
A Generalization of Wilkie's Theorem

of the Complement,

and an Application to Pfa�an

Closure

Marek Karpinski (Bonn)

�

Angus Macintyre (Edinburgh)

y

Abstract

Using a modi�cation of Wilkie's recent proof of o-minimality for

Pfa�an functions, we give an invariant characterization of o-minimal

expansions of IR. We apply this to construct the Pfa�an closure of

an arbitrary o-minimal expansion of IR.
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0 Introduction

In this paper we improve the main result of [W96] by weakening the assump-

tion that S is determined by its smooth functions.

We assume complete familiarity with [W96]. Wilkie starts with a weak

structure S which is o-minimal, and passes to

~

S ([W96], De�nition 1.6),

which should perhaps be called the Charbonel closure of S. Wilkie shows

that of S is DSF (determined by its smooth functions) then

~

S is closed under

complement, is the structure generated by S, and is o-minimal.

The main action in Wilkie's paper involves his 3.6. This result involves

reference to de�nitions of type 3.5. We observed after reading [W96] (our mo-

tivation came from our paper [KM97a] in which Sardian arguments abound)

that one may modify 3.5 so that the modi�cation of 3.6 remains true under

assumptions surely weaker than his DSF.

The original 3.5 involved subsets of IR

n

� IR

k

+

de�ned by conditions on

(x

1

; : : : ; x

n

; �

1

; : : : ; �

k

) of the form

9x

n+1

: : :9x

n+k�1

k

^

i=1

f

i

(x

1

; : : : ; x

n+k�1

) = �

i

where the f

1

; : : : ; f

k

are C

1

functions from IR

n+k�1

to IR which lie in

~

S.

A close look at [W96] shows that (without use of DSF) one gets o-

minimality of

~

S provided one has, instead of 3.6, the following for each

A 2

~

S

n

:

(3.6)

�

: For each N � 1 there exists k � 1, a k-modulus ��, and a set

S

N

� IR

n

� IR

k

+

, which is a �nite union of sets de�ned in the form

9x

n+1

: : :9x

n+k�1

k

^

i=1

f

i

(x

1

; : : : ; x

n+k�1

) = �

i

with the f

i

C

N

functions from IR

n+k�1

to IR which lie in

~

S, such that @

�

A �

S(mod ��) and S �

�

A(mod ��).

Now one looks for hypotheses on S, weaker than DSF, which permit an

inductive proof of (3.6)

�

along the lines of Wilkie's inductive proof of 3.6.

One such is given by:

De�nition 1. A prestructure hS

n

: n � 1i satis�es DC

N

for all N if for

each A 2 S

n

there exists an m � n such that for each N A is of the form

2



�[Z(f

N

)] where f

N

is a C

N

function in S, f

N

: IR

m

! IR, and � is the natural

projection IR

m

! IR

n

.

Obviously DSF impliesDC

N

for all N . Our re�nement of Wilkie's result

is:

Theorem 1. Suppose S is an o-minimal weak structure satisfying DC

N

for

all N . Then

~

S is o-minimal, and is the smallest structure containing S.

We prove also a converse:

Theorem 2. Let J be an o-minimal structure. Then there is an o-minimal

weak structure S satisfying DC

N

for all N and

~

S = J .

Indeed S can be chosen so that it satis�es DC

N

for all N in the strong

sense that we can take m = n in De�nition 1.

Theorem 1 needs only a small modi�cation to Wilkie's proof. Theorem 2

follows from a striking result in [DM96].

We applied Theorem 1 already in late 1996 to get o-minimality of sys-

tems got by adjoining to o-minimal S total C

1

functions "Pfa�an over S".

The proof used re�nements of the basic method of Khovanski [K91]. The

restriction to total functions was not seen by us as essential, but the C

1

assumption seemed hard to eliminate. This was �rst done by Speissegger

[S97], by a totally di�erent method.

By using the more routine part of [S97], and dispensing entirely with the

"T

1

-Pfa�an" terminology, we are now able to give a simple proof of the

o-minimality of Pfa�an (or, maybe better, Rolle) closure.

1 Proof of Theorem 1

Nothing in [W96] needs to be changed until 3.5, which should be replaced by

(3:5)

N

for each N , where (3:5)

N

is just like 3.5 except that f

i

is now assumed

only to be a C

N

element of

~

S.

The goal now is to show that if S satis�es DC

N

for all N then for each

n � 1, A 2

~

S

n

, and each N � 1:

(3:6)

N

There exists k � 1 (the N -complexity of A), a k-modulus �� (the

N -modulus of A) and a set S � IR

n

� IR

k

+

(the N -approximation of A)

which is a �nite union of sets de�ned by conditions of the form (3:5)

N

(the
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N -approximating constituents of A) such that @

�

A � S (mod ��) and S �

�

A (mod ��).

Now, Wilkie's Lemma 3.7 holds if 3.6 is replaced by (3:6)

N

for some �xed

N .

However, the statement and proofs of the subsequent lemmas need mod-

i�cation, though the basic ideas remain the same.

One wants �rst to show for A 2 S

n

that A satis�es (3:6)

N

for all N . We

will use the assumption of DC

N

for all N , and get the obvious analogue of

3.11. Thereafter nothing will need to be changed.

So, consider A 2 S

n

. Since we assume DC

N

for all N , there exists m � n

such that for each N there is a C

N

g

N

: IR

m

! IR, g

N

in S, A = �[Z(g

N

)].

Firstly, by inspection of the proof of Wilkie's Lemma 3.8, one sees that

(3:6)

N

holds for Z(g

N

).

Now (the crucial step) one inspects the proof of 3.10. This shows that if

N � m then (3:6)

N�m

holds for A (= �[Z(g

N

)]). The drop to N �m comes

about via the di�erentiations used in each application of 3.10. By replacing

N by N +m, we conclude that (3:6)

N

holds for A.

We thus have, in the obvious adaptation of Wilkie's notation,

Corollary (3:11)

N

Suppose S is o-minimal and satis�es DC

N

for all N . Let

n � 1, A 2 S

n

. Then (3:6)

N

holds for A.

>From here on, we can take up Wilkie's development without change. His

3.10 should in its general application be unwound to:

Let n � 1, A 2

~

S

n+1

, and suppose (3:6)

N+1

holds for A. Then (3:6)

N

holds for �[A], where � : IR

n+1

! IR

n

is the projection map onto the �rst n

coordinates.

His Lemma 3.12 goes through with (3:6)

N

replacing (3.6) in its two oc-

curences. His Theorem 3.13 becomes:

Assume S satis�es DC

N

for all N . Let n � 1 and suppose A 2

~

S

n

. Then

(3:6)

N

holds for A, for all N .

His proof simply goes through, and his Section 4 adapts (as he essentially

remarks at its outset) to our hypothesis. Theorem 1 is proved.

2 The Converse. Theorem 2

Let J be an arbitrary o-minimal structure on IR. The following is a remark-

able result of van den Dries and Miller [DM96] (inspired by unpublished work
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of Bierstone, Milman and Pawlucki):

Suppose A 2 J

n

, A closed. Then for each j � 1 there is a total C

j

f in

J with A = Z(f).

Rather more trivial is the fact that every element of J is a Boolean combi-

nation of closed sets (this follows from cell decomposition [D97]). Combining

this with Theorem 3, and using the usual equivalence

x 6= 0, (9y)(yx� 1 = 0)

one gets immediately

Theorem 2 Any o-minimal structure J is of the form

~

S, where S is an

o-minimal weak structure satisfying DC

N

for all N .

Proof Take S = J .

3 The Application to Pfa�an Closure

3.1 As Wilkie remarks at the end of [W96], our method permits a

relativization of his theorem on o-minimality of the structure based on the

(total) classical Pfa�an functions. A �rst version of this was shown to Wilkie

in late 1996. Later (less carefully presented) versions dealt with the case of

adjoining C

1

total functions Pfa�an over C

1

functions of an o-minimal

S. The restrictions to C

1

and total are blemishes, removed by Speissegger

[S97] in later, independent work relying heavily on work of Moussu - Roche

[MR91] and Lion - Rolin [LR96] (the latter inspired also by [W96]). While

the restriction to total was never really imposed by our original method, we

faced serious di�culties in trying to remove the C

1

assumption in certain

variations on Sard's Theorem (as in Wilkie's 2.7).

In this exposition we will pro�t from (a small) part of Speissegger's [S97]

to give a new proof of his main result, and to give a small generalization of

it. We stress that without access to Speissegger's preprint [S97] we would

have had to settle for a weaker result (albeit with a more perspicuous proof).

3.2 Rolle leaves (following Speissegger) Let U � IR

n

be open, and

! = a

1

dy

1

+ : : :+ a

n

dy

n

a 1-form on U of class C

1

. Let

S(!) = fy 2 U : a

i

(y) = 0 1 � i � ng:
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Let E be the closed subset of (U � S(!))� IR

n

de�ned by

f(y; x) :

X

a

i

(y)x

i

= 0g;

and let p : E ! U �S(!) be the projection to U �S(!). Let U

j

be the open

set fy 2 U : a

j

(y) 6= 0g. Then

p

�1

(U

j

) =

(

(y; x) : y 2 U

j

; x̂

j

= �

X

i 6=j

a

i

(y)

a

j

(y)

x

i

)

and the right hand side is homeomorphic to U

j

� IR

n�1

via the map '

j

given

by

(y; x) 7! (y; x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

):

Also, if � is the projection U

j

� IR

n

to U

j

, we have for (x; y) 2 p

�1

(U

j

),

p(y; x) = y, and �'

j

(y; x) = y.

If y 2 U

j

, we have the homeomorphism

'

j;x

: p

�1

(y)

'

j

�!

fyg � IR

n�1

! IR

n�1

Now if y 2 U

i

,

'

i;y

� '

�1

i;y

(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

) = '

i;y

(t);

where

'

i;y

(t) = (x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

):

So '

i;x

(t) = (p(t); x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

) and p(t) = y.

So t = (y; x

1

; : : : ; x

i�1

; x

i

; x

i+1

; : : : ; x

n

) some x

i

and '

j;y

(t) = (x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

).

Thus '

j;y

�'

�1

i;y

(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

) is linear and (p;E;U n S(w)) is

a vector bundle of dimension n� 1.

An integral manifold of w = 0 is an (n � 1) dimensional immersed C

1

submanifold on which the above is the tangent bundle.

A leaf of w = 0 is a Rolle leaf if L is an embedded submanifold of U nS(w),

closed in UnS(w), such that for each C

1

curve  : [0; 1]! U with (0); (1) 2

L there is t 2 [0; 1] with (a

1

((t)); : : : a

n

((t))), grad (t) = 0.
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The crucial example is (as in Speissegger):

Example: V � IR

n

, nonempty, open, connected, f : V ! IR C

1

such that

@f

@y

i

(y) = F

i

(y; f(y)); y 2 V; 1 � i � n:

Then the graph �(f) of f is a Rolle leaf on U = V � IR of

! = F

1

dy

1

+ : : :+ F

n

dy

n

� dy

n+1

:

As Speissegger remarks, there is no reason to restrict to integrable

1-forms, when one is working over an o-minimal theory (Section 2 of [S97],

routine Remark).

3.3 Here is our setting. S is an o-minimal structure in Wilkie's sense.

Let U be an open element of S

n

, and a

1

; : : : ; a

n

C

1

functions U ! IR in S.

Let ! = a

1

dx

1

+ : : :+ a

n

dx

n

, so clearly ! can naturally be called "in S". Let

L be a Rolle leaf for ! = 0.

Let S[L] be the structure generated by S and L. Then Speissegger proved

that S[L] is o-minimal. Iteration of these operations S 7! S[L] leads to a

natural notion of Pfa�an (or, perhaps better, Rolle) closure of S.

Speissegger's proof has a distinctly clear and elementary component (Sec-

tion 2), and then a longer section involving "T

1

- Pfa�an" sets. We will

show that the latter (which is hardly constructive) is unnecessary, and can

be replaced by use of our Theorem 1.

3.4 Let S be an o-minimal structure. We pass to Rolle(S), a prestructure

extending S, where (Rolle(S))

n

consists of all �nite unions of sets

A \ L

1

\ : : : \ L

k

(*)

where A 2 S

n

, and each L

i

is a Rolle leaf associated with data (U

j

; !

j

) in S.

We will show, rather easily, that Rolle(S) is an o-minimal weak structure

in Wilkie's sense, and satis�es DC

N

for all N .

For various reasons we need to represent sets of the form (*) as projections

of sets of the same form, but where U

j

= U for all j. The idea is standard.

We work in (IR

n

)

k

and let U = U

1

� : : :�U

k

. Use coordinates x

ji

(1 � i � n)

for the j

th

copy of IR

n

in (IR

n

)

k

, and let

~!

j

=

X

i

a

ji

(x

j1

; : : : ; x

jn

)dx

ji

7



where

!

j

=

X

a

ji

(x

1

; : : : ; x

n

)dx

i

:

The ~!

j

are forms on U . Let

~

L

j

= U

1

� : : :� U

j�1

� L

j

� U

j+1

� : : :� U

n

:

Clearly

~

L

j

is a Rolle leaf for ~!

j

on U.

Now consider

A

k

\

~

L

1

\ : : : \

~

L

k

\4;

where 4 is the diagonal copy of IR

n

in (IR

n

)

k

. This set is of form (*), and

its projection to the �rst copy of IR

n

gives our original set.

The main point of this is that to prove uniform bounds for the number of

connected components of sets (*) we can assume that the U

i

are the same.

3.5 Lemma 3 Rolle(S) is a weak structure.

Proof The product condition (WS3) follows from a variant of the argument

above. (WS4), the closure under GL

n

action, is obvious. 2

Lemma 4 Rolle(S) satis�es (WS6).

Proof Using the �nal remark of 3.4, this follows from Corollary 2.7 of [S97],

which has a straightforward proof. 2

Lemma 5 Rolle(S) satis�es WS6.

Proof We repeatedly use

i) union commutes with projection;

ii) the class of projections (from various IR

m

) of closed sets is closed under

intersection.

It clearly su�ces to show that any L is the projection of a closed set in

Rolle(S), where L is a Rolle leaf for ! on U , where ! and U are in S

n

.

Do a cell-decomposition in S to express U as a �nite union of open cells

U

i

in S, each equipped with a C

1

homeomorphism f

i

: IR

n

' U

i

; f

i

in S.
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L

i

= L \ U

i

is Rolle on U

i

(cf. [S97], Lemma 1.4) for !

i

= ! � U

i

, or is ;.

Also, ~!

i

= (f

i

)

�

!

i

is a C

1

-form on IR

n

, and (f

i

)

�

L

i

is a Rolle leaf for ~!

i

.

So it su�ces to prove the result for U = IR

n

. Let

! = a

1

dx

1

+ : : :+ a

n

dx

n

as usual. Let U

n

= f�x : a

n

(�x) 6= 0g. Go to a �nite decomposition (in S) of

U

n

as a union of cells C

1

-homeomorphic to IR

n

. Pull back again, to reduce

to U = IR

n

, a

n

(�x) never 0. Then it is standard that L is the graph of a C

2

function. This concludes the proof. 2

Corollary Rolle(S) is o-minimal.

So Rolle(S) enjoys all the nice properties detailed by Wilkie. In par-

ticular,

^

Rolle(S) is o-minimal, closed under partial di�erentiation, has the

unrestricted Sard Property, etc.

Now we come to the last step which will give us the main result that

Rolle(S) generates an o-minimal structure.

Lemma 6 Rolle(S) satis�es DC

N

for all N .

Proof This is a signi�cant re�nement of the proof of the preceding lemma

(which had to be done �rst, to exploit the o-minimality of

^

Rolle(S)).

Now we have to prove the following (exploiting the tricks detailed at the

start of the previous proof):

If U 2 S

n

is open, and ! is a C

1

1-form on U , also "in" S, and L is a

Rolle leaf for !, then there exists m � n such that for each N � 1 there is a

C

N

f

N

: IR

m

! IR in

~

S so that L = � [Zer(f

N

)], where � : IR

m

! IR

n

is the

usual projection.

This time a more delicate decomposition of U is required, depending on

N , and one has to ensure m remains bounded throughout.

Fix N . First decompose U (in S) into C

N

cells each C

N

homeomorphic

to IR

n

(in S) [DM96], so reducing (always with attention to m) to the case U

is a C

N

cell. Then partition U (in S) into a closed set D and a dense union

of C

N

cells on which w is a C

N

form (use [DM96]). So we reduce to the cases

(for U)

i) D \ L;

9



ii) U a C

N

cell, w C

N

.

For the latter, pull back to IR

n

, so U = IR

n

. Then as in the previous proof

we can reduce to U = IR

n

and L the graph of a C

N

function 	 on IR

n�1

, so

L is Zer (	(x

1

; : : : ; x

n�1

)� x

n

), and 	(x

1

; : : : ; x

n�1

) � x

n

is a C

N

function

in

^

Rolle(S).

For the former, write D (in S) as a disjoint union of connected manifolds

D

i

� U , of dimension � n�1. Within D

i

, consider the S-de�nable subset of

points where the tangent space is included in ker (!). Decompose this again

into de�nable connected submanifolds in S. Any one of these is either � L

or disjoint from L ([S97], 1.4). Thus L\D is a �nite union of sets in S, and

so is in S. Thus it satis�es DC

N

all N , and we are (essentially) done. One

easily checks that the m remains bounded. 2

So

Theorem 7 (Speissegger). Rolle (S) generates an o-minimal structure.

Proof. By Theorem 1. 2

3.6 (Minor) Re�nements We have used the fact that the forms ! are

C

1

rather systematically. However we can make some improvements, with

minimal e�ort.

Theroem. Let S be o-minimal, U � IR

n

a connected open set in S. Let

f : U ! IR

n

be a C

1

function satisfying a system

@f

@x

i

= P

i

(�x; f(�x)) ; 1 � i � n;

where the P

i

are continuous, and in S. Then f is in Rolle (S), so in

particular f lives in an o-minimal extension of S.

Proof. Break up U (in S) into �nitely many connected open V and a D, so

that the union of the V is dense in U , with complement D, and the P

i

are

C

1

on each V . Then f � V is in Rolle (S), and the graph of f on U is got

by closure.

In particular,

Corollary (Speissegger) Rolle (S) is closed under integration of continuous

functions of one variable.
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4 Concluding Remarks

We came to this topic from our very explicit work [KM97a] on bounds for

Vapnik-Chervonenkis dimension of semi-Pfa�an families. There one made

constant appeal to Sardian arguments. The power of the idea there convinced

us that a "Sardian" approach to o-minimality would be fruitful. The work

of Charbnel and Wilkie certainly con�rms this.

Our 1996 work gave results signi�cantly weaker than those reported here,

though we could do the closure under integration of the last corollary. Speiss-

egger got the optimal result, using the quite heavily disguised version of

Wilkie's technology due to [LR96]. Our proof here is explicitly in the style

of Wilkie.
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