On the Power of Randomized Branching Programs

Farid Ablayev * Marek Karpinski ${ }^{\dagger}$

Abstract

We define the notion of a randomized branching program in the natural way similar to the definition of a randomized circuit. We exhibit an $\operatorname{explicit}$ function f_{n} for which we prove that: 1) f_{n} can be computed by polynomial size randomized read-once ordered branching program with a small one-sided error; 2) f_{n} cannot be computed in polynomial size by deterministic readonce branching programs; 3) f_{n} cannot be computed in polynomial size by deterministic read-k-times ordered branching program for $k=o(n / \log n)$ (the required deterministic size is $\exp \left(\Omega\left(\frac{n}{k}\right)\right)$).

1 Preliminaries

Different models of branching programs introduced in [13, 15], have been studied extensively in the last decade (see for example [19]). A survey of known lower bounds for different models of branching programs can be found in [17].

Developments in the field of digital design and verification have led to the introduction of restricted forms of branching programs. In particular, ordered read-once branching programs are now commonly used in the circuit verification [9], [20]. But many important functions cannot be computed by read-once branching programs of polynomial size. For more information see the survey [9] and papers [18], [16].

It is known that different models of randomized circuits with weak enough restrictions on the error of randomized computation have only polynomial advantage over nonuniform deterministic models (see [2], [4], [3], and survey

[^0][6]). In the paper we define the notion of a randomized branching program in a natural way similar to the definition of a randomized circuit. Our goal is to show that randomized computation with a small error for read-once polynomial branching programs can be more powerful than deterministic ones. The argument that can help the intuition in this direction is that amplification method does not work for the case of restricted number of input verifications. Note that in the paper [7] it is presented an explicit function which needs exponential size for presentation by a nondeterministic read- k-times branching program for $k=o(\log n)$.

We use the variant of a definition of a branching program from the paper [7]. A deterministic branching program P for computing a function $g: \Sigma^{n} \rightarrow$ $\{0,1\}$, where Σ is a finite set, is a directed acyclic multi-graph with a single source node, distinguished sink nodes labeled "accept" and "reject". For each non-sink node there is a variable x_{i} such that all out-edges from this node are labeled by " $x_{i}=\delta$ " for some $\delta \in \Sigma$ and for each δ there is exactly one such labeled edge. The label " $x_{i}=\delta$ " indicates that only inputs satisfying $x_{i}=\delta$ may follow this edge in the computation. We call a node v an x_{i}-node if all output edges of the node v are labeled by " $x_{i}=\delta$ ", $\delta \in \Sigma$.

A deterministic branching program P computes a function $g: \Sigma^{n} \rightarrow\{0,1\}$, in the obvious way; that is, $g\left(\sigma_{1}, \ldots, \sigma_{n}\right)=1$ iff there is a computation on $\left.<\sigma_{1}, \ldots, \sigma_{n}\right\rangle$ starting in the source state and leading to the accepting state.

A randomized branching program is a one which has in addition to its standard (deterministic) inputs some specially designated inputs called random inputs. When these random inputs are chosen from the uniform distribution, the output of the branching program is a random variable. We call a node v of the randomized branching program a "random generator" node if output edges of the node v are labeled by random inputs.

We say a randomized branching program (a, b)-computes a function g if it outputs 1 with probability at most \boldsymbol{a} for in put x such that $g(x)=0$ and outputs 1 with probability at least b for inputs x such that $g(x)=1$. A randomized branching program computes the function g with one-sided ε-error if it $(\varepsilon, 1)$ computes the function g.

For a branching program P, we define size (P) (complexity of the branching program P) as the number of internal nodes in P.

From the definition of the complexity of a branching program it follows that the size of randomized branching program is the sum of random generator nodes and x_{i}-nodes.

Read-once branching programs are branching programs in which for every path, every variable is tested no more than once. A read-once ordered branching program is a read-once branching program which respects a fixed ordering π of the variables, i.e. if an edge leads from an x_{i}-node to an x_{j}-node, the condition $\pi(i)<\pi(j)$ has to be fulfilled.

A read-k-times branching program is a branching program with the prop-
erty that no input variable x_{i} appears more than k times on any path in the program. A read- k-times ordered branching program is a read- k-times branching program which is partitioned into k layers such that the each layer is a read-once ordered respecting the same ordering π. In [5] it is proved that deterministic ordered read- $(k+1)$-times branching programs are more powerful than deterministic ordered read- k-times branching programs. Namely classes of functions computed by deterministic polynomial-size read- k-times ordered branching programs form proper hierarchy for $k=o\left(n^{1 / 2} / \log ^{2} n\right)$.

We exhibit an explicit function $f_{n}:\{0,1, \hat{0}, \hat{1}\}^{2 n} \rightarrow\{0,1\}$, for which we prove that:
(i) Function f_{n} can be computed with one sided $\varepsilon(n)$-error by randomized read-once ordered branching program with the size $O\left(\frac{n^{6}}{\varepsilon^{3}(n)} \log ^{2} \frac{n}{\varepsilon(n)}\right)$ (Theorem 1).
(ii) Any deterministic read-once branching program that computes function f_{n} has the size no less than 2^{n} (Theorem 2).
(iii) Any deterministic read-k-times ordered branching program for computing function f_{n} has size no less than $2^{(n-1) /(2 k-1)}$ (Theorem 3).

Function f_{n} can be easily defined as a boolean function. For technical reasons in the proofs we prefer to use the above notation.

Note that one can think of each internal node of a branching program as a state of a computation. This point of view is essential for the investigation of the amount of space necessary to compute functions. Restricted models of branching programs are useful for the investigation of time-space tradeoffs. We can think of read- k-time ($k \geq 1$) restrictions as a restriction on time, say time $\leq k n$ (see survey [8] for more information). This approach draws timespace tradeoff point of view to our results. Recent results on the general lower bounds on randomized space and time can be found in [1] and [11].

2 Function

Consider the finite alphabet $\Sigma=\{0,1, \hat{0}, \hat{1}\}$. As usual Σ^{*} and Σ^{n} denote the set of all words of finite length and the length n over Σ respectively.

For $\sigma_{1}, \sigma_{2} \in \Sigma, x \in \Sigma^{*}$ define $\operatorname{Proj}_{\sigma_{1}, \sigma_{2}}(x)$ to be the longest subsequence x^{\prime} of the sequence x that consists only of symbols σ_{1} and σ_{2}.

Define function $f_{n}: \Sigma^{2 n} \rightarrow\{0,1\}$ as follows: $f(x)=1$ iff

1) $\operatorname{Proj}_{0,1}(x)$ and $\operatorname{Proj}_{\hat{0}, \hat{1}}(x)$ have the same length and
2) i-th symbol in $\operatorname{Proj}_{0,1}(x)$ is σ_{i} iff the i-th symbol in $\operatorname{Proj} \hat{j}_{\hat{0}, \hat{1}}(x)$ is $\hat{\sigma}_{i}$ for all i.

Informally speaking inputs of f_{n} are words over the alphabet Σ which consists of two kinds of zeroes and two kinds of ones. $f_{n}(x)=1$ iff a subsequence z of x formed by the first kind of zeroes and ones and a subsequence y of x formed by the second kind of zeroes and ones are binary notations of the same natural number.

As it is mentioned in the section above, function f_{n} can be easily defined as a boolean function $f_{n}^{\prime}:\{0,1\}^{4 n} \rightarrow\{0,1\}$. One can encode, for example, 0 by 00,1 by $01, \hat{0}$ by 10 , and $\hat{1}$ by 11 . Our presentation help us to make main ideas of proof methods more clear and help us to avoid several technical details in proofs.

3 Results

Theorem 1. Function f_{n} can be computed with one sided $\varepsilon(n)$-error by randomized read-once ordered branching program of size

$$
O\left(\frac{n^{6}}{\varepsilon^{3}(n)} \log ^{2} \frac{n}{\varepsilon(n)}\right)
$$

Proof: Randomized read-once ordered branching program P that computes f_{n} works as follows:

Phase 1. (probabilistic). Choose $d(n)$ to be some function in $O(n)$, s.t. $d(n)>2 n . \quad P$ randomly selects a prime number p from the set $Q_{d(n)}=$ $\left\{p_{1}, p_{2}, \ldots, p_{d(n)}\right\}$ of first $d(n)$ prime numbers.
P selects a prime number p in the following way. P use $t=\lceil\log d(n)\rceil$ random variables $y_{1}, y_{2}, \ldots, y_{t}$, where $y_{i} \in\{0,1\}$ and $\operatorname{Prob}\left(y_{i}=1\right)=\operatorname{Prob}\left(y_{i}=\right.$ $0)=1 / 2$. The branching program P reads its random inputs in the fixed order $y_{1}, y_{2}, \ldots, y_{t}$. Sequence $y=y_{1} y_{2} \ldots y_{t}$ is interpreted as binary notation of the number $N(y) . P$ selects i-th prime number $p_{i} \in Q_{d(n)}$ iff $N(y)=i \bmod d(n)$.

Phase 2. (deterministic). Let $\sigma \in \Sigma^{2 n}$ be a valuation of x. Denote $\alpha=\operatorname{Proj}_{0,1}(\sigma), \beta=\operatorname{Proj}_{\hat{0}, \hat{1}}(\sigma)$. We treat $\hat{\sigma}_{i}$ to be the number 0 if $\hat{\sigma}_{i}=\hat{0}$, and to be the number 1 if $\hat{\sigma}_{i}=\hat{1}$. Sequences α and β are interpreted as binary notations of numbers $N(\alpha)$ and $N(\beta) . P$ reads input sequence $x=\sigma$ in the order $x_{1}, \ldots, x_{2 n}$.

Along the computation path, P
a) verifies if $|\alpha|=|\beta|$,
b) counts modulo p the numbers $N(\alpha)$ and $N(\beta)(a=N(\alpha) \bmod p$ and $b=N(\beta) \bmod p)$ in the following way. In the beginning of computation $a:=0$ and $b:=0$. When P reads i-th input symbol $\sigma_{i} \in\{0,1\}$ of the sequence α (respectively i-th input symbol $\hat{\sigma}_{i} \in\{\hat{0}, \hat{1}\}$ of the sequence β) then $a:=a+\sigma_{i} 2^{i} \bmod p\left(\right.$ respectively $\left.b:=b+\hat{\sigma}_{i} 2^{i} \bmod p\right)$.

Let α^{\prime} and β^{\prime} be first parts of the length t and k respectively of subsequences α and β that were tested during the path from the source to the internal node (state) v. For the realization of the procedure described in the phase \mathcal{D}^{2} it is sufficient to store in the state v four numbers: $t, k \in\{0,1, \ldots, n\}$, $a=N\left(\alpha^{\prime}\right) \quad(\bmod p)$, and $b=N\left(\beta^{\prime}\right) \quad(\bmod p)$.

If $|\alpha| \neq|\beta|$ then P outputs 1 correct answer with probability 1.
Consider the case $|\alpha|=|\beta|$.

If $N(\alpha)=N(\beta) \quad(\bmod p)$ then P outputs 1 else P outputs 0 .
From the description of P it follows that if $N(\alpha)=N(\beta))$ then P with probability 1 outputs correct answer. If $N(\alpha) \neq N(\beta)$ then it can happen that $N(\alpha)=N(\beta) \quad(\bmod p)$ for some $p \in Q_{d(n)}$. In these cases P make error output.

For $x=\sigma$ it holds that $|N(\alpha)-N(\beta)| \leq 2^{n}<p_{1} p_{2} \cdots p_{n}$ where $p_{1}, p_{2}, \ldots, p_{n}$ are first n prime numbers. This means that in the case when $N(\alpha) \neq N(\beta)$ the probability $\varepsilon(n)$ of the error of P on the input $x=\sigma$ is no more than $2 n / d(n)$.

The size of P is no more than

$$
2^{t+1}-1+\sum_{p \in Q_{d(n)}} \sum_{l=1}^{n}(n+1)^{2} p^{2}
$$

It is known from the number theory that the value of the i-th prime is of order $O(i \log i)$. Therefore from the above upper bound for the $\operatorname{size}(P)$ and from the upper bound for $\varepsilon(n)$ it follows that

$$
\operatorname{size}(P) \leq O\left(n^{3} d^{3}(n) \log ^{2} d(n)\right) \leq O\left(\frac{n^{6}}{\varepsilon^{3}(n)} \log ^{2} \frac{n}{\varepsilon(n)}\right)
$$

Theorem 2. Any deterministic read-once branching program that computes the function f_{n} has the size of no less than 2^{n}.

Proof: Consider an arbitrary deterministic read-once branching program P that computes function f_{n}. Let v be a node of the P. Let $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{l}$ be a sequence of symbols over Σ. We will write $v=v(\sigma)$ if there is a sequence $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{l}}$ of variables such that edges $x_{i_{1}}=\sigma_{1}, x_{i_{2}}=\sigma_{2}, \ldots, x_{i_{l}}=\sigma_{l}$ form a path P from the source to the node v. Denote $x(\sigma)=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{l}}\right\}$.

For the node $v(\sigma)$ denote $f_{v(\sigma)}$ the function which is computed by P when the node $v(\sigma)$ is considered as a source node. $f_{v(\sigma)}$ is the sub function of f_{n} where we have replaced the variables read on $x(\sigma)$ by the proper constants from σ.

For proving the lower bound of the theorem it is enough to show that for any $\sigma, \sigma^{\prime} \in\{0,1\}^{n}, \sigma \neq \sigma^{\prime}$ it holds that $v(\sigma) \neq v\left(\sigma^{\prime}\right)$.

Assume that there are sequences $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in\{0,1\}^{n}$ and $\sigma^{\prime}=$ $\sigma_{1}^{\prime} \sigma_{2}^{\prime} \ldots \sigma_{n}^{\prime} \in\{0,1\}^{n}$ such that $\sigma \neq \sigma^{\prime}$ and $v(\sigma)=v\left(\sigma^{\prime}\right)=v . \quad P$ is read-once. This means that $f_{v(\sigma)}$ and $f_{v\left(\sigma^{\prime}\right)}$ are functions over the same set of variables and $f_{v(\sigma)}=f_{v\left(\sigma^{\prime}\right)}$. From the definition of the function f_{n} we have that there exists a sequence $\hat{\sigma} \in\{\hat{0}, \hat{1}\}^{n}$ such that $f_{v(\sigma)}(\hat{\sigma})=1$ but $f_{v\left(\sigma^{\prime}\right)}(\hat{\sigma})=0$. This means that $f_{v(\sigma)} \neq f_{v\left(\sigma^{\prime}\right)}$.

Note that the proof of the theorem 2 can be also obtained as a corollary from theorem 2.1 [18].

Below we prove an exponential lower bound for the complexity of presentation of the function f_{n} by deterministic read- k-times ordered branching program. For proving it we use a method based on two-way communication game. We present this method in the lemma below for a more common notion of ordering variables for a branching program than the traditional ones.

Note that the method based on communication game is used in the paper [12] and later in [5] for proving lower bound for deterministic read- k-times ordered branching programs.

Definition 1. Call a read-once branching program a π-weak-ordered readonce branching program if it respects an ordered partition π of the variables into two parts X_{1} and X_{2}, i.e. if an edge leads from an x_{i}-node to an x_{j}-node, where $x_{i} \in X_{t}$ and $x_{j} \in X_{m}$, then the condition $t \leq m$ has to be fulfilled.

Call a read- k-times branching program read- k-times π-weak-ordered if it is partitioned to k layers such that the each layer is a π-weak-ordered read-once respecting the same ordered partition π of variables in each layer.

A π-weak-ordering of variables of a branching program P means that if some input $x_{i} \in X_{2}$ is tested by P, then on the rest part of computation path no variables from X_{1} can be tested.

We call branching program P a read-k-times weak-ordered if it is read-ktimes π-weak-ordered for some ordered partition π of the set of variables of P into two sets.

From the definition it follows that if read-once (read- k-times) branching program is ordered then it is weak-ordered.

For a function $g: \Sigma^{n} \rightarrow\{0,1\}$ and for a partition π of the set of variables x of g into two parts X_{1} and X_{2}, denote by $C_{k, \pi}(g)$ a k-round deterministic communication complexity of g for the communication game with two players A and B where A obtains variables from the first part X_{1} of variables and B obtains variables from the second part X_{2} of variables of g.

Lemma 1. Let for a function $g: \Sigma^{n} \rightarrow\{0,1\} P$ be a deterministic read-k-times π-weak-ordered branching program that computes g. Then

$$
\operatorname{size}(P) \geq 2^{\left(C_{2 k-1, \pi}(g)-1\right) /(2 k-1)} .
$$

Proof: Consider the following communication game with two players A and B for computing function f_{n}. Let X_{1} and X_{2} be two sets determined by partition π of a set of variables x of P. Part of the input corresponding to X_{1} is known to A, and part of the input corresponding to X_{2} is known to B. Players A and B have the copy of P. In order to compute f_{n}, A and B communicate with each other in $(2 k-1)$ rounds by sending messages in each round according to the following protocol ϕ. Player A is the first one to send a message. The output is produced by B. Let $\sigma \in \Sigma^{2 n}$ be a valuation of x. Denote σ_{A} and σ_{B} parts of input σ which correspond to variables from X_{1} and X_{2} (inputs of A and B), respectively.

For each $i, 1 \leq i \leq k-1$, communication protocol ϕ simulates computation on the i-th layer of P by two communication rounds $2 i-1$ and $2 i$.

First round: Player A starts simulation of P on his part σ_{A} of input σ from the source of P. Let v_{1} be a node which is reachable by P on σ_{A} from the source. Player A sends node v_{1} to B.

Second round: Player B on obtaining message v_{1} form A starts its simulation of P on his part σ_{B} of input σ from the node v_{1}. Let v_{2} be a node which is reachable by P on σ_{B} from the v_{1}. Player B sends node v_{2} to A.

Last round (round $2 k-1$): Player A on obtaining message $v_{2 k-2}$ from B starts its computation from the node $v_{2 k-2}$ on his part σ_{A} of input σ. Let $v_{2 k-1}$ be a node which is reachable by P on σ_{A} from the node $v_{2 k-2}$. Player A sends node $v_{2 k-1}$ to B. Player B on obtaining $v_{2 k-1}$ starts its part of simulation of P from the $v_{2 k-1}$ on σ_{B} and then outputs the result of computation.

The message that A and B has exchanged during the computation is $m=$ $v_{1} v_{2} \ldots v_{2 k-1}$. Call m a full message.

Denote by V_{i} the set of all internal nodes which can be send on the i-th round by player A to B if i is odd (by player B to A if i is even) during the computations on $\Sigma^{2 n}$. Denote $d_{i}=\left|V_{i}\right|$. From our notation it follows that the number of all full messages that can be exchanged on inputs from $\Sigma^{2 n}$ according to protocol ϕ is no more than $\prod_{i=1}^{2 k-1} d_{i}$.

The number of full messages used by ϕ cannot be less than $2^{C_{2 k-1, \pi}(g)-1}$

$$
\prod_{i=1}^{2 k-1} d_{i} \geq 2^{C_{2 k-1, \pi}(g)-1}
$$

The lower bound of the lemma follows from the inequality above (with $\left.d=\max \left\{d_{i}: i \in\{1,2, \ldots, 2 k-1\}\right\}\right)$ for which it holds that

$$
d^{2 k-1} \geq \prod_{i=1}^{2 k-1} d_{i} \geq 2^{C_{2 k-1, \pi}(g)-1}
$$

and hence

$$
d \geq 2^{\left(C_{2 k-1, \pi}(g)-1\right) /(2 k-1)} .
$$

Theorem 3. Any deterministic ordered read-k-times branching program that computes function f_{n} has the size no less than $2^{(n-1) /(2 k-1)}$.

Proof: Let P be an ordered read- k-times branching program with an ordering π of variables which computes the function f_{n}. Consider the following partition $\hat{\pi}$ of variables x of f_{n} into two parts $X_{1}=\left\{x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right\}$ and $X_{2}=\left\{x_{\pi(n+1)}, x_{\pi(n+2)}, \ldots, x_{\pi(2 n)}\right\}$. It is obvious that P is read- k-times $\hat{\pi}$-weak-ordered.

Denote $C M$ a communication matrix of the function f_{n} for the partition $\hat{\pi}$ of the variables x. Consider the $2^{n} \times 2^{n}$ sub-matrix $C M^{\prime}$ of $C M$ which
is formed by strings that correspond to the part of inputs from $\{0,1\}^{n}$ and columns that correspond to the part of inputs from $\{\hat{0}, \hat{1}\}^{n}$. Matrix $C M^{\prime}$ is the E matrix (elements of the main diagonal are 1 and all rest elements are 0). This means that

$$
C_{t, \pi}\left(f_{n}\right) \geq n
$$

for $t \geq 1$. From the lower bound for $C_{t, \pi}\left(f_{n}\right)$ above and the lemma 1 it follows that

$$
\operatorname{size}(P) \geq 2^{(n-1) /(2 k-1)}
$$

The lower bound of the theorem follows from considering the best read- k times ordered branching program that computes f_{n}.

Corollary. f_{n} cannot be computed by any deterministic read-k-times ordered branching programs in polynominal size for $k=o(n / \log n)$.

4 Further Research and Open Problems

We conclude with two open problems:

1. It will be interesting to describe how to separate "hard functions" (functions for which randomization does not improve their branching program complexity for the restricted number of testing variables) from the functions which can be computed more efficiently using randomization. Another words it is an interesting open problem to develop new randomized lower bound techniques for branching programs.
2. What is the exact dependence of the size of randomized branching programs on the error of computation?

Acknowledgments. We thank Sasha Razborov and Roman Smolensky for a number of interesting discussions on the subject of the paper.

References

[1] F. Ablayev, Lower bounds for probabilistic space complexity: communicationautomata approach, in Proceedings of the LFCS'94, Lecture Notes in Computer Science, Springer-Verlag, 813, (1994), 1-7.
[2] L. Adelman, Two theorems on random polynomial time, in Proceedings of the 19-th FOCS, (1978), 75-83.
[3] M. Ajtai and M. Ben-Or, A theorem on randomized constant depth circuits, in Proceedings of the 16-th STOC, (1984), 471-474.
[4] C. Bennet and J. Gill, Relative to a random oracle $A, P^{A} \neq N P^{A} \neq c o-N P^{A}$ with probability 1, SIAM J. Comput, 10, (1981), 96-113.
[5] B. Bolling, M. Sauerhoff, D. Sieling, and I. Wegener, On the power of different types of restricted branching programs, ECCC Reports 1994, TR94-025.
[6] R. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical Computer Science, Vol A: Algorithms and Complexity, MIT Press and Elsevier, The Netherlands, 1990, ed. J Van Leeuwen, 757-804.
[7] A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read- k-times branching programs, Computational Complexity, 3, (1993), 1-18.
[8] A. Borodin, Time-space tradeoffs (getting closer to barrier?), in Proceedings of the ISAAC'93, Lecture Notes in Computer Science, Springer-Verlag, 762, (1993), 209-220.
[9] R. Bryant, Symbolic boolean manipulation with ordered binary decision diagrams, ACM Computing Surveys, 24, No. 3, (1992), 293-318.
[10] R. Frevalds, Fast probabilistic algorithms, in Proceedings of the Conference Mathematical Foundation of Computer Science 1979, Lecture Notes in Computer Science, Springer-Verlag, 74, (1979), 57-69.
[11] R. Freivalds and M. Karpinski, Lower time bounds for randomized computation, in Proceedings of the ICALP'95, Lecture Notes in Computer Science, SpringerVerlag, 944, (1995), 183-195.
[12] M. Krause, Lower bounds for depth-restricted branching programs, Information and Computation, 91, (1991), 1-14.
[13] C. Y. Lee, Representation of switching circuits by binary-decision programs, Bell System Technical Journal, 38, (1959), 985-999.
[14] L. Lovasz, Communication complexity: a survey, in "Paths, Flows and VLSI Layout", Korte, Lovasz, Proemel, Schrijver Eds., Springer-Verlag (1990), 235266.
[15] W. Masek, A fast algorithm for the string editing problem and decision graph complexity, M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, May 1976.
[16] S. Ponzio, A lower bound for integer multiplication with read-once branching programs, Proceedings of the 27-th STOC, (1995), 130-139.
[17] A. Razborov, Lower bounds for deterministic and nondeterministic branching programs, in Proceedings of the FCT'91, Lecture Notes in Computer Science, Springer-Verlag, 529, (1991), 47-60.
[18] J. Simon and M. Szegedy, A new lower bound theorem for read-only-once branching programs and its applications, Advances in Computational Complexity Theory, ed. Jin-Yi Cai, DIMACS Series, 13, AMS (1993), 183-193.
[19] I. Wegener, The complexity of Boolean functions. Wiley-Teubner Series in Comp. Sci., New York - Stuttgart, 1987.
[20] I. Wegener, Efficient data structures for boolean functions, Discrete Mathematics, 136, (1994), 347-372.

[^0]: *Dept. of Computer Science, University of Bonn. Visiting from University of Kazan. Research partially supported by the Volkswagen-Stiftung and the Basic Research Grant 96-01-01962 Email: ablayev@ksu.ras.ru
 ${ }^{\dagger}$ Dept. of Computer Science, University of Bonn, and International Computer Science Institute, Berkeley, California. Research partially supported by DFG Grant KA 673/4-1, by the ESPRIT BR Grants 7097 and EC-US 030, and by the Volkswagen-Stiftung. Email: marekecs.uni-bonn.de

