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Abstract

We prove the �rst exponential lower bound on the

size of any depth 3 arithmetic circuit with un-

bounded fanin computing an explicit function (the

determinant) over an arbitrary �nite �eld. This

answers an open problem of [N91] and [NW95] for

the case of �nite �elds. We intepret here arith-

metic circuits in the algebra of polynomials over

the given �eld. The proof method involves a new

argument on the rank of linear functions, and a

group symmetry on polynomials vanishing at cer-

tain nonsingular matrices, and could be of inde-

pendent interest.
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Introduction

In this paper we are interested in a fundamen-

tal problem of computing functions by unbounded

fanin arithmetic circuits of depth 3. Unlike the

boolean circuits, general arithmetic circuits of

depth 3 are surprisingly powerful. They can com-

pute (via polynomial interpolation) in polynomial

size any symmetric function. To date however the

best lower bound known for general arithmetic cir-

cuit size was only slightly superlinear 
(n log n)

([S73]).

In this paper we prove the �rst superpolynomial

(in fact exponential) size lower bound on depth 3

arithmetic unbounded fanin circuits computing an

explicit function, the determinant function, over an

arbitrary �nite �eld. In this paper, we interpret the

arithmetic circuits in the polynomial algebra over

the given �eld.

The determinant function is especially interest-

ing because of its algebraic universality property

([V79]) over arbitrary �elds.

We refer a general reader to [L84] and [H77] for all

the needed notions used in our proof.

We denote by F = F

q

a �nite �eld with q elements.

We shall study �elds for q � 3 (for q = 2, the

boolean case, the lower bound could be derived

from [R87] and [V79]).

We study the representation of Det = Det

n

=

P

�

(�1)

sgn(�)

X

1;�(1)

� � �X

n;�(n)

in the polynomial

algebra F [X

1;1

; : : : ;X

n;n

] in the form of a depth 3



arithmetic circuit, or equivalently, an expansion:

Det =

X

1�`�N

Y

m

L

`;m

(1)

where each L

`;m

=

P

i;j

a

(`;m)

i;j

X

i;j

+ a

(`;m)

0

2

F [X

1;1

; : : : ;X

n;n

] is a linear function in the vari-

ables X

1;1

; : : : ;X

n;n

. Our purpose is to prove the

following exponential lower bound on the size of a

representation (1). From this, the lower bound on

the size of any depth 3 arithmetic unbounded fanin

circuit computing the determinant follows.

Theorem For any q � 3 there is a constant � > 1

such that in a representation (1) the number of

terms N = 
(�

n

).

Representations of the form (1), but under the re-

striction that L

`;m

are (homogeneous) linear forms,

rather than functions, were considered in [G82]

(over an arbitrary �eld), where lower bounds on

N were established. The basic idea in [G82] was

to design a linear operator on polynomials into ma-

trices which maps a product

Q

m

L

`;m

into a matrix

of a bounded rank. This approach was also used

in [R87]. Later a di�erent method of proving lower

bounds on N (again under a similar to [G82] as-

sumption that the degree of each product

Q

m

L

`;m

,

i.e. the number of linear functions in the product,

is bounded) was proposed in [NW95]. The core of

the method was to estimate the dimension of all

the partial derivatives (up to a certain order).

On the other hand, the circuits with a bounded

depth (and unbounded fanin) were studied in con-

nection with the boolean AC

0

class and an expo-

nential lower bound on their sizes was proved in

[R87], [S87]. The methods in both papers were

working just for boolean circuits, and it would be

interesting to explore whether they could be ex-

tended to arbitrary �nite �elds (the present au-

thors were not able to do it). These boolean

methods imply, in particular, an exponential lower

bound on the size of any bounded depth boolean

circuit for determinant (and consequently, of any

arithmetic circuit over F

2

). The representation (1)

can be viewed as a depth 3 arithmetic circuit. In

contrast to boolean circuits we interpret arithmetic

circuits (1) as an identity in the polynomial algebra

(vs. the algebra of functions over F , see section 1

below). Recently, Razborov [R98] was able to gen-

eralize our results to the algebra of functions over

F .

An important problem remains open to get lower

bounds for representations of the kind (1), or for

the more general bounded depth circuits, over the

arbitrary �elds including zero characteristic.

The rest of the paper is devoted to the proof of

the Theorem. In Section 1 we treat the represen-

tation (1) and its partial derivatives in the alge-

bra of functions over F and partition the terms

Q

m

L

`;m

into two groups, regarding the rank of the

family of linear functions fL

`;m

g

m

being greater or

less J than, respectively, a certain integer (thresh-

old). We show that the products

Q

m

L

`;m

with

a large rank vanish (and moreover with a large

multiplicity) everywhere out of a small fraction of

points from F

n

2

(which could be informally viewed

as \erroneous" points). For the products with a

small rank we estimate from above the dimension

of the set of all its derivatives (up to some order)

restricted to the algebra of functions over F .

In Section 2 we study linear combinations of mi-

nors (of a �xed size) of a matrix vanishing at all the

points (in other words, matrices) out of an \erro-

neous" set, because minors are just the derivatives

of Det. Since the full linear group GL

n

(F ) acts

on linear combinations of minors, we show that a

small number of shifts by means of elements from

GL

n

(F ) allow to get rid of the \erroneous" set and

to obtain a linear combination of minors vanishing

at all nonsingular matrices. Finally, we prove that

it is impossible.

1 A product of linear functions in the

algebra of functions over a �nite �eld

Denote by A the algebra of all functions f : F

n

2

!

F which can be naturally identi�ed with the quo-



tient algebra

F [X

1;1

; : : : ;X

n;n

]=(fX

q

i;j

�X

i;j

g

1�i;j�n

)

For any set E � F

n

2

of n � n matrices one can

consider (as in [S87]) a quotient algebra A

E

of A

over the ideal of all the functions from A vanish-

ing everywhere out of E. Obviously, dimA

E

=

dim

F

A

E

= q

n

2

� j E j. Conversely, any quotient

algebra of A equals to A

E

for a suitable E (we do

not use this remark). Talking about some elements

from A

E

we mean the images of the elements from

A in the quotient algebra.

Fix a constant  > 0 satisfying the inequality  <

q

�q=2

. Then there exists a constant � such that

q

q

< q

�

< 

�s

(2)

Introduce also a threshold

r = [� n] (3)

For the time being we �x a product

Q

m

L

`;m

(of

linear functions (see (1)). By its rank r

`

we mean

the dimension of the family of the linear functions

fL

`;m

g

m

, in other words, the rank of the matrix of

their coe�cients (a

(`;m)

i;j

; a

(`;m)

0

) (which has n

2

+ 1

columns, hence r

`

� n

2

+ 1).

We treat separately two cases: when the rank r

`

is less or greater, respectively, than the threshold

r and consider the restriction of the product along

with its derivatives onto the space F

n

2

(in other

words, the points de�ned over F ).

Large rank

Let r

`

� r. Then the number of points from space

F

n

2

(of all n�n matrices with the entries from F ),

at which at most n among the linear functions

fL

`;m

g

m

vanish, does not exceed

q

n

2

�r

`

((q � 1)

r

`

+

  

r

`

1

!!

(q � 1)

r

`

�1

+ : : :+

  

r

`

dne

!!

(q � 1)

r

`

�dne

)

since one can choose a basis L

1

; : : : ;L

r

`

of r

`

func-

tions among fL

`;m

g

m

and assign in an arbitrary

way the values for L

1

; : : : ;L

r

`

(among these val-

ues at most n are zeros). A described point will

play a role of an \erroneous" point at which all

the derivatives of the product

Q

m

L

`;m

of the or-

der dne may not vanish. The obtained bound can

be estimated from above by

q

n

2

�r

`

  

r

`

dne

!!

(q � 1)

r

`

�dne

(n+ 1) (4)

since the sequence (q � 1)

r

`

; (

�

r

`

1

�

)(q � 1)

r

`

�1

; : : :

increases until (

�

r

`

dr

`

=qe

�

)(q� 1)

r

`

�dr

`

=qe

and beyond

that decreases (taking into account (3) and the left

inequality (2)).

Now we show that (4) can be estimated from above

by

q

n

2

�

n

(5)

for a suitable � < 1 depending on q; ; �. Denote

r = y

0

qn (for an appropriate y

0

> 1 (see (3)))

and r

`

= yqn where y � y

0

. Using Stirling's for-

mula one concludes that (4) is less (up to a factor

polynomial in n) than q

n

2

(

yq(q�1)

(yq�1)q

)

yqn

(

yq�1

q�1

)

n

. It

su�ces to check that (

yq(q�1)

(yq�1)q

)

yq

(

yq�1

q�1

) < �

1

for

any y � y

0

and a certain �

1

< 1 depending only on

q; y

0

. The logarithmic derivative q log

y(q�1)

yq�1

(over

y) of the left side of the latter inequality is nega-

tive for any y > 1, hence the left side decreases for

y � 1 (for y = 1 it equals 1), that proves (5).

Small rank

Now let r

`

< r.

Note that derivatives of all the orders (actually, we

are interested just in the order dne) of the product

Q

m

L

`;m

lie in the F -linear hull of the products

of the form L

i

1

1

� � � L

i

r

`

r

`

for all nonnegative integers

i

j

; 1 � j � r

`

. When subsequently we restrict these

derivatives onto the space F

n

2

, thus treating them

as elements from the algebra A, they would lie in

the F -linear hull of the products L

i

1

1

� � � L

i

r

`

r

`

, 0 �

i

j

� q � 1; 1 � j � r

`

. Therefore, the dimension

of the set of these images in A of the derivatives is

less than q

r

.

The derivatives of the order dne of Det are exactly

the minorsM

I;J

of the size (n�dne)�(n�dne),



where I, J are subsets of the sets of rows and

columns, respectively, j I j=j J j= n � dne. We

take all the derivatives of the order dne of both

sides of (1) and subsequently restrict them onto

F

n

2

(thus, treating them as elements from the alge-

bra A). Denote by E � F

n

2

the union of the (\er-

roneous") sets considered above for all the prod-

ucts from (1) of big ranks. Then the images in

the quotient algebra A

E

of taken derivatives van-

ish for all big rank products and we conclude with

the following Lemma (making use also of (5))

Lemma 1 For any � > 1, if Det has a represen-

tation (1) with N < �

n

then the set of all minors

M = fM

I;J

g

jIj=jJj=n�dne

has the dimension less

than �

n

q

r

in the quotient algebra A

E

for an appro-

priate subset E � F

n

2

of the size j E j� q

n

2

(��)

n

.

Remark. The statement of the Lemma is nontriv-

ial when � satis�es the following inequalities

�� < 1; �q

�

< 

�2

(6)

The second inequality means that the dimension of

the minors from the Lemma is less than the number

(

�

n

dne

�

)

2

of all (n�dne)� (n�dne) minors (due

to the Stirling's formula and (3)). Furthermore,

any small enough � > 1 satis�es (6) due to the

right inequality (2), and any such � one could use

in the statement of the Theorem (see above).

Henceforth, we assume that � satis�es (6).

2 Group symmetry on polynomials van-

ishing at matrices

Denote by H (being isomorphic to F

(

n

dne

)

2

) the F -

space of all the linear combinations of the minors

from M . Observe that nonzero elements of H are

also nonzero inA (a stronger statement will appear

below in Lemma 3 ), thereby one can think that

H � A.

For any point (matrix) a 2 F

n

2

denote by H

a

2 H

a hyperplane consisting of all f 2 H such that

f(a) = 0. Lemma 1 states actually that the codi-

mension in H

c = codim

0

@

\

a62E

H

a

1

A

< �

n

q

r

Because of the second inequality (6) and again the

Stirling's formula we get the inequality

dimH > c �

n

(7)

for a suitable constant � > 1.

Denote the full linear groups G = Gl

n

(F ) � F

n

2

,

it is well known that

jGj = (q

n

� 1)(q

n

� q) � � � (q

n

� q

n�1

)

� q

n

2

(q � 2)=(q � 1)

(remind that q � 3). For any g 2 G one can con-

sider an F -linear operator T

g

: H ! H de�ned

for any f 2 H and any matrix a 2 F

n

2

by the

formula (T

g

(f)) (a) = f(ga) (moreover, one could

de�ne T

g

1

by the same formula for any not neces-

sarily nonsingular matrix g

1

2 F

n

2

). The latter

formula de�nes an operator T

g

: H ! H since the

minors fromM of the matrix ga are the linear com-

binations (with the coe�cients depending only on

g) of the minors from M of a. Thus, T

g

provides a

representation of G because T

g

1

g

2

= T

g

1

T

g

2

(more

precisely, this representation is the direct sum of

�

n

dne

�

copies of dne-th wedge power of the natu-

ral representation of G on F

n

).

Clearly T

g

�1
(H

a

) = H

ga

. Consider now a plane

P =

\

a2GnE

H

a

� H;

its codimension c

1

= codimP � c. Also denote

E

1

= E \G. So, from now on we restrict ourselves

to considering just matrices from G (rather than

from the whole set of matrices F

n

2

).

Now assume that a subset S � G satis�es the fol-

lowing property

[

g2S

g (G n E

1

) = G (8)



For any g 2 G we have

T

g

�1
(P ) =

\

a2GnE

1

T

g

�1
(H

a

) =

\

b2g(GnE

1

)

H

b

:

Therefore, we get from (8) that

\

b2G

H

b

=

\

g2S

T

g

�1
(P ) (9)

Next we need the following combinatorial lemma

(see e.g. [L75]).

Lemma 2([L75]) Let (V;R) be a directed (regular)

graph with jV j = m vertices and with the in-degree

and the out-degree of each vertex both equal to

d. Then there exists a subset U � V of a size

O(

m

d

log(d + 1)) such that for any vertex v 2 V

there is a vertex u 2 U forming an edge (u; v) 2 R.

Construct a directed regular graph with the set

of vertices G and an edge (g

2

; g

1

) if and only if

g

�1

2

g

1

62 E

1

. Applying to this graph Lemma 2 sup-

plies us with a set S � G such that for any g

1

2 G

there is g 2 S satisfying g

�1

g

1

62 E

1

, or equiva-

lently g

1

2 g(G n E

1

). Thus, S ful�lls (8).

According to Lemma 2 and taking into account

Lemma 1 and the �rst inequality (6)

jSj � O

 

jGj

jGj � q

n

2

(� �)

n

n

2

log q

!

� O(n

2

):

Finally, we show that

T

b2G

H

b

6= 0. Indeed,

codimT

g

�1(P ) = codimP = c

1

� c for any g 2 G.

Hence codim

T

g2S

T

g

�1
(P ) � O(jSj c

1

) � O(n

2

c)

which is less than dimH because of (7). Therefore,

0 6=

T

g2S

T

g

�1
(P ) =

T

b2G

H

b

(see (9)). Take an

arbitrary 0 6= f 2

T

b2G

H

b

, this means that f van-

ishes at all nonsingular matrices. So, to complete

the proof of the Theorem (see the introduction),

we need the following lemma.

Lemma 3 No multilinear polynomial 0 6= f 2

F [X

1;1

; : : : ;X

n;n

] vanishes at all nonsingular ma-

trices (note that q � 3).

Proof of Lemma 3 goes by induction on n. The

base of induction for n = 1 is evident. For the

inductive step suppose the contrary. Some variable

occurs in f , permuting the rows and the columns

we can assume w.l.o.g. that X

n;n

occurs in f . Then

f = X

n;n

f

1

+ f

0

, where f

1

6� 0, f

0

are multilinear

polynomials being independent from X

n;n

. On the

other hand, Det = X

n;n

M

n;n

+ h, where M

n;n

is

(n� 1)� (n� 1) minor and h is independent from

X

n;n

.

For the time being, specify the variables X

k;`

=

x

(0)

k;`

2 F for all 1 � k; ` � n � 1 in such a way

that M

nn

(fx

(0)

k;`

g) 6= 0 (so far, there are many pos-

sibilities for specifying). Also we get a multilinear

polynomial

f(fx

(0)

k;`

g) =

X

n;n

f

1

(fx

(0)

k;`

g) + f

0

(fx

(0)

k;`

g) =

X

n;n

f

1

+ f

0

;

where f

1

, f

0

,

2 F [X

n;1

; : : : ;X

n;n�1

;X

1;n

; : : : ;X

n�1;n

]. For any

set of the values of the variables

X

n;k

= x

(0)

n;k

2 F; X

k;n

=

x

(0)

k;n

2 F; 1 � k � n� 1 (10)

there are exactly (q � 1) � 2 values of X

n;n

such

that Det does not vanish. Therefore, the multilin-

ear polynomials f

1

, f

0

vanish identically: indeed,

otherwise for some values (10) a nonvanishing iden-

tically linear polynomial

X

n;n

f

1

(fx

(0)

n;k

; x

(0)

k;n

g

k

)+

f

0

(fx

(0)

n;k

; x

(0)

k;n

g

k

) 2 F [X

n;n

]

would have q � 1 � 2 roots.

On the other hand, there is an appropriate set of

values (10) for which the substitution of these val-

ues

~

f

1

= f

1

(fx

(0)

n;k

; x

(0)

k;n

g

k

) 2 F [X

1;1

; : : : ;X

n�1;n�1

]

provides a nonvanishing identically polynomial. As

we have seen above,

~

f

1

vanishes at any nonsingu-

lar (n � 1) � (n � 1) matrix fx

(0)

k;`

g

1�k;`�n�1

; that

contradicts to the inductive hypothesis and proves

Lemma 3. 2



3 Open Problems

An intriguing open problem remains to extend our

exponential lower bound for depth 3 arithmetic

circuits to arbitrary �elds including characteristic

zero.
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