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Abstract

We overview recent results on the existence of polynomial time ap-

proximation schemes for some dense instances of NP-hard optimization

problems. We indicate further some inherent limits for existence of such

schemes for some other dense instances of the optimization problems.

1 Introduction

The computational e�ciency of approximating di�erent NP-hard optimization

problems varies a great deal. We know by now, that unless P=NP, some prob-

lems, such as CLIQUE cannot be approximated in polynomial time even within

a factor n

1��

for any � > 0 (cf. H�astad [H96]). Some other problems like MAX-

CUT (cf. Goemans and Williamson [GW94]) or STEINER TREE (cf. Karpinski

and Zelikovsky [KZ97a]), can be approximated to within some small �xed con-

stant factor. Till recently only a very few optimization problems were known to

have polynomial time approximation schemes (PTAS), approximating to within

arbitrary small constant factors.
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Some of the approximation algorithms with small approximation ratios

achieve also good practical performances, like some cases of STEINER TREE

problems (cf. [KZ97a]), some other algorithms do not yield yet e�cient practical

methods of dealing with optimization problems.

In this paper we are concerned with the problem of e�cient approximability

of the dense instances of NP-hard optimization problems.

Recently, the �rst polynomial time approximation schemes have been designed

for these problems in Arora, Karger and Karpinski [AKK95], Fernandez de la

Vega [FV96], Arora, Frieze and Kaplan [AFK96], and Karpinski and Zelikovsky

[KZ97b]. Later on, Goldreich, Goldwasser and Ron [GGR96], and Frieze and

Kannan [FK97] gave a constant sample size approximation schemes for some

dense optimization problems. Fernandez de la Vega and Karpinski [FK97] gave

also the �rst polynomial time approximability characterization for dense weighted

instances of NP-hard problems.

This developmentwas in contrast to the fact that the existence of such schemes

for general instances would imply that P=NP by results of Arora, Lund, Motwani,

Sudan, and Szegedy [ALMSS92].

The development above was followed by the study of the dense covering prob-

lems, Karpinski and Zelikovsky [KZ97b], and the dense bandwidth minimization

problems, Karpinski, Wirtgen and Zelikovsky [KWZ97].

It is also a very interesting artifact that the recent successes in design of the

polynomial time approximation schemes for dense optimization problems parallel

the successes of the past attacks on dense approximate counting problems, Broder

[B86], Jerrum and Sinclair [JS89], Dyer, Frieze, Jerrum [DFJ94], and Alon, Frieze

and Welsh [AFW95].

2 MAX-SNP and Dense MAX-SNP Classes,

and BEYOND

We consider in this Section the dense instances of the MAX-SNP class of opti-

mization problems introduced by Papadimitriou and Yannakakis [PY91]. MAX-

SNP class contains constraint-satisfaction problems, where the constraints are

de�nable by quanti�er-free propositional formulas.
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We recall:

De�nition: A (maximization) problem A is in MAX-SNP if there exists a se-

quence of relation symbols G

1

; : : : ; G

m

, a relation symbol S, and a quanti�er-free

formula �(G

1

; : : : ; G

m

; S; x

1

; : : : ; x

k

), with x

i

variables, such that the following is

true:

1. there is a polynomial time algorithm that for any given instance I of the

problem A produces a set V and a sequence of relations G

V

1

; : : : ; G

V

m

over V

(G

V

i

preserve the arity of G

i

);

2. The value of the optimum solution OPT (I) of A on instance I, satis�es

OPT (I) =

MAX

S

V

�

�

�

�f(x

1

; : : : ; x

k

) 2 V

k

�

�

��(G

V

1

; : : : ; G

V

m

; S

V

; x

1

; : : : ; x

k

) = TRUEg

�

�

�

�

for S

V

the relation over V of the same arity as S.

Example: MAX-CUT (cf. [GJ79], [P94]) is in MAX-SNP, since its optimum

solution can be written as

MAX

S�V

�

j f(x; y) j (G(x; y) _ G(y; x) ^ S(x) ^ :S(y))g j

�

for V the set of vertices of the graph, G(x; y) its adjacency relation, and S a

unary relation describing the one side of the cut.

For the notions of MAX-SNP-completeness, and MAX-SNP-hardness see

[P94], and [AL97].

We de�ne next the problem MAX-k-FUNCTION-SAT for some �xed integer

k. MAX-k-FUNCTION-SAT has as an input m boolean functions f

1

; f

2

; : : : ; f

m

in n variables, and each f

i

depends only on k variables. The problem is to �nd

an assignment to the variables as to satisfy as many f

i

's as possible.

It is known that every problem A from MAX-SNP can be viewed as a MAX-

k-FUNCTION-SAT problem for a �xed k (cf. [P94]). Following [AKK95] we

call an instance of a MAX-SNP problem dense if the corresponding instance of

MAX-k-FUNCTION-SAT has 
(n

k

) functions.
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Given an optimization problem A, a (meta) algorithmA is called a polynomial

time approximation scheme (PTAS) if for every �xed � > 0, A is a polynomial

time algorithm with approximation ratio 1 + � (meaning A outputs a solution S

to every instance I of A such that MAX

�

S

OPT (I)

;

OPT (I)

S

�

� 1+ �, for OPT(I) the

optimal solution, and the running time of A is polynomial in the size of I).

Only a very few problems, such as KNAPSACK [IK75], and BIN PACKING

[FL81], [KK82], were till recently known to have PTASs.

In Arora, Karger and Karpinski [AKK95] the following general result on the

existence of PTASs was proven.

Proposition 1. ([AKK95]) Dense MAX-SNP problems have PTASs.

The proof method involves the representation of MAX-k-FUNCTION-SAT

by smooth degree{k integer programs, and the general result on approximating

such programs (cf. [AKK95]).

Below is the list of problems were the smooth integer programs can be applied

directly to obtain the PTASs. (We call a graph dense if it has �(n

2

) edges, a

hypergraph of dimension d is dense if it does has �(n

k

) edges.)

� MAX-CUT: For a given graph partition its vertices into two sets so as to

maximize the number of edges between them.

� MAX-DCUT: The directed version of the MAX-CUT.

� MAX-HYPERCUT(d): A generalization of MAX-CUT to hypergraphs of

dimension d (an edge is considered in a cut if it has at least one vertex on

each side).

� DENSE-k-SUBGRAPH: Given a graph, �nd a subset of k vertices that

induces a graph with the most edges (cf. [KP93]).

Following [AKK95], we have

Proposition 2. ([AKK95]) Dense instances of the following problems have

PTASs:

MAX-CUT, MAX-DCUT, MAX-HYPERCUT(d), and DENSE-k-SUBGRAPH

for k = 
(n).
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In what follows we call a graph G everywhere dense if its minimum degree is


(n). We consider everywhere dense instances of three further problems.

� SEPARATOR: Given a graph, partition its vertices into two sets, each with

at least

1

3

of the vertices, so as to minimize the number of edges between

them.

� BISECTION: Given a graph, partition its vertices into two equal halves so

as to minimize the number of edges between them.

� MIN-k-CUT: Given a graph with n vertices, and k source vertices, partition

its vertices into k groups such that (1) each group contains one source, and

(2) the number of edges between di�erent groups is minimized.

Consider a graph with a minimum degree �n, and let c denote the capacity

of its minimum bisection. The PTAS for BISECTION of [AKK95] consists of

two algorithms, one of which is a PTAS when c � �n

2

, and the other when

c < �n

2

for � a small constant. The algorithm for c � �n

2

uses the above

mentioned method for approximating smooth integer programs. For the case

c < �n

2

we use the fact that in a minimum bisection, there must be one side

whose every vertex has at most half of its neighbors on the other side, and

construct a randomized exhaustive correction sample algorithm. The algorithm

can be also easily derandomized (cf. [AKK95]). Similar PTASs work for the

SEPARATOR and BISECTION problems.

Proposition 3. ([AKK95]) Everywhere dense instances of the following problems

have PTASs: BISECTION, SEPARATOR and MIN-k-SAT.

Fernandez de la Vega [FV96] has independently developed a PTAS for every-

where dense instances of MAX-CUT problem. His algorithm does not appear to

generalize though to the other problems listed above.

Arora, Frieze, and Kaplan [AFK96] constructed a new rounding procedure

for the quadratic assignment problem and used it to obtain PTASs on the

dense instances of the NP-hard problems like QUADRATIC-ASSIGNMENT,

MIN-LINEAR-ARRANGEMENT, d-DIMENSIONAL-ARRANGEMENT, BE-

TWEENESS, and MIN-CUT-LINEAR-ARRANGEMENT (cf. [AFK96]).
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In the other development the Regularity Lemma of Szemer�edi was used to ob-

tain more e�cient PTAS for the above problems (cf. Frieze and Kannan [FK96]).

Using also independent methods Goldreich, Goldwasser and Ron [GGR96], and

Frieze and Kannan [FK97] gave constant time approximation schemes for some

dense problems in the oracle model of computation.

3 Dense Covering Problems

We turn now to the three dense covering problems: SET COVER, STEINER

TREE, and VERTEX COVER (cf. [H97], [AL97]). They do not fall into the

dense MAX-SNP class de�nition of section 2 (VERTEX COVER is in MAX-

SNP only if the degree of the graph is bounded.)

� SET COVER: Given a �nite set X and a family of its subsets P, �nd a

minimum size subfamily M of P such that X �

S

M.

We call an instance of SET COVER (X = fx

1

; : : : x

n

g;P = fp

1

; : : : ; p

m

g)

�-dense (for � > 0) if every element of X belongs to at least �m sets from

P. (The instances of SET COVER are called dense if they are �-dense for

some � > 0. We call SET COVER restricted to dense instances a dense

SET COVER accordingly.)

� STEINER TREE: Given a connected graph G and a set of its distinguished

(terminal) vertices S. Find a minimum size tree within G that spans all

distinguished vertices from S.

We call an instance G = (V;E) of the STEINER TREE problem �-dense

if every distinguished terminal vertex is adjacent to at least �� j V n S j

nonterminals.

� VERTEX COVER: Given a graph G, �nd a minimum size vertex set X of

G which covers all edges of G (i.e. at least one endpoint of any edge belongs

to X).

We start with dense SET COVER problem. The general SET COVER was

proven recently to have a threshold (1 � o(1)) ln n for the polynomial time ap-

proximation (cf. Feige [F96]) which in fact is matching asymptotically the ap-

proximation ratio by the well known greedy heuristic algorithm.
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It is shown in Karpinski and Zelikovsky [KZ96] that the greedy heuristic

algorithm can be applied more e�ciently towards ther dense SET COVER.

Proposition 4. ([KZ96]) For any constant c > 0 and any � > 0, there is a

polynomial time approximation algorithm for the �-dense SET COVER with the

approximation ratio c � log n.

Interestingly, we cannot expect on the lower bound side of the dense SET

COVER, its NP-hardness, as the results of Papadimitriou and Yannakakis [PY96]

imply.

Proposition 5. ([KZ97b]) Unless NP � DTIME [n

logn

], the dense SET COVER

is not NP-hard.

We conjecture that SET COVER cannot be approximated to within a con-

stant factor.

Conjecture 1. The dense SET COVER cannot be approximated in polynomial

time to within a constant approximation ratio.

The second problem we discuss in this section is the �-dense STEINER TREE

problem. We note �rst in passing that for � >

1

2

, �-dense STEINER TREE

problem is a special case of the network STEINER TREE problem with edge

lengths 1 and 2, the problem which is still MAX-SNP-hard, Bern and Plassmann

[BP89]. The best known approximation ratio for the general problem is 1.644,

Karpinski and Zelikovsky [KZ97a]. For the dense STEINER TREE problem

the existence of a PTAS has been recently proven in Karpinski and Zelikovsky

[KZ97b].

Proposition 6. ([KZ97b]) There exists a PTAS for the �-dense STEINER TREE

problem.

It is not di�cult to see that there is a polynomial time reduction of the �-

dense SET COVER to the �-dense STEINER TREE problem, and vice versa.

Therefore, the similar result to Proposition 5 holds also for the dense STEINER

TREE problem.

Furthermore we conjecture,
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Conjecture 2. The dense STEINER TREE problem cannot be computed ex-

actly in polynomial time .

The third problem, VERTEX COVER, is one of the �rst NP-hard op-

timization problems for which the approximation algorithms were proposed

([GJ79]). The problem is known to be MAX-SNP-hard, and the well-known

2-approximation algorithm is also believed to be the best possible (cf. [H97]). In

Karpinski and Zelikovsky [KZ97b] the new approximation algorithm is designed

for dense VERTEX COVER problems beating the approximation ratio 2.

We call a graph G = (V;E) everywhere �-dense if its minimum degree is at

least �� j V j. We call G �-dense if j E j� �� j V j

2

.

Proposition 7. ([KZ97b]) There exists a polynomial time approximation algo-

rithm for the VERTEX COVER problem on �-dense graphs with approximation

ratio

2

2�

p

1��

.

For the everywhere dense instances we get

Proposition 8. ([KZ97b]) There exists a polynomial time approximation al-

gorithm for the VERTEX COVER problem on everywhere �-dense graphs with

approximation ratio

2

1+�

.

Proposition 7 and 8 show that the density do help essentially in approximating

the VERTEX COVER problem. Can we expect though existence of a PTAS for

the dense VERTEX COVER problem?

The answer is no, as the everywhere �-dense (and �-dense) VERTEX COVER

is MAX SNP-hard. (cf. [KZ96], [CT96]). This is due to the following densi�cation

construction. Start with a general instance (a graph G with n vertices) of the

VERTEX COVER, and densify it by joining its all vertices with all vertices of a

clique of size

�

1��

n. The resulting graph is everywhere �-dense. An existence of

�-approximation algorithm for dense instances of VERTEX COVER entails now

also �(1+�)-approximation algorithm for the general VERTEX COVER problem

which is MAX-SNP-hard.

Proposition 9. ([CT96], [KZ96]) The dense VERTEX COVER problem is

MAX-SNP-hard.
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4 Dense BANDWIDTH MINIMIZATION

We discuss now the problem of approximability of dense instances of the BAND-

WIDTH problem. The BANDWIDTH problem has a long and very interesting

history, and a number of important technical applications (cf., e.g. [CCDG82]).

It belongs also to the class of so called layout problems and is one of hardest

in this class ([DSS94]). Its approximability status resembles the BISECTION

problem discussed in Section 2 in what there is a general lack of approximation

algorithms with essentially sublinear approximation ratios and on the other hand

it lacks also any unapproximability results. The situation on dense instances of

the BANDWIDTH was even more di�cult than for the dense BISECTION, for

which we have constructed a PTAS (see Section 2). For the dense BANDWIDTH

however, even the existence of a constant ratio approximation algorithms was an

open problem. The positive result on existence of a PTAS for the dense BISEC-

TION illustrates also the di�culty of proving unapproximability result for the

general BISECTION problem. It indicates that the standard method of reduc-

ing balanced (50/50) MAX-CUT to BISECTION on the complementary graph

cannot work for a good reason. The balanced MAX-CUT is MAX-SNP-hard (cf.

[PY91]), however by complementing a sparse graph we get a dense one on which

the BISECTION is approximable.

The situation with the BANDWIDTH is, in fact, even more subtle in this

respect. The standard graph operations or a slight densi�cation seem to destroy

the structure of the instance completely.

We give now an exact formulation of the problem.

� BANDWIDTH: Given a graph G = (V;E), compute the numbering of its

vertices such that the maximumdi�erence between the numbers of adjacent

vertices is minimal.

We de�ne also the directed BANDWIDTH problem.

� DBANDWIDTH: Given a directed graph G = (V;E), compute the num-

bering of its vertices as above such that for every vertex v its numbering is

greater than any numbering of a vertex u such that (u; v) 2 E.

The DBANDWIDTH problem corresponds to that of minimizing the bandwidth

of an upper triangular matrix by simultaneous row and column permutations (cf.

[GGJK78]).
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The problem is known to be NP-hard even if restricted to binary trees (cf.

[GGJK78]), or caterpillars with hairs of length at most 3 [M83]. This makes the

BANDWIDTH one of the very rare combinatorial problems which are compu-

tationally 'hard' for trees. Interestingly, the problem is e�ciently computable

for complete trees [Sm95]. Only a very few special cases of this problem are

known to have sublinear approximation ratio algorithms, among them log n-

approximation algorithm for the caterpillars ([HMM91]). There are no sublinear

n

�

-approximation algorithms known for the BANDWIDTH problem even if re-

stricted to trees.

We consider here the BANDWIDTH problem on the everywhere dense graphs.

Using a randomized placing technique combinedwith the special perfect matching

construction Karpinski, Wirtgen and Zelikovsky [KWZ97] proved.

Proposition 10. ([KWZ97]). There exists a randomized polynomial time

approximation algorithm for the BANDWIDTH problem on everywhere dense

graphs with approximation ratio 3.

Using a more constrained nature of DBANDWIDTH the similar techniques

yield.

Proposition 11. ([KWZ97]). There exists a randomized polynomial time ap-

proximation algorithm for the DBANDWIDTH problem on everywhere dense

graphs with approximation ratio 2.

It is still an open problem whether there are constant ratio approximation

algorithms for 'dense' instances of the BANDWIDTH, and the DBANDWIDTH.

A challenging question remains whether there exist PTASs for the dense BAND-

WIDTH problems, or whether some of these problem are in fact MAX-SNP-hard.

5 Summary of Dense Approximation Results

We present here a table summarizing the results of Sections 2-4 with the best

known approximation results, and the best up to date nonapproximability results

on dense problems.
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Problem

Approx. Approx.

Ref.

Ratio Hardness

DENSE MAX-SNP PTAS | [AKK95]

DENSE MAX-CUT PTAS | [AKK95],[FV96]

DENSE MAX-DCUT PTAS | [AKK95]

DENSE

MAX-HYPERCUT(d)

PTAS | [AKK95]

DENSE

DENSE-K-SUBGRAPH

PTAS | [AKK95]

EVERYWHERE

DENSE SEPERATOR

PTAS | [AKK95]

EVERYWHERE

DENSE BISECTION

PTAS | [AKK95]

EVERYWHERE

DENSE MIN-K-CUT

PTAS | [AKK95]

DENSE MIN-LINEAR-

ARRANGEMENT

PTAS | [AFK96]

DENSE d-DIMENSIONAL-

ARRANGEMENT

PTAS | [AFK96]

DENSE MIN-CUT-

LINEAR-ARRANGEMENT

PTAS | [AFK96]

DENSE SET COVER

T

c

c � lnn OPEN [KZ97b]

DENSE STEINER TREE PTAS | [KZ97b]

DENSE VERTEX COVER

2

2�

p

1�"

MAX-SNP-hard [KZ97b]

EVERYWHERE

DENSE VERTEX COVER

2

1+"

MAX-SNP-hard [KZ97b]

EVERYWHERE

DENSE BANDWIDTH

3 OPEN [KWZ97]

EVERYWHERE

DENSE DBANDWIDTH

2 OPEN [KWZ97]

Table 1: Table of known dense approximability results.

11



6 Polynomial Time Approximability of Dense

Weighted Instances of NP-Hard Problems

The natural instances of optimization problems involve also weights (cf. [GJ79])

while the results studied before were concerned mainly with 0; 1 cases. In Arora,

Karger, Karpinski [AKK95], the dense MAX-CUT PTAS can be adjusted as to

work also for the dense MAX WEIGHT CUT problem ([GJ79]) for the case

of weights being bounded by B. In this case the algorithm produces a cut of

weight at least maximum weight of a cut minus �n

2

B. This and also other

bounded weight problems were considered briey in Goldreich, Goldwasser and

Ron [GGR96], and Frieze and Kannan [FK97]. Both papers evaluate the addi-

tional costs of handling bounded weights instead of 0,1 weights.

In a recent paper Fernandez de la Vega and Karpinski [FK97] gave the �rst

polynomial time approximability characterization of dense (unbounded) weighted

instances of MAX WEIGHT CUT, and MAX WEIGHT BISECTION, and some

other dense weighted NP-hard optimization problems, in terms of their empirical

weight distribution. The crucial point of this paper is a new unbounded weight

Sampling Lemma. The reader is referred to [FK97] for details.

7 Further Research and Open Problems

It remains to be seen whether the techniques used with success in the dense

instances of NP-hard optimization problems, like approximating smooth higher

degree integer programs by linear programs, might be useful in approximating

general problems. Perhaps some other, di�erent from exhaustive sampling meth-

ods can be developed for the nondense instances as well. Another interesting

issue is to develop new more e�cient techniques for the dense unbounded weight

instances of the optimization problems for which costs of allowing weights are

not prohibitively high.

On the level of speci�c dense problems discussed before, it would be interesting

to shed some light on the Conjectures 1 and 2. Is there even more dramatic
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improvement in approximation ratio for the dense SET COVER, like o(log n),

still possible (cf. Proposition 4)?

One of the most challenging open dense problems today is the dense (every-

where dense) BANDWIDTH problem. Is there an approximation ratio below 3

(cf. Proposition 10), and more strongly, is there a PTAS possible for this prob-

lem, or on the lower bound side, is this problem 'approximation hard' in some

sense?
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