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Abstract. We introduce a new method for

proving explicit upper bounds on the VC Di-

mension of general functional basis networks,

and prove as an application, for the �rst time,

the VC Dimension of analog neural networks

with the sigmoid activation function �(y) =

1=1+ e

�y

to be bounded by a quadratic poly-

nomial in the number of programmable pa-

rameters.

0 Introduction

The most commonly used activation function in vari-

ous neural networks applications is the sigmoid �(y) =

1=1 + e

�y

(cf. [HKP91]). We refer to [AB92], [M93],

and [MS93] for all the necessary background on the

computation by neural networks and the VC dimension

(particularly, to the connection between their computa-

tional power, and the sample complexity). In Maass's

1993 lecture notes [M93], Open Problem 10 (see also

[GJ93] and [MS93]) asks:

Is the VC-dimension of analog neural nets with the

sigmoid activation function �(y) = 1=1 + e

�y

bounded

by a polynomial in the number of programmable pa-

rameters? (In [MS93] the �niteness of VC Dimension of

sigmoidal neural networks has been established for the

�rst time. The explicit upper bounds for VC dimension

however, and consequently, the bounds on the sample

�
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sizes of single sigmoidal neural networks , remained an

open problem.)

In this paper we give an a�rmative answer, with

a quadratic polynomial bound in a number of pro-

grammable parameters. We believe that the bound

can be improved to the subquadratic one in the num-

ber of programmable parameters using a variant of our

method. The details are given in Sections 2{3. The

result is a special case of a much more general result

about bounds for VC dimension in o-minimal theories.

The paper was inspired by the work of Goldberg and

Jerrum [GJ93], who could deal with polynomial activa-

tion functions. A reference in [GJ93], to Warren's paper

[W68], was of particular importance. Some other ap-

plications of our method will appear in the full version

of this paper.

1 Model-theoretic Preliminaries

We shall consider a standard model of a feedforward

network architecture A with the activation function

� (cf., e. g., [M93], [MS93]) with k inputs, m com-

putational nodes, and ` weights (the number of pro-

grammable parameters). We assume that the output

gate of A is thresholded to f0; 1g. We associate with

A an exponentional formula �(�v; ~y) > 0 for �v 2 R

k

,

and ~y 2 R

`

being a composition of polynomials, and

activation functions over the computation nodes of A.

�(�v; ~y) > 0 represents the function computed by A. Al-

ternatively, and this is crucial in our paper, we describe

the computation of A as a Boolean combination of

atomic formulas of two forms � (�v; ~y) = 0 or � (�v; ~y) > 0

describing local computations of A at its computational

nodes (for appropriate �v's, and ~y's). The VC dimen-

sion of the network A is the VC dimension of the class

C

�

= f�

~

�

:

~

� 2 R

`

g for �

~

�

= f�x 2 R

k

: �(�x;

~

�) > 0g

the partition ofR

k

by A according to the weight assign-

ment

~

�. (The general reader is referred to [MS93] and

[GJ93] for de�nitions and basic properties of Vapnik-

Chervonenkis (VC) dimension. We call a set S � R

k

to be shattered by C

�

if fS

T

C : C 2 C

�

g = P (S). The
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VC dimension of C

�

is the maximal size of any set S

that can be shattered by C

�

, or 1 if arbitrary large

subsets may be shattered.)

We turn our attention now to the analysis of general

formulas resulting from the local computation descrip-

tions of A. The method of our analysis is by no means

restricted to the network architectures only, and can be

applied to a much larger class of formulas, which could

be of independent interest.

The principles behind this paper are of great gen-

erality. We do not seek here maximum generality, but

restrict ourselves to work over the �eld of real numbers.

We work with structure M which are enrichments

of the real �eld R by certain total C

1

(in�nitely dif-

ferentiable) functions. Our underlying �rst-order lan-

guage L has primitives +;�; �; <; 0; 1 (with the usual

interpretation on R), together with various n-ary func-

tion symbols f . Each f has a �xed interpretation by a

C

1

function

�

f : R

n

! R, thereby determining an L-

structure M . Obviously, if � (v

1

; � � � ; v

m

) is an L-term

with free variables v

1

; � � � ; v

m

; � de�nes an m-ary C

1

function (also denoted �� ) from R

m

to R. L-formulas

�(v

1

; � � � ; v

k

) de�ne subsets of R

k

, and L-formulas

�(v

1

; � � �v

k

; y

1

; � � � ; y

`

) together with

~

� = (�

1

; � � � ; �

`

)

in R

`

de�ne subsets of R

k

, namely

�

~

�

= f�x 2 R

k

:M j= �(�x;

~

�)g:

For �(�v; ~y) as above, let

f�

~

�

:

~

� 2 R

`

g = C

�

:

C

�

is a de�nable family of de�nable sets. In this paper

we will give good bounds for the VC dimension of C

�

,

for many natural �.

The following notion has in the last decade become

central in the model theory of analysis [L92].

De�nition. M is o-minimal if for every formula

�(v

1

; y

1

; � � �y

`

) and every

~

� 2M

`

, �

~

�

is a �nite union

of intervals with endpoints in M [ f�1g.

Notes:

(a) "Interval" should be understood in all possible

senses.

(b) It is not important that M lives on R or has C

1

-

primitives.

(c) It follows, nontrivially, that the number of con-

nected components of �

~

�

above is bounded inde-

pendent of

~

�.

For our purposes we need two substantial results

about o-minimality:

Theorem 1. If M is an

o-minimal expansion of R, then for any �(v

1

; � � � ; v

k

;

y

1

; � � � ; y

`

), and any

~

�; �

~

�

has only �nitely many con-

nected components, and there is a bound B(�) inde-

pendent of

~

�.

Theorem 2. IfM is an o-minimal structure then for

every �(�v; ~y), C

�

has �nite V C-dimension.

For Theorem 1, see [D92], and [KPS86] for Theorem

2, see [L92]. Note that although the latter has construc-

tive aspects, the use of Ramsey's theorem precludes re-

alistic estimates for V C dimension of C

�

.

2 The Main Result

2.1 Let M be a structure as above with enrich-

ments of the real �eld R, with C

1

primitives, and o-

minimal. �(v

1

; � � � ; v

k

; y

1

; � � � ; y

`

) is now assumed to be

a quanti�er-free formula. Thus � is a Boolean combi-

nation of atomic formulas, which can be of two forms:

� (�v; ~y) > 0;

or

� (�v; ~y) = 0

where � is a term.

Now list as �

1

; � � � ; �

h

the terms as above occurring in

�. (One can delete repetitions). If we �x �� 2 R

k

;

~

� 2

R

`

we get a sequence

h�

1

(��;

~

�); � � � ; �

h

(��;

~

�i

of reals, inducing a sequence of signs +, 0, -, via

sgn �

i

= + if �

i

(��;

~

�) > 0

= 0 if �

i

(��;

~

�) = 0

= � if �

1

(��;

~

�) < 0:

Call this sequence �(��;

~

�). Consider �rst, for �xed ��,

the

~

� such that �(��;

~

�) consists only of + and - 's. Then

as

~

� varies one gets only �nitely many �(��;

~

�), with a

bound for the number being given by the number of

connected components of

R

`

n [

i�h

f~y : �

i

(��; ~y) = 0g:

[By Theorem 1, this number is �nite, and has a bound

independent of ��].

To handle general �(��;

~

�) one uses a variational ar-

gument (Corollary 2.1 in [GJ93]) which is everywhere

dense in what follows. Add a new variable ", and re-

place h�

i

(�x; ~y)i

i�h

by

h�

1

(�x; ~y) + "; �

1

(�x; ~y) � ";

�

2

(�x; ~y) + "; � � � ;�";

�

h

(�x; ~y) + "; �

h

(�x; ~y)� "i
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So we have replaced an h-tuple of terms in k+` variables

by a (2h)- tuple of terms in k+ `+ 1 variables. In this

way we get new sign sequences �

�

(��;

~

�; "). The basic

lemma is:

Lemma 3. For �xed �� the number of �(��;

~

�) is

bounded by the number of �

�

(��;

~

�; ") consisting only

of + and �.

Let �(��;

~

�

1

); � � � ; �(��;

~

�

r

) be the distinct �(��;

~

�):

Choose " > 0 but < all j �

j

(��;

~

�

i

) j (j � h; i � r)

which are non zero. Then �

�

(��;

~

�

i

; ") has no zeros, and

clearly �

�

(��;

~

�

i

; ") 6= �

�

(��;

~

�

j

; ") if �(��;

~

�

i

) 6= �(��;

~

�

j

):

�

Note: The essential point for future reference is that

the number �(��;

~

�) is bounded by the number of con-

nected components of

R

`+1

n

[

i�h

(f(~y; ") : �

i

(��; ~y) = "g

[f(~y; ") : �

i

(��; ~y) = �"g);

and this has a bound independent of ��.

2.2 Now we run through the argument of [GJ93]. Let

�(v

1

; � � � ; v

k

; y

1

; � � � ; y

`

) be quanti�er-free with terms

�

i

(�v; ~y); i � s.

Let f��

1

; � � � ; ��

v

g be distinct elements ofR

k

such that

f��

1

; � � � ��

v

g is shattered by C

�

. Then exactly as in

[GJ93] one sees:

2

v

� the number of sequences of signs f+, -, 0g obtain-

able from

h�

1

(��

1

; ~y); �

1

(��

2

; ~y); � � � ; �

1

(��

v

; ~y); �

2

(��

1

; ~y); � � �

� � � �

1

(��

v

; ~y); � � � ; �

s

(��

1

; ~y); � � � ; �

s

(��

v

; ~y)i:

Note that the latter sequence has length vs.

Then by the argument in 2.1, 2

v

� number of con-

nected components of

R

`+1

n

[

i�s

j�v

f(~y; ") : �

i

(~�

j

; ~y) � "g (�):

Our strategy is to use o-minimality to get a decent

estimate for the right hand side.

2.3 We proceed axiomatically. We assume we have

�xed a bound �(�;m) for integers m and sequences

� = h�

i

i

i�r

of terms

�

i

(v

1

; � � � ; v

k

; y

1

; � � � ; y

`

) ; i � r

for the number of connected components of

[

j�m

f~y : �

f(j)

(��

j

; ~y) = 0g

as ��

j

varies through (R

k

)

m

, and f is a function from

[O;m] to [O; r].

Classical example. � a polynomial of ~y degree � d.

Then �(�;m) can be taken as 2:(2d)

`

.

This is due to Milnor [M64]. For m = 1 one has

the bound 2:d

`

, and the general case reduces to this by

replacing � by

P

j�m

�(��

j

; ~y)

2

:

We shall see later the exponential analogue. In an

o-minimal theory, � of course exists.

We show in 2.4 how the right hand side of (*) may be

estimated in terms of �. The idea comes fromWarren's

1968 paper [W68], and we now use the C

1

property of

M for the �rst time.

2.4 We assume given terms �

1

(�v; ~y); � � � ; �

n

(�v; ~y) and

��

1

; � � � ; ��

n

2 R

k

:

We consider the de�nition

f�y :

^

i�n

�

i

(��

i

; ~y) = 0g in R

`

;

and say it is nonsingular if either it de�nes �, or at each

point (y

1

; � � � ; y

`

) in the above intersection the Jacobian

matrix

�

�

�

�

@

@y

j

�

i

(��

i

; ~y)

�

�

�

�

i � n

j � `

has rank n.

Of course in the latter situation the implicit function

theorem applies if ` > n, and we have a C

1

manifold of

dimension ` � n. If ` = n, o-minimality gives a bound,

depending only on �

1

; � � � ; �

n

, for the cardinality of the

set de�ned.

When ` > n, there are variables y

m

1

; � � � ; y

m

`�n

such

that locally all other y

i

are given as F

i

(y

m

1

; � � � ; y

m

`�n

)

where F

i

is a de�nable (from the ��

i

)C

1

function.

We want to take a naive, presentation-sensitive,

notion of submanifold, or, better, locally at sub-

manifold. We assume a presentation as above, with

y

m1

; � � � ; y

m

`�n

speci�ed, and suppose that we add

some new equations �

n+1

= 0; � � � ; �

n+u

= 0 giving

a manifold of dimension ` � (n + u) with a subset of

fy

m

1

; � � �y

m

`�n

g as its basis.

This gives notion of locally at. Thus M

1

! M

2

is

locally like the canonical R

`�(n+u)

! R

`�n

which puts

0's on all but �rst ` � (n+ u) entries.

We will be able to use Warren's Theorem 1 exactly

as he does. For convenience we repeat it:

3



Theorem 4. Let M be a connected topological n-

manifold, and let M

1

; � � � ;M

n

be connected (n � 1)-

manifolds embedded in M so that:

(1) The M

i

are topologically closed and locally at in

M ;

(2) The intersection of any given j of the M

i

; 1 � j � n,

is either empty or is an (n� j) manifold locally at in

the intersection of any (j � 1) of the M

i

, and

(3) any intersection of more than n of the M

i

is empty.

Let b

j

be the number of connected components

among all intersections of any j of the M

i

with M .

Then M �[

n

i=1

M

i

has � �b

j

connected components.

Regular Con�gurations. If we are given a sequence

�

i

(��

i

; ~y)1 � i � n; of terms in parameters, we say they

form a regular sequence if every formal intersection of

a subset is nonsingular in the sense explained earlier.

In that case, if one takes as M

1

; � � � ;M

b

the connected

components of the f~y : �

i

(��

i

; ~y) = 0g, the hypotheses of

Theorem 2 are satis�ed, with M = R

`

. Connectedness

is clear, and local atness is direct. That the intersec-

tion of more than ` of the M

i

is empty follows from reg-

ularity and a dimension count. The �niteness of com-

ponents follows from o-minimality, since each original

component is de�nable ([D92], [KPS86]).

And now we come to the crunch, which reduces all

calculations, via small perturbations, to ones covered

by Theorem 4. This corresponds to Warren's Lemmas

2.2, 2.3 and 2.4. We have to change his argument for

2.2, which appeals to complex projective geometry. We

use instead Sard's Theorem [M65].

Lemma 5. Let �

1

(��

1

; ~y); � � � ; �

m

(��

m

; ~y) be as usual,

and � (��; ~y) arbitrary. If the de�nition

V = \f~y : �

i

(��

i

; ~y) = 0g

is regular, or de�nes the set R

`

, then for all but �nitely

many real numbers � the de�nition

V \ f~y : � (��; ~y) � � = 0g

is regular.

Proof. If m > `; V = �, and there is nothing to prove.

If m = `; V is �nite, and so choose � outside the

range of � (��; ~y) on V .

If m < `, or V = R

`

, we have the C

1

map � (��; ~y)

from V to R, and by Sard's Theorem and o-minimality

the set of regular values of � is co�nite. Any regular

value � works. �

The rest is almost formal.

Lemma 6. (Same notation as Lemma 3).

There exists � > 0 such that if 0 < " < � then every

connected component of

E = R

`

� (V [ f~y : � (��; ~y) = 0g)

contains a connected component of one of the sets

E

"

= R

`

� (V [ f~y : � (��; ~y) = "g

[ f~y : � (��; ~y) = �"g)

Proof: E has �nitely many connected components, by

o-minimality. Let them be C



( < 

o

), and pick

~c



2 C



Let

� = min

<

o

j � (��; ~c



) j> 0:

C



is contained in some component J of R

`

nV , and is

the maximal connected set of points ~y in J containing

~c



and such that

sgn � (��; ~y) = sgn � (��; ~c



):

If " < �, some component K of J [ f~y : j� (��; ~y)j > "g

contains ~c



. This is a component of E

"

and is contained

in C



. �

Lemma 7. Let �

1

; � � � ; �

m

be as usual. Then there are

real numbers "

1

; � � � ; "

m

such that the collection

�

1

� "

1

; �

1

+ "

1

; �

2

� "

2

; �

2

+ "

2

; :::

form a regular con�guration, and such that every con-

nected component of

E = R

`

n

[

f~y : �

i

(��

i

; ~y) = 0g

contains one of

F = R

`

n

[

~y : �

i

(��

i

; ~y) = �"

i

g:

Proof: By recursion on m.

First choose � as in Lemma 6, with �

2

; � � � ; �

m

as

the �'s, and �

1

as the � . By Lemma 5, for all but

�nitely many �, f~y : �

1

� � = 0g is regular. So choose

0 < "

1

< � so both

f~y : �

1

= "

1

g and f~y : �

1

= �"

1

g

are regular. (Of course their intersection is empty).

Assume "

1

; � � � ; "

r

have been determined. Now choose

� as in Lemma6, with �

r+1

as � and �

i

�"

i

; i = 1; � � � ; r

and �

r+2

; � � � ; �

n

as the �'s.

Choose "

r+1

2 (0; �) so that the

4



f~y : �

i

(��

i

; ~y)� "

r+1

= 0g

and

f~y : �

i

(��

i

; ~y) + "

r+1

= 0g; i � r + 1

forma regular con�guration. This is possible by Lemma

5, because the number of intersections to consider is

�nite, and all preceding intersections are regular. �

2.4 Recall the bound � from 2.3.

Theorem 6. Let �

1

(��

1

; ~y); � � � ; �

m

(��

m

; ~y) be as usual.

Then the number of connected components of

R

`

n

[

f~y : �

i

(��

i

; ~y) = 0g

is bounded by

`

X

j+0

C

m;j

� 2

j

� �(�

+

1

; �

�

1

; � � � ; �

+

m

; �

�

m

; j)

where C

m;j

is

�

m

j

�

if j � m, and = 0 otherwise, and

�

+

i

(v

1

; � � � ; v

k

; w

1

; � � � ; w

m

; ~y)

= �

i

(�v; ~y) �w

i

and

�

�

i

(v

1

; � � �v

k

; w

1

; � � � ; w

m

; ~y) = �

1

(�v; ~y) + w

i

:

Proof: By Lemma 5 it su�ces to bound the number of

connected components of

R

`

n [ f~y : �

i

(��

i

; ~y) = �"

i

g

for small ", in the case of a regular con�guration. So

Warren's result, Theorem 4, applies. To calculate b

j

,

observe that

f~y : �

i

(��

i

; ~y) = "

i

g

[f~y : �

i

(��

i

; ~y) = �"

i

g = �;

and there are � �(�

+

1

; � � � ; �

+

m

; j) components for each

j-intersection 6= �, giving

��

m

j

��

�(�

+

1

; � � � ; �

+

m

; j)2

j

possibilities. [We have �"

1

; � � � ;�"

m

to choose from,

but never pick both �, giving

�

�

m

j

�

�

� 2

j

choices].

If j > `, regularity forces b

j

= 0. �

Corollary: If

�

�

(�

1

; � � � ; �

m

) = sup

j�`

�(�

+

1

; � � � ; �

+

m

; j);

then the number of connected components ofR

`

n

S

f~y :

�

i

(��

i

; ~y) = 0g

�

�

2me

`

�

`

� �

�

(�

1

; � � ��

m

):

Proof. Warren essentially showed

�

`

r=0

2

r

��

m

r

��

�

�

2me

`

�

`

�.

2.5 Estimating V C � dim of C

�

We have � as before, with associated

�

1

; � � � ; �

s

:

Now by (*) and the Corollary to Theorem 6, we get

2

v

�

�

2sve

`

�

`

sup

j�`

�(�

+

1

; � � � ; �

+

v

; j) (��):

Note that we already started in * with �

i

� ", and

translating by extra "

i

changes nothing.

The problem with (**) is that v occurs in the sup

term. But this is quite illusory, since the �

i

+ for i � sv

are substitution instances of �

+

i

(�v; ~y); i � h:

So

2

v

�

�

2sve

`

�

`

� sup

j�`

�(�

+

1

; � � ��

+

h

; j)

and B(�)(= B) = sup

j�`

�

1

(�

+

1

; � � ��

+

h

; j) is indepen-

dent of v.

If v=` � 4se we get

2

v

� B � (4se)

2`

;

so

v � logB + 2` log(4se):

If v=` > 4se, we get

2

v

< B � (

v

`

)

2`

so

2

v=`

< B

1=`

(v=`)

2

:

Now 2

v=2`

> (v=`)

2

if v=` > 16; so either

v � 17`;

5



or

2

v=2`

< B

1=`

;

i.e.

2

v

< B

2

; i.e v < 2 logB:

So in all cases,

v < 2 logB + (17 log s)`

where log is to base 2.

Theorem 7. VC-dim(�) � [2 logB + (17 log s)`].

Proof. Done. �

2.6. An example involving exponentiation.

We work with +, -, ., 0,1, <, e

x

, and appeal to

Wilkie's work [W94], or [DMM94], for a proof of o-

minimality. Let us suppose about � that its terms

�

i

(�v; ~y)(i � s) are polynomials of degree � d in �v; ~y

and no more than q subterms exp(g(�v; ~y)), where g is

linear.

Khovanski [K91] has proved a basic result relating to

this situation, namely:

Theorem 8. Let Q

i

(i � m) be elements of

R[y

1

; � � �y

`

; e

�

1

; � � �e

�

q

], where the �

i

are linear func-

tions of y

1

; � � � ; y

`

. Suppose that the system

Q

1

= � � � = Q

m

= 0

is regular, so de�ning a manifoldM of dimension `�m.

Then if Q

i

has degree d

i

(in y

1

; � � �y

`

; e

�

1

; � � � ; e

�

q

),

k = `�m and

S = �

m

i=1

d

i

+ k + 1;

M has no more than

2

q(q�1)=2

d

1

; � � � ; d

m

S

k

[(k + 1)S � k]

q

connected components.

Now note that in the proof of our main estimate we

needed estimates only on number of connected compo-

nents for regular con�gurations. So applying the above,

in the notation of 2.5

B � 2

q(q�1)=2

d

`

[(`+ 1)(d+ 1)]

`+q

:

Then logB

� q(q � 1)=2 + ` log d

+ (`+ q) log(`+ 1)(d+ 1):

So in this case V C-dimension of C

�

� q(q � 1)=2 + q log(` + 1)(d+ 1)

+ `(log d+ 17 log s):

2.7 Application to sparse formulas. Since Kho-

vanski's [K91] one has known how to use Finiteness

Theorems about exponentiation to give uniform esti-

mates in problems involving families of polynomials

where there is an absolute bound to the number of

nonzero coe�cients occurring, but no bound on the

degree of the polynomials. Using 2.6 we can readily

get uniform bounds in for V C � dimC

�

where � is a

quanti�er-free formula of the language of ordered �elds.

�(�v; ~y) is, as usual, built from terms �

i

(�v; ~y) (i � s),

and in this case the �

i

are polynomial. Let us assume

about the �

i

only that they involve at most q many

~y-monomials, as i varies.

The strategy is to break the ~y-space R

`

into 3

`

pieces

according to y

i

< 0; y

i

= 0; y

i

> 0. Having made a

choice for each i, one changes to variables y

1

i

, with y

1

i

=

logy

i

if y

i

> 0; y

1

i

= log(�y

i

) if y

i

< 0, and y

1

i

= y

i

if

y

i

= 0. Then �(�v; ~y) transforms to �

1

(�v; ~y

1

), where �

1

involves terms polynomial in �v and linear in no more

than q exponentials of linear functions of the ~y

1

.

To proceed, we have to inspect the main proof (2.4

). The V C-dimension of C

�

is bounded by the number

of connected components of a set in ~y-space. So clearly

it is bounded by 3

`

� b, where b is a uniform bounded

covering all the subcases when we have made a �xed

change of variable. But to the latter 2.6 applies, giving

b � e

`

� [2

q(q�1)=2

� [2(`+ 1)]

`+q

;

so in usual notation

logB � ` log 3 + q(q � 1)=2

+ (`+ q) log2(` + 1);

whence

V C � dim C

�

� q(q � 1)=2 + q log 2(` + 1)

+ `(log 3 + log 2(`+ 1) + 17 logs):
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3 Application to sigmoidal neu-

ral networks

We de�ne (cf. [MS93]) a sigmoidal network architecture

A. The data involves:

a) A directed acyclic graph G, labelled by variables and

polynomials as explained below:

b) an integer `, the dimension of the space of weights,

and the weight variables y

1

; � � � ; y

`

(` is the number of

programmable parameters);

c) if there are k input nodes (i.e. nodes of in-degree 0)

these are labelled by variables v

1

; � � � ; v

k

;

d) there is exactly one output node (i.e. a node of out-

degree zero);

e) those nodes which are not input nodes are called

computation nodes, and the m

th

such N

m

is labelled

by a variable z

m

, and a polynomial

P

m

(v

t

1

; � � � ; v

t

�

; z

u1

; � � � ; z

u

; y

�1

; � � �y

��

)

where the y

0

s are a subset of the weight variables, the

v

0

s correspond to the input nodes immediately below

m (i.e. connected to m) and the z

0

s correspond to the

computation nodes immediately below m.

One now �xes an activation function � : R ! R, in

our case the function

�(x) =

1

1 + e

�x

:

Then A computes a function �

A

: R

k+`

! R:

a) If N is a computation node, as above, labelled by z

m

f

N

(�v; ~y) = P

m

(v

t

1

; v

t

�

; �(f

N

1

(�v; ~y); ::

�(f

N



(�v; ~y)); y

�

1

; � � �y

�

�

)

where N

i

corresponds to u

i

; 1 � i � .

Then �

A

is f

N

w

, where N

w

is the output node.

Now, if we work in a language with +;�; �; 0; 1 and

a symbol � for the activation function, then f

A

(�v; ~y)

is given by a term � (�v; ~y), by transcribing naively the

above recursion. Let �(�v; ~y) be

� (�v; ~y) > 0:

Then (by de�nition) the V C-dimension of A is the V C-

dimension of C

�

. By [L92] (which appeals to Wilkie's

[W94]) this dimension is �nite, since � is de�nable in

+;�; �; 0; 1; e

x

.

Given a sigmoidal network architecture A, we now

apply our results to get a very good estimate for V C �

dim(A). We have simply to bound �

�

(�; j) for j � ` in

order to get B. That is, we need to know a bound on

the number of connected components of an intersection

of no more than j sets of the form

f~y : � (��

i

; ~y) = "

i

g 1 � i � j:

This estimate is given by working in a higher-

dimensional space and using the Khovanski estimate

used earlier.

We use the computation variables Z

m

, and others

^

Z

m

in correspondence with those. Write Z

w

for the output

variable. Now consider

X

m

[(Z

m

� P

m

(v

t

1

;���;t

p

;

^

Z

N1

; � � �

^

Z

N

; y

�

1

���y

�

�

))

2

+ (1 �

^

Z

m

(1 + e

�Z

m

))

2

]

= �(�v;

�

�z; ~y):

Notice that

�(�v;

�

�z; ~y) = 0

! Z

w

= � (�v; ~y) ; and

Z

w

= � (�v; ~y), (9

�

�z

:

)�(�v;

�

�z

:

; ~y) = 0):

Let m = the number of computation nodes. Then for

�xed ��, the number of connected components inR

`+2m

of �(��;

�

�z; ~y) = 0 is, by [K91],

� 2

m(m�1)=2

(2d)

`+2m

[(`+ 2m+ 1) � (2d+ 1)]

`+3m

and this clearly gives a bound for the number for

� (��; ~y) = ":

But we need to handle � j; � (��

i

; ~y) = "

i

together.

So we need now variables

v

r;i

; Z

N;i

;

^

Z

N;i

; ; i � j;

thereby having us work in R

`+2mj

space, and obtain-

ing an estimate

2

(mj)(mj�1)=2

� (2d)

`+2mj

[(`+ 2mj + 1)(2d+ 1)]

`+3mj

and since B can be chosen no larger than the supremum

of these j � `, we get

logB � (m`)(m` � 1)=2 + (`+ 2mj)(log 2d)

+ (` + 3m`) log(` + 2m` + 1)

+ (` + 3m`) log(2d+ 1);

so V C�dim(A) � (m`)(m`�1)=2+ `(2m+1) log 2d+

`(3m+ 1) log((2m+ 1)`+1) + `(3m+ 1) log(2d+ 1): �

7



Remark: The estimation above with a dominant term

(m`)

2

does not depend essentially on the type of the

activation function used, and can be straightforwardly

generalized to the large class of (multivariate) Pfa�an

([K91]) activation functions. To see this we generalize

the condition of Theorem 8 de�ned by

p(~y; e

�

1

(~y)

; : : : ; e

�

q

(~y)

) = 0

for p a polynomial, and �

i

's linear, by appealing to

Khovanski ([K91], p. 91). We replace the e

�

i

(~y)

by q

many functions occurring in a Pa�an chain of length

� q. We can extend above estimation to Pfa�an acti-

vation functions, taking into account the bound D on

the degree of the polynomials occurring in the Pfa�an

chain (resulting only in additional logD factors).

3.1 Sparse Networks.

We maintain the notations of Section 3, but now we

consider families of A, based on the same graph, but

where the P

N

can vary, subject to the restriction that

none of them have more than � many nonzero coe�-

cients. Let us go directly to the point where we work

in R

`+2mj

with the v

r;i

etc. By squaring and summing

we will have changed � to (2mj)�

2

. Taking account of

the need to consider the various quadrants in R

`+2mj

we now derive easily for B an estimate

� 3

`+2mj

� 2

(2m`)�

2

(2m`�

2

�1)=2

� 2(2 + ` + 2m`)

`+2m`�1

;

thereby getting a dominant term m

2

`

2

��

4

for the V C-

dimension.

3.2 Haussler's Pseudo Dimension.

We refer to [MS93] for the de�nition of the pseudo-

dimension of an architecture. Since the pseudo-

dimension of an architecture A is bounded by the VC-

Dimension of a new architecture A

0

(see [MS93]) got

directly from A, we get polynomial bounds for the

pseudo-dimension. This answers a�rmatively the sec-

ond part of problem 10 in [M93]. �
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