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Abstrat.

We design polynomial time approximation shemes (PTASs) for Metri MIN-BISECTION, i.e. dividing a

given �nite metri spae into two halves so as to minimize or maximize the sum of distanes aross the ut.

The method extends to partitioning problems with arbitrary size onstraints. Our approximation shemes

depend on a hybrid plaement method and on a new appliation of linearized quadrati programs.

1 Introdution

MIN-BISECTION onsists in dividing a graph into two equal halves so as to minimize the number of

edges aross the partition, and belongs to the most intriguing problems in the area of ombinatorial op-

timization [H97℄. The reason is that we do not know at the moment how to deal with the minimization

global onditions suh as partitioning the sets of verties into two halves. Although there is urrently no

approximation hardness result for MIN-BISECTION (f. [BK01, K02℄, see however [F02℄), the best known

approximation fator is O(log

2

n) [FK00℄.

Here we onsider the metri version of that problem: given a �nite set V of points together with a metri,

we ask for a partition of V into two equal parts suh that the sum of the distanes from the points of one

part to the points of the other part is minimized. It is easy to see that metri MIN-BISECTION is NP-hard

even if restrited to distanes 1 and 2 (f. [FK98℄). In this paper we give a polynomial time approximation

sheme (PTAS) for metri MIN-BISECTION. (This answers an open problem from [FK98℄.)

We draw on two lines of researh to develop our algorithm. One is a method of \exhaustive sampling" for

additive approximation for various optimization problems suh as MAX-CUT or MAX-kSAT [AKK95, F96,

GGR96, FK96, FK97, AFKK02℄. The other onnets to the previous papers on approximate algorithms for

metri problems and weighted dense problems [FK98, FVK00℄.

The rest of the paper is organized as follows. In Setion 2, we formulate some metri and sampling lem-

mas. In Setion 3, we onstrut our �rst PTAS for the metri MIN-BISECTION problem, whih is purely

ombinatorial and extends [GGR96℄. In setion 4, we use a non-smooth extension of a linear programming

relaxation of [AKK95℄. Note that it is straightforward to adapt our algorithms to the Maximum Bisetion

problem. In setion 6, we give an extension to partitioning into two parts of prespei�ed sizes (k; n�k) so as

to minimize the distanes aross the ut, and a further extension to \size onstraint MIN PARTITIONING"

problems, where the goal is to partition into a �xed number K of parts of prespei�ed sizes (n

1

; n

2

; : : : ; n

K

),

so as to minimize the sum of distanes between the points whih are plaed in di�erent parts.

In the rest of the paper, we use the following notations. (V; d) denotes a �nite metri spae. For a subset

U of V , and a vertex v 2 V , we write d(v; U ) =

P

u2U

d(u; v). For A;B � V , d(A;B) =

P

u2A;v2B

d(u; v).

Let w

u

= d(u; V ), W

U

=

P

u2U

w

u

, and W = W

V

.
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2 Preliminary Results

2.1 First attempt

One natural approah is to use random (suitably biased) sampling to estimate, for eah point v, the sum of

distanes from v to eah side of the optimal bisetion, d(v; L) and d(v;R). For points whih have about the

same sum of distanes to either side of the partition, it would intuitively seem that it does not matter on

whih side they are plaed.

Unfortunately, this intuition is misleading, as the example in Figure 1 shows: we have four sets of verties,

A, B, C, D, eah ontaining n verties. All distanes inside A, inside D, between A and B, and between C

and D are equal to 1. All other distanes are equal to 2.

A

C

B

D

B

C

Figure 1: An example showing why, even if we have a reliable estimate of d(v; L) and of d(v;R) for every v,

that is not suÆient to onstrut a near-optimal partition in the natural manner.

It is not hard to hek that on that input, the minimum bisetion onsists of the partition (L = A[ C;R =

B [D) and has value OPT = 6n

2

.

For v 2 B, d(v; L) = 3n while d(v;R) = 4n� 2. Similarly for v 2 C. Thus an estimator will easily be able

to lassify orretly the verties of B and of C.

Notie that for v 2 A, d(v; L) = 3n�1 ' 3n = d(v;R). Similarly, for v 2 D, d(v;R) = 3n�1 ' 3n = d(v; L).

Hene our sampling and estimating approah will onsider all of these verties to be equivalent and therefore

plae half of them on the left side and half of them on the right side, at random. This reates the bisetion

on the right hand side of Figure 1. The value of that bisetion is: 13n

2

=2, whih is a onstant fator more

than OPT.

This shows that, even if a vertex u is suh that d(u; L) ' d(u;R), it still matters where u goes.

2.2 Metri lemmas

We are going to formulate some metri results used in this paper.

Proposition 1 ([FKKR03℄) Let X;Y; Z � V . Then jZjd(X;Y ) � jXjd(Y; Z) + jY jd(Z;X):

Lemma 1 ([FK98℄) d(v; u) � 4w

v

w

u

=W for every u; v.

The following lemma implies that, in order to get a PTAS for metri MIN-BISECTION, it suÆes to obtain

an additive approximation to within �W .

Lemma 2 The optimal value of Metri MIN-BISECTION satis�es OPT � W=6.
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Proof: Let (L;R) be the optimal min bisetion. Apply Proposition 1 to X = Y = L;Z = R and to

X = Y = R;Z = L to get

�

2(n=2)OPT � (n=2)d(L;L)

2(n=2)OPT � (n=2)d(R;R):

Thus W = d(L;L) + d(R;R) + 2d(L;R) � 6OPT .

In the (k; n� k) Metri MIN-PARTITIONING problem, we are given a metri spae (V; d) on n points and

an integer k < n. The goal is to partition V into two sets with sizes k and n� k so as to minimize the sum

of distanes aross that partition. (Thus, MIN-BISECTION is the partiular ase of k = n=2.) Lemma 2

generalizes to Metri MIN-PARTITIONING as follows.

Lemma 3 The optimal value of (k; n� k) Metri MIN-PARTITIONING satis�es

OPT � W

k(n� k)

2((n� 1)(n� k) + k(k � 1))

:

Proof: Apply Proposition 1 again to X = Y = L;Z = R and to X = Y = R;Z = L to get

d(R;L) � max(

k

n � k � 1

d(R;R);

n� k

k � 1

d(L;L))

The maximum is minimized by equalizing the two terms on the right hand-side of the above, hene the

Lemma.

2.3 Sampling lemmas

We reall, in the Lemma below, an inequality of Hoe�ding (see also [HM98℄, Theorem 2.5, page 202).

Lemma 4 ([H63℄) Let (Y

i

) be a sequene of independent random variables suh that 0 � Y

i

� b

i

for every

i. Let Z =

P

1�i�n

Y

i

. Then, for any a > 0, we have

Pr(jZ �EZj � a) � 2e

�2a

2

=(

P

b

2

i

)

:

Corollary 1

E(jZ � EZj) �

r

�

P

b

2

i

2

:

Proof: E(jZ � EZj) =

R

Pr(jZ � EZj > x)dx �

R

2e

�2x

2

=(

P

b

2

i

)

dx.

For U � V , the following lemma shows how to estimate d(v; U ) from a small biased sample of U .

Lemma 5 (Metri Sampling) Let t be given and U � V . Let T be a random sample fu

1

; u

2

; :::u

t

g of U

with replaement, where eah u

i

is obtained by piking a point u 2 U with probability w

u

=W

U

. Consider a

�xed vertex v 2 V . Then:

Pr

 

�

�

�

�

�

d(v; U )�

W

U

t

X

u2T

d(v; u)

w

u

�

�

�

�

�

� �d(v; U )

!

� 1� 2e

�t�

2

=8

E(jd(v; U )�

W

U

t

X

u2T

d(v; u)

w

u

j) � 2

r

2�

t

d(v; U ):

Proof: Consider the random variable Z =

P

u2T

d(v; u)=w

u

. We have:

Z =

t

X

i=1

Y

i

;
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where the Y

i

s are i.i.d.r.v.'s with

8u 2 U; Pr

�

Y

i

=

d(v; u)

w

u

�

=

w

u

W

U

:

Y

i

has average value d(v; U )=W

U

and maximum possible value at most  = 4d(v; U )=W

U

(by Lemma 1

applied to U [ fvg). Applying Lemma 4 and its orollary and saling by W

U

=t gives the lemma.

Lemma 6 Let Let s = 3=�

2

be given and U � V . Let T be a random sample fu

1

; u

2

; :::u

s

g of U with

replaement, where eah u

i

is obtained by piking a point u 2 U with probability w

u

=W

U

. and onsider

a partition of U = (U

L

; U

R

). Assume that W

U

L

� W

U

R

. Then, with probability at least 1 � �, we have

jS \ U

L

j � 1=�

2

.

Proof: Note that the probability that any �xed point of S falls in U

L

is at least 1=2 and that these events

are independent. Thus, the probability distribution of t dominates the Binomial distribution B(s; 1=2). The

assertion of the lemma then follows from Lemma 4.

We will use the Metri Sampling Lemma jointly with exhaustive sampling. In our algorithms, the target

U will be unknown; we will take a random biased sample S of a set whih is larger than U , and try every

possible subset T of S, so that, when we happen to try T = S \ U , our subset T will be a biased sample of

U .

3 A Combinatorial PTAS

In this setion we design and analyze a ombinatorial PTAS for metri MIN-BISECTION. The method

builds on the known metri sampling of [FK98℄ and hybrid plaement tehniques of [GGR96℄.

The algorithm an be found in Figure 2. It takes as input a �nite metri spae (V; d). It makes a series of

guesses and returns, when all these guesses are orret, a bisetion of V whose ost is, with probability at

least 3=4, at most (1 +O(�))OPT. The algorithm assumes that n is larger than some onstant value, sine

for n small enough, one an just solve the problem by exhaustive searh on V .

Theorem 1 With probability at least 3=4, the algorithm of Figure 2 omputes a (1 + O(�)) approximation

to Metri MIN-BISECTION. Its running time is n

2

� 2

O(1=�

2

)

.

3.1 Preliminary Properties

We start with the following Lemma.

Lemma 7 Consider the partition onstruted by the algorithm, (B; V

1

; : : : ; V

`

). Consider the minimum

partition of V , subjet to the further onstraint that it must be a bisetion of every V

j

. Then its expeted

value is at most OPT+ O(W

p

`=n).

Proof: The optimal bisetion (L

�

; R

�

) indues a partition (L

�

j

; R

�

j

) of V

j

. For eah j, if jL

�

j

j > jR

�

j

j, we

move (jL

�

j

j � jR

�

j

j)=2 random verties from L

�

j

to R

�

j

(or vie-versa if jL

�

j

j < jR

�

j

j). This de�nes a bisetion

(L;R) satisfying the onditions of the lemma.

Using X

u

= 1I(u 2 V

j

), the ardinality of L

�

j

an be written as

P

u2L

�

X

u

, and a Chernov bound shows that

E(jL

�

j

�

�

2

jU jj) = O(

p

n=`):

Similarly for R

�

j

. Thus the expeted number of points moved is O(

p

`n).

The hange in value when going from (L

�

; R

�

) to (L;R) is at most the weight of the points whih are moved.

The points moved have random weights, hene the expeted weight of the points moved equals O(W

p

`=n).
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1. Large weight verties. Let B denote the set of verties with weight > �

2

W=10 and let U = V nB.

2. Sampling. Let s = 3=�

2

. Take a random sample S of U of size s obtained by independently

drawing s points u

1

; u

2

; :::u

s

aording to: Pr(u

1

= u) = w

u

=W

U

for u 2 U .

3. Exhaustive searh. Let P

0

= (L;R) be an (unknown) near-optimal bisetion. By exhaustive

searh, guess B

L

= B \ L and B

R

= B \ R. Let U

L

= U \ L and U

R

= U \ R (U

L

and U

R

are

not known). Assume that W

U

L

� W

U

R

. By exhaustive searh, guess T = S \ U

L

. Let t = jT j.

Moreover, by exhaustive searh, guess

[

W

U

L

, the power of (1 + �) whih is losest to W

U

L

.

4. Estimation.

8v 2 V; let e

v

= minf

[

W

U

L

t

X

u2T

d(v; u)

w

u

+ d(v;B

L

); w

v

g: (1)

5. Partition. Let ` = 1=� and de�ne a partition V

1

; V

2

; :::; V

`

of U by plaing eah vertex in a V

j

hosen uniformly at random (possibly moving one vertex from eah V

j

to B if neessary so that the

ardinality of V

j

is even).

6. Constrution. Let A

0

= L

0

and B

0

= R

0

.

For eah j = 1; 2; : : :; `, do the following:

(a) Estimation. For eah v 2 V

j

, let

f

v

=

X

k<j

d(v;A

k

) +

`� (j � 1)

`

e

v

; (2)

b

b(v) = f

v

� (w

v

� f

v

):

(b) Construt a bisetion (A

j

; B

j

) of V

j

by plaing the jV

j

j=2 verties with smallest value of

b

b(v)

in B

j

and plaing the other jV

j

j=2 verties in A

j

.

Let A = [

j

A

j

and B = [

j

B

j

.

7. Output. Output the best of the bisetions (A;B) thus onstruted.

Figure 2: A ombinatorial algorithm for metri Minimum Bisetion.
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Pl0P =(L,R)

...

...

A0

A1

Pj

v

L0B

V1

Vj

Vl

...

...

...

...

A0

A1

Aj

Al

Figure 3: The hybrid partitions used by the ombinatorial algorithm. f

v

is an estimate of d(v;Left(P

j

)) for

v 2 V

j

.

3.2 Proof of Theorem 1

The �rst part of the analysis is purely deterministi and, exept for the last inequality, quite similar to the

analysis in [GGR96℄.

3.2.1 Deterministi analysis

Let P

j

be the following hybrid bisetion:

P

j

= (

[

k<j

A

j

[

[

k�j

L

j

;

[

k<j

B

j

[

[

k�j

R

j

) = (Left(P

j

);Right(P

j

)):

The output is P

`

:

COST(P

`

)� COST(P

0

) �

X

1�j�`

[COST(P

j

)� COST(P

j�1

)℄:

Consider the verties whih are lassi�ed di�erently in P

j�1

and in P

j

: there is a subset X = fx

1

; : : : ; x

m

g

of L

j

and a subset Y = fy

1

; : : : ; y

m

g of R

j

, of the same ardinality, suh that A

j

= L

j

� X + Y and

B

j

= R

j

� Y +X. For eah vertex u, let b(u) = d(u;Left(P

j�1

))� (w

u

� d(u;Left(P

j�1

))): We have:

COST(P

j

) �COST(P

j�1

) �

X

x

i

2X

b(x

i

)�

X

y

i

2Y

b(y

i

) + 2

X

X�Y

d(x; y)

�

X

1�i�m

(b(x

i

)� b(y

i

)) + 2d(V

j

; V

j

):

Now, here is the entral part of the proof:

b(x

i

)� b(y

i

) = (b(x

i

)�

b

b(x

i

)) + (

b

b(x

i

)�

b

b(y

i

)) + (

b

b(y

i

)� b(y

i

)) � (b(x

i

) �

b

b(x

i

)) + (

b

b(y

i

)� b(y

i

));
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sine x

i

is plaed to the right and y

i

is plaed to the left, and so by de�nition of the algorithm it must be

that

b

b(x

i

) �

b

b(y

i

). Thus

COST(P

j

) �COST(P

j�1

) �

X

u2V

j

jb(u)�

b

b(u)j+ 2d(V

j

; V

j

) (3)

� 2

X

u2V

j

j

X

k�j

d(u; L

k

) �

` � (j � 1)

`

(e

u

� d(u;B

L

))j+ 2d(V

j

; V

j

): (4)

Now,

j

X

k�j

d(u; L

k

) �

` � (j � 1)

`

(e

u

� d(u;B

L

))j �

j

X

k�j

d(u; L

k

)�

`� (j � 1)

`

d(u; U

L

)j+

`� (j � 1)

`

jd(u; U

L

)� (e

u

� d(u;B

L

))j: (5)

We must now use probabilisti tools to analyze this equations.

3.2.2 Probabilisti analysis

We �rst analyze the �rst term of the right hand side of Equation 5.

Fix v 2 V

j

and let Z

v

=

P

k�j

d(v; L

k

). The expetation of Z

v

is d(v; U

L

), and so we must analyze

jZ

v

� EZ

v

j. We have: Z

v

=

P

u2U

L

d(v; u)X

u

, where the X

u

are i.i.d.r.v.'s, with X

u

equal to 1 with

probability (` � (j � 1))=` and to 0 with the omplementary probability.

We split the sum into two parts, writing Z

v

= A

v

+ B

v

, with

�

A

v

=

P

u:d(u;v)�w

v

�=

p

n

d(u; v)X

u

B

v

=

P

u:d(u;v)>w

v

�=

p

n

d(u; v)X

u

:

The �rst of these two parts is straighforward: applying Lemma 4 to A

v

, with b

i

= w

v

�=

p

n, yields

E(jA

v

� EA

v

j) � �w

v

:

For the seond part, from Proposition 1 for X = fug; Y = fvg, Z = V , we get nd(u; v) � w

u

+ w

v

, so

d(u; v) > w

v

�=

p

n implies that w

u

> (�

p

n � 1)w

v

. Thus d(u; v) � (w

u

+ w

v

)=n � 2w

u

=n. Applying

Lemma 4 to B

v

, with b

u

= 2w

u

=n, now yields

E(jB

v

�EB

v

j) �

r

�

2

P

u

4w

2

u

n

2

:

Sine

P

w

u

� W and maxw

u

� �

2

W , we have

P

w

2

u

� �

2

W

2

, and so

E(jB

v

� EB

v

j) �

p

2�

�W

n

:

Summing gives

E(jZ

v

�EZ

v

j) � �w

v

+

p

2�

�W

n

:

As for the seond term of Equation 5, from Lemma 5 applied to U

L

, we have:

E(jd(v; U

L

)� (e

u

� d(u;B

L

))j) � 2

r

2�

t

d(v; U

L

) � 2

r

2�

t

w

v

:

The rest of the proof is easy and entirely deterministi again.
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3.2.3 Deterministi analysis

Plugging these bounds into Equation 4, we obtain:

E(COST(P

j

)� COST(P

j�1

)) � 2

X

u2V

j

(�w

u

+

p

2��

W

n

+ 2

r

2�

t

w

u

) + 2E(d(V

j

; V

j

)):

Summing over j, we get:

E(COST(P

`

) �COST(P

0

)) � 2[�W +

p

2��W + 2

r

2�

t

W ℄ + 2E(

X

j

d(V

j

; V

j

)):

The last term is easy to deal with: its expetation is bounded by W=`.

From Lemma 6, t � 1=�

2

with probability at least 1� �, and then, with Lemma 7 we obtain:

E(COST(P

`

) �OPT) � 2W [�(1 + 3

p

2�) +

1

`

+O(

r

`

n

)℄:

Using Markov's inequality, remembering that ` = 1=� and omparing with the lower bound from Lemma 2

then onludes the proof of the Theorem.

Remarks.

1. It is not neessary to take the number of parts V

j

exatly ` = 1=�. The algorithm ould be adapted to

work for any number ` 2 [1=�; n�

2

℄. Indeed, going bak to previous work on dense graphs, one may have

been intrigued to notie that a partition into ` = 1=� parts was used in [GGR96℄, while a partition into

` = n�

2

parts was used in [F96℄. Indeed, we now see from the above analysis that, with our algorithm,

the number of parts is largely irrelevant: this may serve as an explanation. Perhaps the algorithm is

nier to think about in the ase when ` = n�

2

, sine it is then very lose to a natural greedy algorithm:

take the verties by groups of 1=�

2

at a time, and biset eah group in the best possible way, taking

into aount the hoies made so far (and adding an estimate to take into aount the verties not yet

onsidered.)

2. The running time an be improved in a manner similar to [GGR96℄: �rst, in Equation 2, instead of

alulating d(v;A

i

) exatly, we ould estimate it via sampling, thus gaining a fator of n. Seond,

instead of running the algorithm on the whole graph, we ould run it on a (larger) sample of the point

set.

3. Exept for biased sampling, whih is spei� to the metri situation, the additional ideas used here

to modify the hybrid plaement tehnique from [GGR96℄ an be applied to the dense graphs setting

as well. We onjeture that in dense graphs, it might be possible to use ideas from our ombinatorial

algorithm so as to improve the query omplexity from [GGR96℄ by a fator of O(1=�).

4. Considering the metri versus dense graph settings, let us ompare our ombinatorial algorithm in the

metri setting with its natural analog in the dense graph setting:

� In the metri setting, some verties an have overwhelming importane (the ones with weight

lose to W ), and so we need to set those verties aside and treat them separately. This does not

happen in dense graphs.

� In the metri setting, instead of doing a straightforward uniform sample, we need to perform a

biased sample, where we give higher probability to verties with high weight; this is neessary in

order to get reliable estimates.

� In the metri setting, the estimate an be (with low probability) unaeptably large, thus we need

to ap it to w

v

. This does not happen in dense graphs.

8



� In the metri setting, the partition (V

j

) must be done at random, whereas in dense graphs, one

an take an arbitrary partition.

� In the metri setting the analysis no longer deals with sums of f0; 1g variables; instead the terms

in the sums an be quite large; thus a more sophistiated version of Hoe�ding's inequality is

required, and applying it requires a muh more deliate analysis.

� Finally, in the metri setting our lower bound on OPT means that an additive error of O(�W )

implies a PTAS for the problem; that is not true for dense graphs.

5. Fousing on dense graphs, let us ompare the dense graph analog of our ombinatorial algorithm to

the ombinatorial algorithm from [GGR96℄:

� The hybrid plaement tehnique, whih was introdued in [GGR96℄, is entral to our algorithm

as well.

� We sample O(1=�

2

) points in total, as opposed to 
(1=�

3

ln(1=�)).

� The partition (V

j

) is random instead of arbitrary (neessary for this smaller sampling to work).

� Our estimator is slightly di�erent, sine we do not re-sample the hybrid partitions, but instead

use an estimator whih ombines the distanes to verties already lassi�ed with a saled version

of the original estimate. This is neessary for the smaller sampling to work.

� For partitioning into two parts, we only use sampling to estimate for the distane from v to the

left side of the partition; sine the sum of its distanes to the left and to the right side is equal

to its degree, this immediately implies an estimate for the distane from v to the right side of the

partition. (This is a detail).

� In the analysis, instead of separating the point set into \normal" and \exeptional" verties, we

just integrate Hoe�ding's formula so as to diretly use the resulting formula for the expeted

deviation from the mean. (It would however still have been possible to prove the result with a

separation into normal and exeptional verties).

4 A PTAS Based on Linear Programming

In this part we ombine exhaustive searh on the points with highest weights, biased sampling, and give a

new non-smooth extension of the linearization approah of [AKK95℄. In addition, we modify the LP approah

slightly (by introduing n new variables z

v

) in suh a way that one an ompute estimates by taking samples

of size O

�

(1) only (instead of O(logn)). (We believe that this improvement ould also be applied to the

algorithms of [AKK95℄.)

We represent a bipartition (S; T ) of V by the vetor (x

v

) where x

v

= 0 if v 2 S, and x

v

= 1 if v 2 T . We

denote by (L;R) an optimum bisetion. For eah vertex v, e

v

will be an estimator for d(v; L).

If n is smaller than some onstant depending on � (see proof of lemma 11), we solve by exhaustive searh.

Otherwise, we run the algorithm presented on Figure 4 at the end of the paper. Throught this setion we

will refer to the notation used in the desription of this algorithm.

Theorem 2 With probability at least 3=4, the algorithm in Figure 4 omputes a (1+6(60

p

2�+3)�) approx-

imation to metri MIN-BISECTION. Its running time is LP (n)2

O(1=�

2

)

, where LP (n) denotes the running

time to solve a linear program with O(n) underlying variables and onstraints.

4.1 Proof of Theorem 2

Let (x

v

) be the optimal bisetion, (x

�

v

; y

�

v

) the optimal frational solution of the linear program, (y

v

) the

partition obtained by the randomized rounding, and (y

0

v

) the bisetion output by the algorithm.
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1. Large weight verties. Let B denote the set of verties v with w

v

� �

2

W=100, and let U = V nB.

2. Sampling. Let s = 3=�

2

. Take a random sample S of U of size s obtained by independently

drawing s points u

1

; u

2

; :::u

s

aording to: Pr(u

1

= u) = w

u

=W

U

for u 2 U .

3. Exhaustive searh. Let (L;R) be the (unknown) optimal bisetion. By exhaustive searh, guess

B

L

= B \ L and B

R

= B \ R. Let � =

P

B

L

�B

R

d(u; v). Let U

L

= U \ L and U

R

= U \ R (U

L

and U

R

are not known). Assume that W

U

L

� W

U

R

. By exhaustive searh, guess T = S \ U

L

. Let

t = jT j. Moreover, by exhaustive searh, guess

[

W

U

L

, the power of (1 + �) whih is losest to W

U

L

.

4. Estimation.

8v 2 V; let e

v

= minf

[

W

U

L

t

X

u2T

d(v; u)

w

u

+ d(v;B

L

); w

v

g: (6)

5. Constrution.

(a) Let (x) =

P

v2U

x

v

e

v

+

P

v2U

(1�x

v

)d(v;B

R

)+�. Solve the following linear program LP (n)

with variables x

v

and z

v

, v 2 U ,

Minimize (x) s.t.

8

>

>

>

>

<

>

>

>

>

:

8v; 0 � x

v

� 1

8v; d(v;B

L

) +

P

u2U

(1� x

u

)d(u; v) � e

v

+ z

v

8v; z

v

� 0

P

v

z

v

� 20

p

2��W

P

v

x

v

+ jB

L

j = n=2:

Let (x

�

v

; z

�

v

) denote the optimal frational solution.

(b) Use randomized rounding to obtain an integer vetor (y

v

): for every v independently, y

v

is

set to 1 with probability x

�

v

and to 0 with the omplementary probability. Together with

(B

L

; B

R

), this de�nes a partition of V .

() Repair the unbalane by moving from the side with the larger size to the other side the required

number of verties with smallest weights.

6. Output. Output the best of the bisetions thus onstruted.

Figure 4: A linear programming algorithm for metri Minimum Bisetion.
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e v

v

B BB

U U U

L

L

R

R

(L,R)

Figure 5: The partition used by the linear programming algorithm. e

v

is an estimate of d(v; L) = d(v; U

L

)+

d(v;B

L

).

Lemma 8 With probability at least 89=100 we have that the optimum solution (x

v

) is feasible and moreover

that

OPT = COST(x

v

) � COST(x

�

v

)� 20

p

2��W:

Proof: Let Æ

v

be the di�erene between e

v

and its expetation. By Lemma 5, we have that

E

 

X

U

jÆ

v

j

!

� 2

r

2�

t

W:

Using Lemma 6, we an assume that t � 1=�

2

, and use Markov's Inequality to get that

Pr

 

X

U

jÆ

v

j � 20

p

2��W

!

� 9=10

for suÆiently small �. This shows the feasibility of (x

v

) with probability 89=100 and proves also the seond

part of the lemma sine COST(x

v

) di�ers from COST(x

�

v

) by at most

P

U

jÆ

v

j.

Lemma 9 With probability at least 1� 1=100, we have: (x

�

) + 2�W � (y):

Proof: We must bound above the sum S =

P

U

z

v

a

v

, where z

v

= x

�

v

� y

v

; and a

v

= e

v

� d(v;B

R

) v 2 U .

Note that the absolute values of the a

v

are all bounded above by �

2

W=100. Sine their sum is at most W

we have that the variane of S is bounded above �

2

W

2

=100. Using Chebyhev's inequality we get that S is

bounded above by �W=10 with probability 1� 1=100.

Lemma 10 With probability at least 1� 1=10, we have (y) + 40

p

2��W � COST(y

v

):

Proof: We have, with probability 1� 1=10,

j(y)� COST(y

v

)j = j

X

U

y

v

(d(v; L)� e

v

� z

�

v

) j

�

X

U

z

�

v

+

X

U

jd(v; L)� e

v

j

� 20

p

2��W + 20

p

2��W

from the LP and from Lemma 5 applied to L, followed by Markov's inequality.
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Lemma 11 With probability at least 1� 1=100, we have COST(y

0

v

) � COST(y

v

) + �W:

Proof: Note that the y

v

have expetation x

�

v

and variane bounded above by 1=4. The sum Z =

P

V

y

v

has expetation n=2 and variane at most n=4. Chebyhev's Inequality gives us that

Pr(jZ � n=2j � �n) � 1� 4�

2

� 1� 1=100

for suÆiently small �. The lemma follows now from the fat that the sum of the �n smallest weights does

not exeed �W .

To prove Theorem 2, it now suÆes to ombine Lemmas 11, 10, 9 and 8 so as to prove that the value of the

partition output is at most OPT + O(�W ). By Lemma 2, this is at most (1 + O(�))OPT.

The running time follows by inspetion.

Remarks.

1. Exept for biased sampling, whih is spei� to the metri situation, the additional ideas used here to

modify the algorithm from [AKK95℄ an be applied to the dense graphs setting as well.

2. Considering the metri versus dense graph settings, let us ompare our ombinatorial algorithm in the

metri setting with its natural analog in the dense graph setting:

� In the metri setting, some verties an have overwhelming importane (the ones with weight

lose to W ), and so we need to set those verties aside and treat them separately. This does not

happen in dense graphs.

� In the metri setting, instead of doing a straightforward uniform sample, we need to perform a

biased sample, where we give higher probability to verties with high weight; this is neessary in

order to get reliable estimates.

� In the metri setting, the estimate an be (with low probability) unaeptably large, thus we need

to ap it to w

v

. This does not happen in dense graphs.

� In the metri setting the analysis no longer deals with sums of f0; 1g variables; instead the terms

in the sums an be quite large; thus a more sophistiated version of Hoe�ding's inequality is

required, and applying it requires a muh more deliate analysis.

� Finally, in the metri setting our lower bound on OPT means that an additive error of O(�W )

implies a PTAS for the problem; that is not true for dense graphs.

3. Fousing on dense graphs, let us ompare the dense graph analog of our ombinatorial algorithm to

the ombinatorial algorithm from [AKK95℄:

� The linearized programming tehnique, whih was introdued in [AKK95℄, is entral to our algo-

rithm as well.

� We sample O(1=�

2

) points in total, as opposed to 
(1= logn).

� We modify the LP slightly by introduing n new variables z

v

, to make the onstraints more

exible. This is neessary for the smaller sample to work.

5 Metri MAX-CUT Revisited

We note that both algorithms in setions 3 and 4 an be adapted to onstrut muh more eÆient algorithms

for the problem of Metri MAX-CUT [FK98℄.

Theorem 3 There is a PTAS for Metri MIN-BISECTION, with running time is O(n

2

� 2

O(1=�

2

)

).
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6 Extensions

6.1 Extension to (k; n � k) Metri MIN-PARTITIONING

We reall from setion 2.2 the following de�nition of the (k; n� k) Metri MIN-PARTITIONING problem:

we are given a metri spae (V; d) on n points and an integer k < n. The goal is to partition V into two sets

with sizes k and n� k so as to minimize the sum of distanes aross that partition.

Theorem 4 The problem of (k; n� k) Metri MIN-PARTITIONING has a PTAS.

Proof: There are two ases aording to the values of the ratio k=n and of the auray requirement �.

(i) Suppose �rst that k=n � �=2. Then we apply one of the above algorithms, say the seond one, with

�

0

= �

2

and the neessary modi�ations onerning the sizes onstraints: we run two distint LPs, one with

jLj = k and the other one with jLj = n�k. This ensures that in one of these programs we haveW

U

L

� W

U

R

.

(ii) Suppose now that k=n < �=2. We laim that in this ase a solution with approximation ratio 1 + � is

obtained just by separating the k points with smallest weights from the rest. In order to prove this laim,

�x attention �rst on 2 verties x

1

; x

2

. Let w

i

be the weight of x

i

. For any other vertex x

3

we have of ourse

d(x

1

; x

2

) � d(x

1

; x

3

) + d(x

3

; x

2

)

Summing over all hoies for x

3

, this gives:

w

1

+ w

2

� nd(x

1

; x

2

)

Take now k verties x

1

; x

2

; :::x

k

. The preeding inequality gives

(k � 1)

k

X

1

w

i

� n

X

i<j

d(x

i

; x

j

) (7)

Let U � V . The value of the partition (U; V nU ) is

Val(U; V nU ) =

X

x

i

2U

w

i

� 2

X

x

i

;x

j

2U

d(x

i

; x

j

)

Thus,

OPT � min

jSj=k

0

�

X

x

i

2S

w

i

� 2

X

x

i

;x

j

2S

d(x

i

; x

j

)

1

A

�

�

1�

2(k � 1)

n

�

min

jSj=k

X

x

i

2S

w

i

;

the last by using equation (7).

6.2 Extension to Size Constraint Metri MIN-PARTITIONING

Let K be a �xed integer. De�ne the K-ary metri MIN-PARTITIONING as follows. Given a sequene of

sizes (n

1

; n

2

; : : : ; n

K

) suh that

P

i

n

i

= n, and given a �nite metri spae (V; d), �nd a partition of V into

K parts of sizes (n

1

; n

2

; : : : ; n

K

) so as to minimize the sum of distanes between parts,

X

u;v in di�erent parts

d(u; v):

Theorem 5 There is a PTAS for K-ary metri MIN-PARTITIONING.

Proof: We use the following extension of our linear programming algorithm for (k; n � k) MIN-

PARTITIONING.

13



1. If n is less than a ertain onstant, use exhaustive searh. Otherwise do the following.

2. Let n

1

be the largest size. If n� n

1

� �n, then use the (k; n� k) MIN-PARTITIONING algorithm of

setion 5.1 with k = n�n

1

. Then partition the smallest part arbitrarily into parts of sizes n

2

; n

3

; ::n

K

.

If n� n

1

> �n, do the following

3. The weight W

X

of a part X will be alled large if it exeeds �W=(K�1). Let h be the number of parts

with large weight in an optimum solution, and let n

1

; n

2

; : : : ; n

h

denote their sizes. We solve in what

follows the partitioning (n

1

; n

2

; : : : ; n

h

; n�

P

n

i

) on (V; d).

4. Let B denote the verties with weight � �

2

W=100 and U = V nB.

5. Take a random biased sample S of U of size s = O(1=�

4

). (Note the hange in the value of s ompar-

atively to its value of s in algorithm of �gure 2. This is due to the fat that now the lower bound of

OPT that we have is only 
(�W ) instead of 
(W ) for the MIN-BISECTION algorithm.

6. Guess the partition (B

1

; B

2

; : : :B

K

) of B indued by the optimal solution. Let � =

P

i 6=j

d(B

i

; B

j

):

For eah i 2 f1; : : : ;Kg, guess the intersetion T

i

of S with the i

th

part of the optimal partition, of

size t

i

. Also guess the approximate weight

~

W

i

of that part. Note that the number of samples needed

for a orret guess has order n

O(1=�

2

)

.

7. For eah v 2 U and for eah i, let

e

v;i

= minf

~

W

i

t

i

X

u2T

i

d(u; v)

w

u

+ d(v;B

i

); w

v

g:

8. Let (x) =

P

v2U

P

i

x

v;i

(

P

k 6=i

e

v;k

+

P

v;i

(1� x

v;i

)d(v;B

i

) + �. Solve the following linear program:

min(x)

subjet to the onstraints

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8v; i x

v;i

� 0

8v;

P

i

x

v;i

= 1

8v; i d(v;B

i

) +

P

u2U

(x

u;i

)d(u; v) � e

v;i

+ z

v;i

8v; i z

v;i

� 0

P

i

P

v

z

v;i

� 3�W

8i; jB

i

j+

P

v2U

x

v;i

= n

i

Let (x

�

v;i

; z

�

v;i

) denote the optimal frational solution.

9. Use randomized rounding to obtain an integer vetor (y

v;i

): for every v independently, hoose an i

aording to the distribution de�ned by (x

�

v;i

)

i

, and set that y

v;i

to 1 and the others to 0. Together

with (B

1

; : : : ; B

K

), this de�nes a partition of V .

10. Repair sizes analogously to the last step of the linear programming MIN-BISECTION algorithm.

This ends the desription of the algorithm. We prove in what follows the orretness of the above algorithm.

A key observation is the following. With a partition A

1

; A

2

; :::A

K

with part sizes n

1

; n

2

; :::n

K

we assoiate

the (n; n � n

1

) partition (A

1

; B) whith B = A

2

[A

3

::: [ A

K

. By Lemma 3 we have that the value of this

partition is at least

W

n

1

(n� n

1

)

2((n � 1)(n� n

1

) + n

1

(n

1

� 1))

:

We distinguish between two ases (i) and (ii):

Case (i) If n � n

1

� �n, then the orretness follows from the orretness of the (k; n � k) MIN-

PARTITIONING algorithm,
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Case (ii) In this ase, the above formula gives us that the value of the partition (A

1

; B) is at least

W (1� �):�n

2((n

2

(1 � �) + �

2

n

2

)

�

�W

3

Plainly, this lower bound is also valid for the optimum of the problem. Our algorithm gives in this ase

an additive approximation O(�

2

W ), whih by what as just been proved guarantees an approximation ratio

1 +O(�) as desired. This ends the proof of Theorem 5.

7 Further researh

An interesting open problem is to improve running times of our PTASs as well as their sample omplexity

(also in the sense of random \sub-problem" sample omplexity of [AFKK02℄). Our Linear Program PTAS

is based on an extension of the notion of a smooth polynomial program (f. [AKK95℄). An interesting

open problem is how far suh an extension an be arried out. Another question would be to shed some

light on the size-onstraint (in the general sense of this paper) MIN-SUM-K-CLUSTERING problems (f.

[FKKR03℄).
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