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Abstrat

We study the approximability of dense and sparse instanes

of the following problems: the minimum 2-edge-onneted

(2-EC) and 2-vertex-onneted (2-VC) spanning subgraph,

metri TSP with distanes 1 and 2 (TSP(1,2)), maximum

path paking, and the longest path (yle) problems. The

approximability of dense instanes of these problems was left

open in Arora et al. [3℄. We haraterize the approximability

of all these problems by proving tight upper (approximation

algorithms) and lower bounds (inapproximability). We

prove that 2-EC, 2-VC and TSP(1,2) areMax SNP-hard even

on 3-regular graphs, and provide expliit hardness onstants,

under P 6= NP. We also improve the approximation ratio

for 2-EC and 2-VC on graphs with maximum degree 3.

These are the �rst expliit hardness results on sparse and

dense graphs for these problems. We apply our results to

prove bounds on the integrality gaps of LP relaxations for

dense and sparse 2-EC and TSP(1,2) problems, related to

the famous metri TSP onjeture, due to Goemans [18℄.

1 Introdution

Reently, onsiderable e�orts of researhers were put

into approximating optimization problems on speial

instanes. It turned out that even when one restrits

the input, most of the known problems still remain

NP-hard. Of partiular interest are the problems on

dense and sparse instanes, see reent surveys [23, 24℄

for referenes. We study the following fundamental

ombinatorial optimization problems.

2-EC: 2-edge-onneted (or 2-EC) spanning subgraph

problem, where given a 2-EC graph, the goal is to �nd
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a 2-EC spanning subgraph with minimum number of

edges. A graph is 2-EC if for any pair of its verties,

there are at least two edge-disjoint paths between them.

2-VC: 2-vertex-onneted (2-VC) spanning subgraph

problem, where the de�nition is analogous to 2-EC, but

the paths are assumed to be internally vertex-disjoint.

TSP(1,2): The traveling salesman problem on a om-

plete graph with weight 1 or 2 on eah edge. For an

instane of TSP(1,2) problem, the graph indued by all

weight 1 edges is alled the input graph.

Longest path problem: Given a graph, �nd a simple

path with maximum number of edges.

Path paking problem: Given a graph, �nd a set of

vertex disjoint paths suh that the number of edges in

all the paths is maximized. Single verties are treated

as paths with zero edges.

We study the approximability of these problems on

dense and sparse graphs. Dense instanes of the above

problems onstitute a list of problems that were left

open from the approximability point of view, in the pa-

per of Arora et al. [3℄ (see also [14℄). In this paper Arora

et al. show a general tehnique that provides polyno-

mial time approximation shemes for dense instanes of

many optimization problems. It seems that one annot

use their methods to give better approximation ratios to

the above problems, mostly due to a non-loal nature of

these problems. We resolve the problem of approxima-

bility of dense versions of all these problems by prov-

ing tight upper (approximation algorithms

1

) and lower

bounds (inapproximability).

Dual instanes to dense give sparse graphs. Many

graph optimization problems are Max SNP-hard

2

al-

ready on very restrited sparse instanes { graphs with

maximum degree bounded by a onstant. Examples are

the vertex over, maximum independent set and max-

1

For a minimization (maximization, resp.) problem, a polyno-

mial time algorithm is alled an �-approximation algorithm, if it

�nds a solution of ost at most (at least, resp.) � times the ost of

an optimal solution. � is alled an approximation ratio (fator),

and the problem is said to be approximable within �.

2

Max SNP-hardness implies that the problem annot be ap-

proximated in polynomial time within onstant ratios that are

arbitrarily lose to 1, unless P = NP.



imum ut problems on maximum degree 3 graphs, see

[24℄. We give the �rst known expliit hardness fators

for the 2-EC, 2-VC and TSP(1,2) problems on maxi-

mum degree 3 graphs, and on 3-regular graphs.

Suppose we are given a graph G with n verties,

and the minimum degree at least n,  2 [0; 1℄ is a �xed

onstant. We all suh a graph -dense. The lassial

theorem of Dira [20℄ says that if  �

1

2

, then G has

a Hamilton yle whih an be found in polynomial

time (even in the NC lass [9℄). Observe that the

Hamilton yle onstitutes an optimal solution to all of

the onsidered problems. That is why we assume  <

1

2

.

Previous results.

2-EC & 2-VC: This is the simplest non-trivial version

of the onnetivity problem and has been studied for

a long time, but tight approximation guarantees and

inapproximability results are not fully understood yet

[7, 17, 25, 33, 29, 13, 8℄. For 2-EC, Khuller and Vishkin

[25℄ gave a

3

2

-approximation, improved by Cheriyan et

al. [7℄ to

17

12

, and to

4

3

by Vempala and Vetta [33℄. The

best known result, due to Krysta and Kumar [29℄, is

a (

4

3

�

1

1344

)-approximation. For 2-VC, Khuller and

Vishkin [25℄ gave a

5

3

-approximation, improved to

3

2

by

Garg et al. [17℄, and to

4

3

by Vempala and Vetta [33℄.

Both 2-VC and 2-EC problems are NP-hard even

on 3-regular planar graphs. Fernandes [13℄ proved Max

SNP-hardness on arbitrary graphs; Czumaj & Lingas [8℄

show Max SNP-hardness on bounded degree 6 graphs.

These results do not give expliit hardness onstants.

3

TSP(1,2): For this version of the TSP, Karp has shown

NP-ompleteness in his seminal paper [22℄. Papadim-

itriou and Yannakakis [31℄ prove Max SNP-hardness of

this problem, when the input graph has maximum de-

gree 6. They also show a

7

6

-approximation algorithm

for TSP(1,2). The �rst expliit hardness fator for

TSP(1,2) was 5381=5380, due to Engebretsen [11℄. This

was improved to 743=742 by Engebretsen & Karpinski

[12℄. Let us �x any  2 (0; 1=2). In [14℄, de la Vega &

Karpinski show, that TSP(1,2) is Max SNP-hard, when

the input graph is -dense (impliit in their work is a

parametrization of the hardness fator by ).

Longest path problem: Given a graph, let n be

the number of its verties. Karger et al. [21℄ have

given a polynomial algorithm that �nds a path of

length 
(logn) in a 1-tough graph, i.e. an 
(

log n

n

)-

approximation (Hamiltonian graphs are also 1-tough).

Alon et al. [2℄ give a polynomial algorithm that for

any onstant p > 0, �nds a path of length p logn,

3

In this paper, saying that a minimization problem is hard to

approximate or inapproximable within a fator of f means that

there is no (f � �)-approximation algorithm for any � > 0, unless

P = NP. f is alled a hardness fator (or onstant). Similarly for

a maximization problem.

if there is suh a path. Vishwanathan [35℄ has im-

proved this bound for Hamiltonian graphs, by showing

a 
(

(logn)

2

n(log logn)

2

)-approximation. The problem is very

hard, as it has no onstant approximation for any on-

stant, unless P = NP, even for graphs with maximum

degree 4 [21℄. Bazgan et al. [4℄ have proved the same

hardness result on 3-regular Hamiltonian graphs. The

same holds for the longest yle problem.

For dense graphs, Karger et al. [21℄ gave a polyno-

mial algorithm that �nds a path of length at least m=n

in a graph with n verties and m edges. This is a



2

-

approximation algorithm for the longest path problem

on -dense graphs. F. de la Vega & Karpinski [14℄ prove,

that the problem isMax SNP-hard on -dense instanes,

for any �xed  2 (0; 1=2).

Path paking problem: This problem �nds many ap-

pliations, see [34℄. Vishwanathan [34℄ shows that from

the approximation view point, the problem is equivalent

to TSP(1,2). This, and the algorithm of Papadimitriou

and Yannakakis [31℄ imply a

5

6

-approximation algorithm

for the path paking problem (see [34℄ for details). The

path paking problem is also Max SNP-hard [34℄.

Our ontributions.

We give a new, general and uniform tehnique that

provides approximation algorithms for dense instanes

of all the problems above. Our tehnique provides

the �rst approximation algorithms for the mentioned

problems that are parametrized with the density ,

where the parametrization is tight. This means that in

eah ase the approximation ratio approahes 1 when

the density  approahes

1

2

, whih by Dira's result

is the threshold above whih the problems beome

polynomially solvable. Our algorithms and analyses

rely on deep results from graph theory, for instane

the Regularity Lemma of Szemer�edi [32℄, the Blow-up

Lemma of Koml�os, S�ark�ozy and Szemer�edi [26℄, or a

generalization of Dira's Theorem due to Bollob�as and

Brightwell [20℄. The algorithms are very eÆient, as

they an be implemented in parallel in the NC lass

(details omitted). For NC implementations of the Blow-

up and Regularity lemmas, see [1, 27℄.

We prove that our parametrized approximation al-

gorithms are lose to best possible by showing expliit

lower bounds (also parametrized by ) on the approx-

imation ratios, under the usual P 6= NP onjeture.

These lower bounds show that there is an explosion of

diÆulty in approximating our problems when  <

1

2

.

We also prove the �rst expliit hardness ratios and

improve the approximation ratios for some of these

problems on graphs with maximum degree 3. The

preise list of our results appears below. Let the input

graph G = (V;E) have minimum degree � jV j, where

 2 [0;

1

2

℄ is any �xed onstant, and � > 0 be any �xed



arbitrarily small onstant, and "

0

= 1=742.

2-EC & 2-VC: We give a (2 � 2 + �)-approximation

algorithm for 2-EC and 2-VC problems on G. This

improves on the

4

3

-approximations in [33℄, and on (

4

3

�

1

1344

)-approximation in [29℄, for almost any  >

1

3

. We

prove that the problems areMax SNP-hard for any �xed

density  2 (0; 1=2), and an expliit hardness fator

is 1 + (

1

2

� )"

0

. If  tends to

1

2

, the algorithms are

essentially 1-approximation, and the approximation and

hardness fators are arbitrarily lose to eah other. This

is also true for the other dense results. 2-EC and 2-VC

are proved NP-hard to approximate within: 1573=1572

on maximum degree 3 graphs, and 2581=2580 on 3-

regular graphs. We give a (

5

4

+ �)-approximation for 2-

EC and 2-VC on maximum degree 3 graphs. A (

21

16

+�)-

approximation for 2-EC and 2-VC on suh graphs was

previously known [29℄. To our knowledge, no results

were known for dense 2-EC and 2-VC problems, exept

the ones on arbitrary graphs ited above. Max SNP-

hardness on bounded degree 3 and on dense graphs was

not known before. Our results signi�antly improve on

Czumaj & Lingas [8℄, sine they do not give expliit

hardness ratios and their bound on degree is 6.

TSP(1,2): We give a (2 � 2 + �)-approximation,

improving on the

7

6

-approximation of Papadimitriou

and Yannakakis [31℄ when  >

5

12

. Our algorithm an

be viewed as a generalization of the mentioned Dira's

theorem. We give a hardness fator of 1 + (1 � 2)"

0

for any �xed  2 (0; 1=2). If the input graph has

maximum degree 3, we show a hardness of 787=786, and

of 1291=1290 for 3-regular input graphs. This improves

on the results of Engebretsen and Karpinski [12℄, sine

they need graphs of maximum degree 4.

Path paking problem: We show a (2 � �)-

approximation, and a hardness fator of 1�(1�2)"

0

on

-dense graphs. This improves on the

5

6

-approximation

due to Papadimitriou and Yannakakis [31℄ and Vish-

wanathan [34℄ when  >

5

12

.

Longest path problem: We show a (



1�

� �)-

approximation algorithm, and a hardness fator of

1 � (1 � 2)"

0

for -dense instanes. This improves

signi�antly on



2

-approximation algorithm of Karger

et al. [21℄, for all values of .

The Linear Programming (LP) relaxation for 2-

EC problem and the subtour LP relaxation for TSP

are losely related [7℄. The integrality gap

4

of the LP

relaxation for 2-EC is not well understood. The best

known upper bound is

17

12

[7℄. It has been onjetured

4

De�nition of the LP relaxation of the unweighted 2-EC

appears in Setion 5. The integrality gap of the LP relaxation

is de�ned as sup

I

OPT

INT

(I)

OPT

LP

(I)

, where OPT

INT

(I) is the value of an

optimum integral solution on a problem instane I, and OPT

LP

(I)

is the value of an optimum LP solution on instane I.

that the integrality gaps of both LPs are

4

3

. We give

stronger bounds than

4

3

for some versions of these

onjetures for dense and sparse 2-EC and TSP(1,2).

Related work. The Regularity Lemma was used in a

ontext of approximating dense problems by Frieze and

Kannan [16℄ to speed-up some algorithms.

Organization of paper. Se. 2: preliminaries; Se. 3:

the tehnique and algorithms for dense problems; Se. 4:

algorithms for bounded degree 2-EC & 2-VC; Se. 5:

appliations to integrality gaps; Se. 6: hardness results.

Missing material is deferred to the full paper version.

2 Preliminaries

Given an (undireted) graph G = (V;E), we write

V (G) = V , E(G) = E, and v(G) = jV j, e(G) = jEj.

The elements of V are verties, and elements of E are

edges. A losed path of length l is a yle, denoted C

l

,

and a simple path means that the verties are distint.

A u�v path is a path with end verties u; v. A vertex v

is a ut vertex if its removal disonnets the graph. If v

is a ut vertex of a graph G, and some two verties x; y

are in distint omponents of G n v, then v separates x

and y. For a given non-empty set S � V , (S;

�

S) denotes

an edge ut, i.e. the set of the edges in E with exatly

one end vertex in S (

�

S = V n S). An edge is a bridge

if its removal disonnets the graph. deg

G

(v) denotes

the degree of vertex v in G. Let Æ(G) be the minimum

degree of G. The density of graph G is Æ(G)=jV (G)j. If

density � , then G is -dense.

An ear deomposition E of a graph G is a parti-

tion of the edge set into open or losed paths, E =

fQ

0

; Q

1

; : : : ; Q

k

g, suh that Q

0

is the trivial path with

one vertex, and eah Q

i

(i = 1; : : : ; k) is a path that has

both end verties in V

i�1

= V (Q

0

) [ � � � [ V (Q

i�1

) but

has no internal vertex in V

i�1

. A (losed or open) ear

means one of the (losed or open) paths Q

0

; Q

1

; : : : ; Q

k

in E . In the ear deomposition E = fQ

0

; Q

1

; : : : ; Q

k

g,

we say that ear Q

i

is earlier than ear Q

j

, and Q

j

is

later than Q

i

, when i < j. Given a positive integer

`, `-ear is an ear with ` edges. An ear deomposition

fQ

0

; Q

1

; : : : ; Q

k

g is open if all earsQ

2

; : : : ; Q

k

are open.

If a graph is 2-vertex(edge)-onneted, then we say it is

2-VC(EC). opt(G) or opt denotes the value of an optimal

solution on G to the onsidered problem.

Proposition 2.1. ([20℄) A graph is 2-EC i� it has an

ear deomposition. Also, a graph is 2-VC i� it has an

open ear deomposition. An (open) ear deomposition

an be found in polynomial time.

3 Approximation Tehnique on Dense Graphs

We use tools from the Extremal Graph Theory to give

a tehnique for approximating dense problems. We �rst



give an overview based on [28℄ (see also Diestel [10℄).

Regularity and Blow-up Lemmas. Let G = (V;E)

be a graph, and deg(x; Y ) be the number of neighbors of

vertex x 2 V in set Y � V . Let X;Y � V , X \ Y = ;,

then e(X;Y ) denotes the number of edges between X

and Y . Let G = (A;B;E) denote a bipartite graph

with olor lasses A and B, and the set of edges E.

For disjoint X;Y we de�ne a density d(X;Y ) =

e(X;Y )

jXj�jY j

.

The density of a bipartite graph G = (A;B;E) is

d(G) = d(A;B) =

jEj

jAj�jBj

. Given two graphs G and

H , we say that G has a subgraph isomorphi to H , or

H is embeddable into G if and only if there is a one-to-

one map (injetion) ' : V (H) �! V (G) s.t. for eah

(x; y), (x; y) 2 E(H) implies ('(x); '(y)) 2 E(G).

Regularity Condition. Let " > 0. Given a graph

G = (V;E) and two disjoint sets A;B � V , we say

that the pair (A;B) is "-regular if for every X � A and

Y � B suh that jX j > "jAj and jY j > "jBj, we have

jd(X;Y )� d(A;B)j < ".

Theorem 3.1. (Regularity Lemma, [32, 28℄)

For every " > 0, there is an M = M(") suh that

if G = (V;E) is any graph and d 2 [0; 1℄ is any real

number, then there is a partition of the vertex set V into

k + 1 lusters V

0

; V

1

; : : : ; V

k

, and there is a subgraph

G

0

of G with the following properties: (i) k � M ,

jV

0

j � "jV j; (ii) all lusters V

i

, i � 1, are of the same

size m � d"jV je; (iii) deg

G

0

(v) > deg

G

(v) � (d + ")jV j

for all v 2 V ; (iv) e(G

0

(V

i

)) = 0 for all i � 1; (v)

all pairs G

0

(V

i

; V

j

) (1 � i < j � k) are "-regular with

density either 0 or greater than d.

Lemma 3.1. (Fat 1.3 in [28℄) Let (A;B) be an "-

regular pair with density d. Then for any Y � B, with

jY j > "jBj, we have jfx 2 A : deg(x; Y ) � (d�")jY jgj �

"jAj.

Lemma 3.2. (Fat 1.5 in [28℄) Let (A;B) be an "-

regular pair with density d, and, for some  > ", let

A

0

� A, jA

0

j � jAj, B

0

� B, jB

0

j � jBj. Then

(A

0

; B

0

) is an "

0

-regular pair with "

0

= max("=; 2"),

and jd(A

0

; B

0

)� dj < ".

Super-Regularity Condition. Given a graph G = (V;E)

and A;B � V (A \ B = ;), we say that pair (A;B)

is ("; Æ)-super-regular if for every X � A and Y � B

s.t. jX j > "jAj, jY j > "jBj, we have d(X;Y ) > Æ, and

deg(a) > ÆjBj for all a 2 A, deg(b) > ÆjAj for all b 2 B.

Theorem 3.2. (Blow-up Lemma, [26℄) Given a

graph R with v(R) = r and positive parameters Æ, �,

there exists an " > 0 suh that the following holds. Let

n

1

; n

2

; : : : ; n

r

be arbitrary positive integers, and let

us replae the verties of R with pairwise disjoint sets

V

1

; V

2

; : : : ; V

r

of sizes n

1

; n

2

; : : : ; n

r

(blowing-up). We

onstrut two graphs on the same vertex-set V = [

i

V

i

.

The �rst graph

~

R is obtained by replaing eah edge

(v

i

; v

j

) of R with the omplete bipartite graph between

the orresponding vertex-sets V

i

and V

j

. The graph G is

onstruted by replaing eah edge (v

i

; v

j

) of R with an

("; Æ)-super-regular pair between V

i

and V

j

. If a graph

H with maximum degree bounded by � is embeddable

into

~

R, then it is also embeddable into G.

The Generi Algorithm. Let G = (V;E) be a given

graph, jV j = n, with minimum degree at least n, where

 =

1

3

+� and � 2 (0;

1

6

) (else  �

1

2

). Let us �x � > 0

to be very small and muh smaller than �, i.e. � � �.

Step 1. We apply the Regularity Lemma to G with

parameters " and d, s.t. " <

1

2

, " � d and

2"+d

1�d

� �.

Note: when " and d are arbitrarily small, then so is

�. Also, d + " � �. Based on the output from the

Regularity Lemma, we de�ne a redued graph R as

follows. The verties of R are the lusters V

1

; V

2

; : : : ; V

k

(we skip the luster V

0

here), and we put an edge

between V

i

and V

j

in R if (V

i

; V

j

) is "-regular with

density� d. From now on we mostly deal with graph R.

In partiular, we will treat luster V

0

in the end, and will

also disard some verties from lusters V

i

, i � 1, and

plae them into V

0

. " was a �xed onstant, k � M("),

k = jV (R)j, so k is also a �xed onstant.

Lemma 3.3. The degree of eah vertex in R is at least

(

1

3

+ �� �)k.

Proof. Let us �x a vertex v

i

2 V (R). Let V

i

be the

luster orresponding to vertex v

i

. Assume towards a

ontradition that deg

R

(v

i

) < (

1

3

+ � � �)k. Consider

all the lusters V

j

6= V

i

suh that d(V

i

; V

j

) < d. The

number of suh lusters V

j

is k � deg

R

(v

i

) � 1, and

for eah suh luster V

j

there are less than dm

2

edges

between V

i

and V

j

(by d(V

i

; V

j

) < d). The overall

number of edges running between V

i

and suh k �

deg

R

(v

i

)�1 lusters V

j

is less than dm

2

(k�deg

R

(v

i

)�1).

Therefore, there is a vertex in luster V

i

, say u 2 V

i

,

suh that deg(u;W ) < dm(k � deg

R

(v

i

)� 1), where W

is the union of k� deg

R

(v

i

)� 1 lusters V

j

. Finally, the

degree of u in G an be bounded as

deg

G

(u) < deg(u;W ) + deg

R

(v

i

)m+ deg(u; V

i

)+

deg(u; V

0

) � dm(k � deg

R

(v

i

)� 1) + deg

R

(v

i

)m+

m+ "n = deg

R

(v

i

)m(1� d) + dmk +m(1� d)+

+"n <

�

1

3

+ �� �

�

(1� d)mk + dmk + 2"n �

((1=3 + �� �) (1� d) + d+ 2")n � (1=3 + �)n:



a

u

b



d

e

Figure 1: An illustration for proofs of Lemma 3.4 & 3.5.

The last estimate follows by using our assumption, that

2"+d

1�d

� �. And thus we have derived a ontradition,

whih proves the laim. �

Step 2. We all a path on 3 verties a v-shape, and a

yle of length 3 a triangle. Compute a deomposition

of R into a maximal olletion of edges, triangles and v-

shapes, s.t. these subgraphs are pairwise vertex-disjoint

in R. Sine R has onstant size, we an use brute fore.

Lemma 3.4. Eah vertex of R is inluded in this de-

omposition.

Proof. Otherwise, there is a vertex u 2 V (R) not in-

luded in any edge, triangle or v-shapes of the deom-

position. Sine the degree of u is, by Lemma 3.3, greater

than

1

3

k, u annot be just adjaent to all enter verties,

like vertex d in Fig. 1, of all v-shapes. Thus, if u is adja-

ent to an end vertex { vertex  in Fig. 1 { of a v-shape,

then we ould produe two new edges (u; ) and (d; e)

from u and the v-shape. A ontradition. If u is adja-

ent to a vertex of a triangle { vertex b in Fig. 1 { then

we an produe two new edges from u and that trian-

gle, whih again gives a ontradition. If u is adjaent

to a vertex, say a of an edge in Fig. 1, then we obtain a

ontradition by produing a new v-shape. �

Step 3. Let us �x an edge (V

i

; V

j

) of the deomposition

of R. Reall, that pair (V

i

; V

j

) was "-regular with

density � d. We �rst make the pair (V

i

; V

j

) super-

regular. We know: jV

i

j = jV

j

j = m. By Lemma

3.1, the number of verties v 2 V

i

with small degree

deg(v; V

j

) � (d�")jV

j

j is at most "jV

i

j = "m. We delete

these "m low degree verties from V

i

and put them

into V

0

. Similarly, we delete "m low degree verties

from V

j

and put them into V

0

. After that, for any

v 2 V

i

, deg(v; V

j

) > (d � 2")jV

j

j, and for any w 2 V

j

,

deg(w; V

i

) > (d�2")jV

i

j. By Lemma 3.2, with  = 1�",

we get "

0

= 2" (sine " �

1

2

). And by that lemma, the

new pair (V

i

; V

j

) is 2"-regular, with density � d � ".

Now easily, pair (V

i

; V

j

) is (2"; d � 3")-super-regular,

and jV

i

j = jV

j

j.

We an now apply the Blow-up Lemma to pair

(V

i

; V

j

), with Æ = d�3", � = 2 (i.e. we are looking for a

Hamilton yle), r = 2, n

1

= n

2

= jV

i

j = jV

j

j. By that

lemma, there is a Hamilton yle of length 2n

1

spanning

(V

i

; V

j

) (this yle an be found eÆiently [27℄).

We sketh that the same an be done for any v-

shape (V

i

; V

j

; V

l

) of the deomposition. First, we make

the pairs (V

i

; V

j

) and (V

j

; V

l

) super-regular exatly in

the same way as before. Then, the new lusters V

i

and V

j

have sizes greater than the size of the new

V

l

. To make the sizes equal, we use Lemma 3.2 one

to pair (V

i

; V

j

) and one to pair (V

j

; V

l

), by deleting

arbitrary "m verties in V

i

and arbitrary "m verties

in V

j

. Then, we use the Blow-up Lemma and �nd:

(i). Two Hamilton yles: one in (V

i

; V

j

) and the other

in (V

j

; V

l

) (for 2-VC and 2-EC problems); or (ii). A

set of jV

i

j vertex disjoint paths, eah going between

three verties { one in V

i

, one in V

j

, and one in V

l

(for

maximum path paking and TSP(1,2) problems). In

this ase we delete from eah luster 2"m verties and

plae them into V

0

.

Similar arguments an be applied to any triangle

(V

i

; V

j

; V

l

) of our deomposition, to �nd one Hamilton

yle for the subgraph indued by the vertex-set V

i

[

V

j

[V

l

. In this ase we need to delete up to 4"m verties

from eah luster, and plae them into V

0

.

Finally, in the worst ase for eah luster V

i

, we

have deleted at most 4"m verties from V

i

and plaed

them into V

0

. Thus, the size of V

0

inreased by at most

4"mk � 4"n, and so the new V

0

has size at most 5"n.

We use the omputed strutures in the deomposi-

tion subgraphs to built the �nal solution to a problem

in mind. The rest of the algorithm is problem-spei�.

We have to speify how to put the strutures together,

and how to deal with luster V

0

. The lower/upper

bound used to relate the size of the solution to the

optimum, will always be n { the number of verties.

We upper/lower bound the sizes of the omputed stru-

tures in the deomposition by harging the verties in

the lusters, using them as a \loal" lower/upper bound.

Generi Analysis. The next lemma is ruial.

Lemma 3.5. If

1

2

p

2

k is the number of all edges in the

deomposition of R (p

2

2 [0; 1℄), then p

2

� 6(�� �).

Proof. Reall, that k is the number of lusters (verties)

of the redued graph R. Let p

1

� k be the number of

verties (lusters) in V (R) in all the triangles of the

deomposition, and let p

2

� k be the number of verties

in V (R) in all the edges of the deomposition, for some

p

1

; p

2

2 [0; 1℄. Then (1 � p

1

� p

2

) � k is the number of

verties in all the v-shapes. If there is no v-shape, then

by Lemma 3.6, the loal approximation fator is one.

Assume thus that there is at least one v-shape, say P ,

in the deomposition. Consider an end vertex, say ,



of P (see Fig. 1). There is no edge in E(R) between

 and any triangle, sine otherwise we ould replae

that triangle and the v-shape P by three new edges in

the deomposition (this is impossible by the maximality

of our deomposition). Now, if  is adjaent to some

edge of the deomposition, then it annot be adjaent

simultaneously to its two end verties. Otherwise, we

ould replae that edge and the v-shape P by a new

triangle and a new edge in the deomposition (this

is again impossible by the maximality). Finally, we

observe that if  is adjaent to an end vertex of any other

v-shape, then we ould replae the two v-shapes by three

new edges, whih ontradits the maximality. Thus,

the maximum possible degree of  is

p

2

2

k +

(1�p

1

�p

2

)

3

k,

and sine R has minimum degree at least (

1

3

+ � �

�)k by Lemma 3.3, we obtain:

p

2

2

k +

(1�p

1

�p

2

)

3

k �

(1=3 + �� �) k; whih gives p

2

� 6(�� �). �

Appliation to 2-Connetivity. We run Steps 1,2

and 3 of the generi algorithm. In this way, we onnet

eah edge and eah triangle in the deomposition by

one Hamilton yle, and eah v-shape by two Hamilton

yles. Thus, harging the edges used in the Hamilton

yles to the verties of the original graph (as a \loal"

lower bound of 2-VC), the \loal" approximation fator

for eah edge or triangle is one (Hamilton yle has the

number of edges equal to the number of verties in these

subgraphs), and for eah v-shape it is

4

3

(Hamilton yle

has 4jV

i

j edges, and we have 3jV

i

j verties).

Lemma 3.6. The worst ase loal ratio for 2-onneting

within any edge or triangle in the deomposition is one,

and the ratio for 2-onneting within any v-shape is

4

3

.

Step 4. So far we have 2-vertex-onneted eah sub-

graph of the deomposition. Let us ontrat eah suh

subgraph into a single super-vertex, and delete all re-

sulting self-loops. Consider now a graph, say

~

G, with

verties being the union of the new super-verties and

the verties in V

0

. This graph is learly 2-EC, and it

has at most k+5"n verties. Compute an ear deompo-

sition of

~

G, and disard all 1-ears from it. The resulting

graph is a spanning 2-EC subgraph of

~

G. It is easy to

hek that the ear deomposition has at most 2(k+5"n)

edges. To make the graph 2-VC, it learly suÆes to add

one additional edge for eah blok. Sine the number of

bloks is at most k + 5"n, the overall additive error is

at most 3(k + 5"n) = 15"n+ 3k.

Lemma 3.7. The overall additive error, i.e. the number

of edges added to 2-onnet all the strutures of the

deomposition and the verties of luster V

0

together,

is at most 15"n+ 3k.

Finally, by Lemma 3.6 and 3.7, the size of the

output solution an be upper-bounded by: 1 �

p

1

3

k � 3 �

(m � 4"m) + 1 �

p

2

2

k � 2 � (m � "m)+

4

3

�

1�p

1

�p

2

3

k � 3 �

(m� 2"m) + 15"n+ 3k � p

1

km+ p

2

km+

4

3

� (1� p

1

�

p

2

)km+ 15"n+ 3k � "mk:

Assume that 3k � "mk. Then, sine mk � n, the

size of the solution is at most: p

1

n+ p

2

n+

4

3

� (1� p

1

�

p

2

)n + 15"n =

�

4

3

�

p

1

+p

2

3

+ 15"

�

n: This, by Lemma

3.5, and by the fat that " � d + " � �, and n �

opt, is upper-bounded by:

�

4

3

� 2(�� �) + 15"

�

n �

�

4

3

� 2�+ 17�

�

opt: By hoosing �=17 instead of �, we

an get a bound of (

4

3

� 2�+ �)opt.

Assume now that 3k > "mk. Then m < 3=", and

sine jV

0

j � 5"n, we must have that the number of the

rest of the verties inside lusters V

1

; : : : ; V

k

is at least

(1 � 5")n. But mk � jV

1

j + : : : + jV

k

j � (1 � 5")n.

This, by m < 3=", gives n �

3k

"(1�5")

�

3M(")

"(1�5")

. Thus,

the input graph has a �xed size, and we an solve the 2-

onnetivity problem on it exatly by enumeration. The

polynomial running time of the overall algorithm follows

basially by the algorithmi versions of the Regularity

and Blow-up lemmas [1, 27℄. Finally, we have proved

the following theorem (implementation omitted).

Theorem 3.3. Let G = (V;E) be a given 2-EC (or

2-VC) graph, with jV j = n, and degree of eah vertex

being at least (

1

3

+ �)n, where � 2 [0;

1

6

℄ is any �xed

onstant. Let � > 0 be any �xed onstant. Then there is

a polynomial time (

4

3

�2�+�)-approximation algorithm

for the unweighted 2-EC (and 2-VC) problem on G. The

algorithm an be implemented in the NC lass.

Remark. If density is smaller than

1

3

(� � 0), then we

an use known

4

3

-approximation algorithms.

Appliations to path paking and TSP.

Theorem 3.4. Let G = (V;E) be a given graph, with

jV j = n, and degree of eah vertex at least (

1

3

+ �)n,

where � 2 [0;

1

6

℄ is any �xed onstant. Let � > 0

be any �xed onstant. Then there is a deterministi

polynomial time (

2

3

+ 2�� �)-approximation algorithm

for the maximum path paking problem on G.

Theorem 3.5. Let G = (V;E) be a given omplete

graph, with jV j = n, with weights 1 or 2 on its edges.

Let H be a subgraph of G indued by all the edges of

weight 1. Assume that the minimum degree of H is at

least (

1

3

+ �)n, where � 2 [0;

1

6

℄ is any �xed onstant.

Then G de�nes a dense instane of the TSP(1,2), and

there is a deterministi polynomial time (

4

3

� 2� + �)-

approximation algorithm for the TSP(1,2) de�ned by G

for any �xed � > 0.



Remark. If � �

1

6

, H has a Hamilton yle, whih an

be found in poly-time (Dira's theorem). In this regard,

Theorem 3.5 is a generalization of Dira's theorem.

Appliation to longest path problem. To apply

here the tehnique, we need the following result due to

Bollob�as and Brightwell.

Proposition 3.1. (Thm. 2.14, p. 27 in [20℄) Let

p 2 N be positive and G be a simple graph with n

verties and of minimum degree at least

n

p+1

, where

n � 3. Then G ontains a simple yle of length �

n

p

.

Theorem 3.6. Let G = (V;E) be a given graph, with

jV j = n, and degree of eah vertex at least n, where

 2 [0;

1

2

℄ is any �xed onstant. Let � > 0 be any �xed

onstant. Then there is a deterministi polynomial time

(



1�

� �)-approximation algorithm for the longest path

problem on G. More exatly, the algorithm produes a

path of length at least (



1�

� �)n.

Remark. We an obtain a similar result for the dense

version of the longest yle problem.

4 2-EC & 2-VC on Bounded Degree 3 Graphs

It is easy to see that in a graph with maximum degree

3, any ear deomposition is open. Thus 2-EC and 2-VC

problems are here equivalent.

Loal Optimization Heuristis. Let � be a min-

imization problem on G = (V;E), s.t. we want to

�nd a subgraph of G feasible w.r.t. �, with minimum

number of edges. Given j 2 N, the j-opt heuristi

is the algorithm whih given any feasible solution

H � G to �, repeats, until possible, the j-opt exhange

operation: if there are sets E

0

� E nE(H); E

1

� E(H)

with jE

0

j = j, jE

1

j > j, and (H n E

1

) [ E

0

is feasible

w.r.t. �, then set H  (H nE

1

) [ E

0

.

The Algorithm. Let G = (V;E) be a given 2-EC

graph, with jV j = n. W.l.o.g. we an assume that

G is 2-VC. Otherwise we an solve the 2-EC problem

separately on eah 2-VC omponent.

The 1st step of the algorithm �nds an ear deompo-

sitionH of G with minimum number � of even ears, us-

ing the algorithm of Frank [15, 7℄ (delete all 1-ears, sine

they are redundant). In the 2nd step, the algorithm

performs all possible 1-opt exhanges on H w.r.t. 2-EC.

The resulting ear deomposition, say H

0

, is the output.

Lemma 4.1. ([7℄) n + � � 1 is a lower bound on the

optimum 2-EC solution in G. An ear deomposition

with � even ears an be omputed in O(jV j � jEj) time.

Analysis. For the purpose of our analysis, we analyse

a slightly di�erent algorithm that produes a solution

of a size lower bounded by the size of H

0

{ the size of

the original solution. Let a j-opt exhange that does

not inrease the number of even ears in H be alled

a parity-preserving j-opt exhange. More preisely, a

parity-preserving j-opt exhange is a j-opt exhange

whih given H , produes a new feasible graph, say

^

H,

suh that

^

H has an ear deomposition with no more

than � even ears.

The modi�ed algorithm has the same �rst step as

the previous one, produing the ear deomposition H .

In the seond step, the algorithm uses only parity-

preserving 1-opt exhanges w.r.t. 2-EC, produing the

�nal solution, say H

00

. It is lear that the size of H

0

is at most the size of H

00

. (We an just perform the

seond step of the original algorithm skipping all the

1-opt exhanges that are not parity-preserving.)

Let p

`

be the number of internal verties in all `-

ears of H

00

. Then, p

`

=(` � 1) is the number of `-ears.

Let us �x a positive integer k �

n

2

. Then:

jE(H

00

)j �

2k

X

i=2

i

i� 1

p

i

+

2k + 1

2k

 

n�

2k

X

i=2

p

i

!

:(1)

The �rst summation in the right-hand-side of (1) is

the number of all edges in `-ears for ` = 2; 3; : : : ; 2k.

Note, n�

P

2k

i=2

p

i

is the number of the internal verties

in all `-ears, for ` > 2k. We an rewrite (1) as follows.

jE(H

00

)j �

�

2k+1

2k

n+

P

2k

i=2

2ji

�

i

i�1

�

2k+1

2k

�

p

i

�

+

�

P

2k�1

i=3

2-i

�

i

i�1

�

2k+1

2k

�

p

i

�

:

(2)

Sine in the modi�ed algorithm we only use parity-

preserving exhanges, the bound � on the number of

even ears still applies. Thus, we have: n+

P

2k

i=2

2ji

p

i

i�1

�

1 � n+ �� 1; whih gives

2k+1

2k

�

n+

P

2k

i=2

2ji

p

i

i�1

�

�

2k+1

2k

(n+ �� 1) +

2k+1

2k

:

(3)

Lemma 4.2. For any i � 2,

i

i�1

�

2k+1

2k

�

2k+1

2k

1

i�1

.

The �rst term in the brakets in (2) an be upper

bounded by

2k+1

2k

opt+

2k+1

2k

. Bounding the seond term

is harder. Given any ear S in an ear deomposition E ,

we say that an internal vertex in S is free if its degree in

E is exatly two. To prove the next lemma we heavily

use the properties of a loally optimal solution.



Lemma 4.3. Eah odd ear in the ear deomposition H

00

has at least 2 free internal verties.

Assumption (�). 9a > 0 :

P

2k�1

i=3

2-i

�

a

i�1

p

i

�

� n.

If assumption (�) holds, then we have.

2k�1

X

i=3

2-i

2

a

�

3

2

�

2k + 1

2k

�

ap

i

i� 1

�

2

a

�

3

2

�

2k + 1

2k

�

n:(4)

Lemma 4.4. For i � 3, (

3

2

�

2k+1

2k

)

2

i�1

�

i

i�1

�

2k+1

2k

.

By Lemma 4.4, and (4), we an upper bound the

seond term in the brakets in (2) by

2

a

(

3

2

�

2k+1

2k

)n.

Sine n � opt, and using (3), we bound our solution

from (2) by: jE(H

00

)j �

�

2k+1

2k

+

2

a

�

3

2

�

2k+1

2k

��

opt

+

2k+1

2k

; and so jE(H

00

)j �

�

1 +

1

a

+

a�2

2ak

�

opt +

2k+1

2k

:

We an plug n=2 in k, to �nally get.

jE(H

00

)j �

�

1 +

1

a

+

a� 2

an

�

opt+

n+ 1

n

:(5)

Lemma 4.5. If the input graph is of maximum degree

3, then assumption (�) holds with a = 4.

Proof. Note that p

i

=(i � 1) is the number of all i-ears.

For eah odd ear, we assign to that ear its 2 free internal

verties (they exist by Lemma 4.3) and its 2 end verties.

Sine the input graph has maximum degree 3, no vertex

is assigned simultaneously to two di�erent ears. �

Using Lemma 4.5, and the fat that in suh a graph

opt �

3

2

n, we obtain: jE(H

00

)j �

�

5

4

+

1

2n

�

opt+

n+1

n

�

5

4

opt +

3

4

+

n+1

n

�

5

4

opt + 2: The last estimate holds

if n � 4. Now, if 2=opt > �, where � > 0 is a �xed

onstant, sine n � opt � 2=�, the input graph is of

onstant size. The problem an be solved exatly by

enumeration. Otherwise, when n � 4 and 2=opt � �, we

get a (

5

4

+ �)-approximation. Our analysis is tight with

respet to the lower bound we use. This follows from the

work of Cheriyan et al. [7℄, who show an in�nite family

of maximum degree 3 graphs, where the ratio of the size

of optimum 2-EC and 2-VC subgraph to n + � � 1, is

asymptotially

5

4

. Therefore, we obtain the following

theorem.

Theorem 4.1. The loal searh is a (

5

4

+ �)-

approximation algorithm for the 2-EC problem on

maximum degree 3 graphs (for any � > 0). The

approximation ratio is asymptotially tight with respet

to the lower bound.

5 Related Conjetures and Integrality Gaps

This setion desribes appliations of our results in the

polyhedral ombinatoris. Consider the standard ut

LP relaxation for the unweighted 2-EC problem.

min

P

e2E

x

e

s.t.

P

e2Æ(S)

x

e

� 2 8S � V; S 6= ;(6)

x

e

� 0 8e 2 E

Æ(S) denotes the set of all edges with exatly one

end vertex in S. The optimum value of the LP is

a lower bound on the optimal integral solution to 2-

EC problem. If we add to this LP the onstraints

P

e2Æ(fvg)

x

e

= 2;8v 2 V , then the new LP is the

famous subtour relaxation of the TSP. It was proved that

the optimal solution to LP (6) is equal to the optimum

of the subtour relaxation, if one assumes metri osts on

the edges [30℄.

5

The famous metri

4

3

TSP onjeture

due to Goemans [18℄ is as follows.

Conjeture 1. The integrality gap of the subtour

relaxation of TSP with metri edge osts is at most

4

3

.

A related onjeture, see Carr and Ravi [6℄, reads.

Conjeture 2. The integrality gap of the LP (6) of 2-EC

problem with metri edge osts is at most

4

3

.

Conjeture 1 implies the seond one. Both are as

now unsettled. Carr and Ravi [6℄ give a proof of a speial

ase of Conjeture 2, where they restrit the LP (6) to

half-integral solutions, i.e. with all x

e

2 f0;

1

2

; 1g.

Fat 5.1. (Cheriyan et al. [7℄) If Conjeture 2 (and

thus also Conjeture 1) holds, then the integrality gap of

LP (6) for unweighted 2-EC problem is at most

4

3

.

The onsiderations in [7℄ and Fat 5.1 allow us to

formulate the following.

Conjeture 3. The integrality gap of LP (6) for the

unweighted 2-EC problem is at most

4

3

.

Conjeture 3 is impliit in Cheriyan et al. [7℄, and

they prove it with

4

3

replaed by

17

12

. Let LP be the

optimum value of LP (6). Obviously n � LP , and n

is the lower bound we used to obtain our algorithms

for dense problems. By the parsimonious property, the

optimum value of the LP (6) is equal to the optimum

value of the LP relaxation of TSP(1,2) (weights 1 and

2 de�ne a metri). This, and our previous results give:

Theorem 5.1. Let G has the minimum degree at least

(

1

3

+�)n, where � 2 [0;

1

6

℄ is a �xed onstant. Let � > 0

be any �xed onstant. Then the integrality gap of: (i).

the LP relaxation for the unweighted 2-EC problem on

suh graphs G; and (ii). the subtour LP relaxation of

5

A generalization of this property is a so-alled parsimonious

property [19℄.



the TSP(1,2) where G is the graph indued by weight

one edges, is at most

4

3

� 2�+�. The integrality gap of

the LP relaxation for the unweighted 2-EC on maximum

degree 3 graphs is at most

5

4

+ �, for any �xed � > 0.

Thus, our results prove stronger (density-

parametrized) versions of Conjetures 1 and 3,

and of Conjeture 3 on maximum degree 3 graphs.

On the other hand, the worst known lower bound on

the integrality gap of LP for unweighted 2-EC: (i)

on maximum degree 3 graphs is

10

9

, (ii) on

3

10

-dense

graphs is

11

10

(Petersen graph).

6 Hardness of Approximation

Hardness of Dense TSP, 2-EC & 2-VC.

Lemma 6.1. Assume, that TSP(1,2) is NP-hard to ap-

proximate within (1 + "

0

), for a �xed "

0

> 0. Fix any

d

0

s.t. 0 < d

0

<

1

2

, and let Æ be s.t. d

0

=

1�Æ

2

. Let G

with v(G) = n be an instane of TSP(1,2), where the

input graph has minimum degree d

0

n. If we know that

its minimum ost TSP tour is either of ost n or at least

(1+"

0

Æ)n, it is NP-hard to deide whih of the two ases

holds. The laim holds for "

0

= 1=742.

The following simple lemma an easily be dedued

from the proof of Lemma 5.1 in [8℄.

Lemma 6.2. ([8℄) Let G = (V;E) be a graph with n

verties, and with weights 1 or 2 on its edges. Let H

be the subgraph of G indued by all edges of weight 1,

and assume that H is a spanning 2-VC subgraph of G.

Let moreover T be a spanning tree of H, and T having l

verties of degree one. Then, we an �nd in polynomial

time a TSP tour in G of ost at most n+ l � 1.

Using Lemmas 6.1 and 6.2 we an prove:

Theorem 6.1. Let G = (V;E) be a 2-VC graph, and

d

0

be s.t. 0 < d

0

< 1=2. Then the unweighted 2-

VC problem is Max SNP-hard on instanes G with

density � d

0

. Moreover, if the TSP(1,2) is NP-hard to

approximate within a fator of (1 + "

0

), then it is NP-

hard to approximate the unweighted 2-VC problem on

d

0

-dense instanes to within (1+

"

0

Æ

2

), where d

0

=

1�Æ

2

.

The laim holds for "

0

= 1=742.

Proof. Assume, that we are given an instane of the

dense TSP(1,2) problem on G (v(G) = n), where the

subgraph, say G

1

, of G indued by edges of weight

one has minimum degree d

0

n. Let the minimum ost

TSP tour, say T

�

, on G be either of ost n or at

least (1 + "

0

Æ)n. We show that if the unweighted 2-

VC problem ould be approximated to within (1+

"

0

Æ

2

),

then we ould deide in polynomial time whih of the

two ases holds.

If G

1

is not 2-VC, then the minimum ost TSP tour

T

�

on G has ost ost(T

�

) > n, and so ost(T

�

) �

(1 + "

0

Æ)n. So assume now that G

1

is 2-VC. Notie,

that this also means that G

1

is a spanning subgraph

of G. Let H

1

be any 2-VC spanning subgraph of G

1

,

and let T be a spanning tree of H

1

, having l verties of

degree one. Sine eah vertex in H

1

has degree at least

two, we have that jE(H

1

)j � n�1+d

l

2

e. By Lemma 6.2,

we an �nd in polynomial time a TSP tour, say T

0

, in G,

suh that ost(T

0

) � n+ l�1 = 2(n�1+

l

2

)� (n�1) �

2jE(H

1

)j � n+ 1.

Let H

1

be a minimum size 2-VC spanning subgraph

of G

1

. If ost(T

�

) = n, then of ourse jE(H

1

)j = n. If

ost(T

�

) � (1 + "

0

Æ)n, then by the above argument,

we obtain that 2jE(H

1

)j � n + 1 � (1 + "

0

Æ)n, and

so jE(H

1

)j � (1 +

"

0

Æ

2

)n �

1

2

. Thus, if there is a

polynomial time (1 +

"

0

Æ

2

)-approximation algorithm for

the unweighted 2-VC problem (with just a bit smaller

onstant than "

0

), then it an deide if ost(T

�

) = n or

ost(T

�

) � (1+"

0

Æ)n, whih is NP-hard by Lemma 6.1.

The best known hardness onstant "

0

is 1=742 [12℄. �

Remark. The hardness result in Theorem 6.1 an be

modi�ed to hold for the dense 2-EC problem.

Hardness of Dense Path Problems. As orollaries

to the methods used in the previous setion and using

[14℄ one an also show:

Theorem 6.2. Let us �x any d

0

suh that 0 < d

0

<

1

2

, and let Æ be suh that d

0

=

1�Æ

2

. The longest

path problem and the path paking problem on d

0

-dense

graphs are both NP-hard to approximate within (1�"

0

Æ),

where "

0

= 1=742.

Hardness of Sparse TSP, 2-EC & 2-VC. We show

here a similar result to this in Lemma 6.1.

Lemma 6.3. Assume, we are given an instane of

TSP(1,2) on a graph G, s.t. subgraph of G (v(G) = n)

indued by weight-1 edges has maximum degree 3. As-

sume, that we know that its minimum ost TSP tour

is either of ost n or at least (1 + "

0

)n, for some �xed

"

0

> 0. Then there exists suh a onstant "

0

> 0, for

whih it is NP-hard to deide whih of the two ases

holds. The laim holds for "

0

= 1=786. If G is 3-regular,

then the laim holds for "

0

= 1=1290.

Theorem 6.3. Let G = (V;E) be a 2-VC (or 2-EC)

graph, with maximum degree 3. Then the unweighted 2-

VC (and 2-EC) problem is Max SNP-hard on instanes

G. Moreover, it is NP-hard to approximate the un-

weighted 2-VC (2-EC) problem on suh graphs G within

1573=1572, and within 2581=2580 if G is 3-regular.
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