP.

If the number of terminals is small enough, i.e. k �

1

�

, then we can �nd an

exact solution in polynomial time. Otherwise, we apply to the dense STP the

following variant of Rayward-Smith heuristic (or the greedy algorithm [10]).

Algorithm DSTP

(0) SP  ;;

C  ffsg : s 2 Sg

(1) while jCj >

1

�

do

find v 2 V n S with the maximum size of

D(v) = fC 2 C : C contains a neighbor of vg

SP  SP [ v;

C  C nD(v) [ f[

C2D(v)

Cg;

(2) find an optimal Steiner tree T for a terminal set S [ SP.

Let C consist of sets C

1

; :::; C

r

after Step (1) of Algorithm DSTP. Let add

edges between all terminals of the same set C

i

; i = 1; :::; r. The length of the

optimal Steiner tree in the graph G

0

obtained cannot be longer than in G. There

is an optimal Steiner tree OPT

0

in G

0

containing spanning trees M

i

for each set

C

i

; i = 1; :::r. If we contract any such tree M

i

to a vertex, then OPT

0

appears to

be an optimal Steiner tree M

0

spanning vertices corresponding to C

i

. Thus, the

edge set of OPT

0

is a union of edges of M

i

; i = 0; 1; ::; r.

Algorithm DSTP constructs some Steiner trees M

0

i

in G for terminals of C

i

(step (1)) and then �nds the shortest treeM

0

0

spanning M

0

i

; i = 1; :::; r (step (2)).

M

0

0

cannot be longer that M

0

, since M

0

also spans M

0

i

. Remark 1 implies that

an exhaustive search in Step (2) can be executed in time O(n

1=�

).

An approximation ratio of Algorithm DSTP is at most

P

r

i=0

d(M

0

i

)

P

r

i=0

d(M

i

)

�

P

r

i=1

d(M

0

i

)

P

r

i=1

d(M

i

)

=

k � r + jSP j

k � r

� 1 +

jSP j

k �

1

�

: (1)
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The size of SP equals to the number of iterations in Step (1). Each iteration

of (1) decreases the size of C by at least �jCj � 1. Thus, after i-th iteration

jCj � (k �

1

�

)(1� �)

i

+

1

�

. The procedure (1) interrupts when jCj <

1

�

+ 1, so

jSP j � log

1=(1��)

(k �

1

�

):

Thus, (1) implies the following

Lemma 3 An approximation ratio of Algorithm DSTP is at most

1 +

log

1=(1��)

(k �

1

�

)

k �

1

�

}

Given an arbitrary approximation ratio 1 + ,  > 0, our strategy is to solve

exactly in polynomial time (for �xed � and ) instances of DSTP with small

number of terminals, i.e. when k satis�es the following inequality

log

1=(1��)

(k �

1

�

)

k �

1

�

� :

If the number of terminals is su�ciently big, then we apply Algorithm DSTP.

Thus we obtain the following

Theorem 3 There is a polynomial-time approximation scheme for the �-dense

STP. }

It is not di�cult to see that there is a polynomial time reduction of the �-

dense SCP to the �-dense STP and vice versa, thus, the problem of polynomial

time solvability of �-dense STP is equivalent to Problem 1.

Similarly to SCP, we de�ne �-superdense STP to be the case of STP where

any terminal has at least n� o(n

�

) neighbors outside S.

Corollary 1 The �-superdense STP can be solved exactly in polynomial time.

3 Dense Vertex Cover Problem

Vertex Cover Problem (VCP). Given a graph G = (V;E), �nd a minimum

size vertex set OPT � V such that at least one end of any edge belongs to OPT .

The following algorithm is suggested for VCP in �-dense graphs, i.e., in graphs

where any vertex has at least �n neighbors for some � > 0 (jV j = n). Let O(v)

denote the set of neighbors of a vertex v, G(V

0

) denote a subgraph induced by

a vertex set V

0

� V and 2VC denote the well-known 2-approximation algorithm

for VCP.

5



Algorithm DVC

for all v 2 V

do V

0

 V n (O(v) [ fvg);

find a vertex cover V C(v) for G(V

0

) using 2VC;

V C(v) O(v) [ V C(v);

APPR  argmin

v2V

jV C(v)j.

Let v =2 OPT . Then O(v) � OPT since all edges incident to v should

be covered by OPT . Moreover, O(v) covers all edges between O(v) and the

corresponding V

0

. So the rest of vertices of OPT cover the edges of G(V

0

).

Let OPT

0

= OPT �O(v). The output vertex cover of 2VC applied to V

0

has

a size at most minf2jOPT

0

j; jV

0

jg. So the approximation ratio can be bounded

as follows.

jAPPRj

jOPT j

�

jO(v)j+minf2jOPT

0

j; jV

0

jg

jO(v)j+ jOPT

0

j

� minf

jO(v)j+ 2jOPT

0

j

jO(v)j+ jOPT

0

j

;

n

jO(v)j+ jOPT

0

j

g

If 2jOPT

0

j � (1 � �)n, then

jAPPRj

jOPT j

�

�n+ 2jOPT

0

j

�n+ jOPT

0

j

= 2�

1

1 +

jOPT

0

j

�n

Thus, the more jOPT

0

j corresponds to the more bound for the approximation

ratio. Therefore,

jAPPRj

jOPT j

� 2 �

1

1 +

0:5(1��)n

�n

=

2

1 + �

:

If 2jOPT

0

j � (1� �)n, then we obtain the same bound for the approximation

ratio as follows

jAPPRj

jOPT j

�

n

�n+ 0:5(1 � �)n

=

2

1 + �

:

Theorem 4 The algorithm DVC has an approximation ratio at most

2

1+�

for

�-dense graphs.

Theorem 5 The �-dense Vertex Cover Problem is MAX SNP-hard.

Proof. (Sketch.) Starting with an instance of the Vertex Cover Problem in a

graph G with n vertices we dencify it joining all vertices of a clique of size

�

1��

n

with all vertices of G. The resulting graph is �-dense and, therefore, if we have an

�-approximation for DVC, then the reduction above gives �(1+�)-approximation

algorithm for the general problem which is MAX SNP-hard. }
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Further densi�cation (as for SCP and STP) leads to decreasement of approx-

imation complexity.

We say that an instance of VCP is �-superdense if the degree of any vertex is

at least n� o(n

�

). Theorem 4 implies

Corollary 2 The �-superdense VCP has a polynomial-time approximation

scheme.
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