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Abstract

We survey some of the recent results on the complexity of recognizing

n{dimensional linear arrangements and convex polyhedra by randomized al-

gebraic decision trees. We give also a number of concrete applications of

these results. In particular, we derive �rst nontrivial, in fact quadratic, ran-

domized lower bounds on the problems like Knapsack and Bounded Integer

Programming. We formulate further several open problems and possible

directions for future research.

1 Introduction.

Linear search algorithms, algebraic decision trees, and computation trees

were introduced early to simulate random access machines (RAM) model.

They are also a very useful and simpli�ed abstraction of various other RAM{

related computations cf. [AHU74], [DL78], [Y81], [SP82], [M84], [M85a],

[KM90], and a useful tool in computational geometry. The same applies for

the randomized models of computation. Starting with the papers of Manber

and Tompa [MT85], Snir [S85], Meyer auf der Heide [M85a], [M85c] there was

an increasing interest, and continuing e�ort in the last decade to understand

the intrinsic power of randomization in performing various computational

�
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tasks. We refer to B�urgisser, Karpinski and Lickteig [BKL93], Grigoriev and

Karpinski [GK94], Grigoriev, Karpinski, Meyer auf der Heide and Smolensky

[GKMS97], and Grigoriev, Karpinski and Smolensky [GKS97] for the recent

results (for the corresponding situation in a randomized bit model computa-

tion cf., e.g., [KV88], [FK95]). For some new randomized lower bounds on

high dimensional geometric problems see also Borodin, Ostrovsky and Rabani

[BOR99]. In the retrospective, several algebraic and topological methods in-

troduced for proving lower bounds for deterministic algebraic decision trees

turned out to fail utterly for some reason for the randomized model of com-

putation, see the papers on deterministicmethods by Yao [Y81], [Y92], [Y94],

Steele and Yao [SY82], Ben-Or [B-O83], Bj�orner, Lov�asz and Yao [BLY92]

and Grigoriev, Karpinski and Vorobjov [GKV97]. With the exception of

some early results of B�urgisser, Karpinski and Lickteig [BKL93], and Grig-

oriev and Karpinski [GK93] there were basically no methods available for

proving lower bounds on the depth of general randomized algebraic decision

trees. In Meyer auf der Heide [M85a], a lower bound has been stated on

the depth of randomized linear decision trees (with linear polynomials only)

recognizing a linear arrangement. A gap in the proof of the Main Lemma of

this paper was closed for the generic case �rst by Grigoriev and Karpinski in

[GK94].

In this paper we survey some of the new methods which yield for the �rst

time nontrivial lower bounds on the depth of randomized algebraic trees. The

paper is organized as follows. In Section 2 we give necessary preliminaries

for a general reader, and in Section 3 we introduce the underlying models

of computation. In Section 4 we formulate the Main Results, and give some

concrete applications. Section 5 deals with the phenomenon of a randomized

speedup, and an explicit separation of deterministic and randomized depth.

Section 6 presents some extensions of the results of Section 4. In Section 7

we formulate some open problems and possible directions for future research.
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2 Preliminaries.

We refer a general reader to [G67] for basic notions on convex polytopes and

linear arrangements, and to [L84] for basic algebraic notions. We refer also

to [M64] for basic facts on real varieties and Betti numbers.

For x; y 2 IR

n

we denote by <x; y> the scalar product of x and y,

<x; y>=

n

X

i=1

x

i

y

i

:

A hyperplane H � IR

n

is a set de�ned by H = fx 2 IR

n

j <x; y>= �g for

some y 2 IR

n

, y 6= 0, and � 2 IR. A closed halfspace H � IR

n

is de�ned by

H = fx 2 IR

n

j <x; y> � �g for some y 2 IR

n

, y 6= 0, and � 2 IR.

We call a �nite union S =

S

m

i=1

H

i

of hyperplanes H

i

, a linear arrange-

ment, and a �nite intersection S

+

=

T

m

i=1

H

+

i

of closed halfspaces H

+

i

, a

polyhedron. A k-face L of a linear arrangement S is a k-dimensional plane

de�ned by intersecting n� k of the hyperplanes H

i

. If L is k-dimensional on

the boundary of S

+

, is is also a k-face of S

+

. We call a 0{face, a vertex.

When S � IR

n

is considered here as a topological space, it is with a

subspace topology induced by IR

n

. For any topological space S and an integer

k � 0, �

k

(S) denotes the i-th Betti number, i. e., the rank of the i-th singular

homology group. The Euler characteristic �(S) of S is de�ned by �(S) =

P

k

(�1)

k

�

k

(S) provided the Betti numbers of S are �nite.

Milnor [M64] and Thom [T65] give fundamental bounds on the sums of

Betti numbers

P

k

�

k

(S) of algebraic sets in IR

n

in the function of a degree

bound on their de�ning polynomials:

P

k

�

k

(S) � d(2d � 1)

n�1

.

We consider in sequel the following n-dimensional restrictions of NP-

complete problems (cf. [DL78], [M84], [M85b]).

A Bounded Integer Programming Problem is a problem of recognizing a

set

L

n;k

= fx 2 IR

n

j 9 a 2 f0; : : : ; kg

n

[< x; a >= k]g

for a given bound k on the size of integer solutions.

The well known Knapsack Problem is the problem of recognizing the set

L

n;1

.
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We consider further the problems of Element Distinctness, Set Disjoint-

ness and the Resultant (Decision Version) (cf. [B-O83]).

The Element Distinctness problem is the problem of recognizing the com-

plement of the set

fx 2 IR

n

j 9 i; j; i 6= j [x

i

= x

j

]g :

The Set Disjointness problem is the problem of determining for given two

sets A = fx

1

; : : : ; x

n

g, B = fy

1

; : : : ; y

n

g � IR whether or not A \B = ;, i.e.

recognizing the set f(x

1

; : : : ; x

n

; y

1

; : : : ; y

n

) 2 IR

2n

j 8 i; j [x

i

6= x

j

]g

The Resultant problem is the problem of computing for given x; y 2 IR

n

the resultant of x and y,

Q

i;j

(x

i

� y

j

) (cf. [B-O83]). Any algorithm for the

Resultant problem can check whether the resultant 6= 0, i.e. whether the sets

fx

i

g and fy

i

g are disjoint, and therefore solve the Set Disjointness problem

as well.

It is not di�cult to prove that the number of vertices (0-faces) of the

Bounded Integer Programming Problem L

n;k

is at least (k + 1)

n

2

16

, and the

number of

n

2

�faces (assuming n is even) of the Element Distinctness is (

n

2

)!

(cf. [GKMS97]).

3 Computational Models.

We introduce now our underlying model of randomized computations, a ran-

domized algebraic decision tree (RDT ).

An algebraic decision tree of degree d (d{DT ) over IR

n

is a rooted ternary

tree. Its root and inner nodes are labelled by real multivariate polynomials

g 2 IR[x

1

; : : : ; x

n

] of degree at most d, its leaves are marked "accepting" or

"rejecting". A computation of a d{DT on an input x = (x

1

; : : : ; x

n

) 2 IR

n

consists of a sequence of traverses of a tree from the root to a leaf, always

choosing the left/middle/right branch from a node labelled by a polynomial

g according to the sign of g(x

1

; : : : ; x

n

) (smaller/equal/greater than 0). The

inputs x 2 IR

n

arriving at accepting leaves form the set S � IR

n

recognized

(or computed) by the d{DT.
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In this paper we deal with randomized algebraic decision trees of degree

d (d{RDTs). A d{RDT over IR

n

is a �nite collection T = fT

�

g of d{DTs

T

�

with the assigned rational probabilities p

�

;

P

�

p

�

= 1, of choosing (or

randomized compiling) T

�

out of the set fT

�

g.

It is easily seen that the above model is equivalent to the other variant of a

randomized algebraic decision tree allowing coin tosses at the special random

nodes, and not charging for the random bits used. Our model of a d{RDT

is also easily to be seen equivalent (up to a constant factor in depth) to the

"equal probability" model with all trees T

�

having equal probabilities p

�

=

1

jfT

�

gj

. The rest of the paper uses this simpli�ed "equal probability" model,

and identi�es a d{RDT with a �nite collection fT

i

g of d{DTs. We say that

such a d{RDT recognizes ( or computes) a set S � IR

n

, if it classi�es every

x 2 IR

n

correctly (with respect to S) with probability at least 1� " for some

0 < " <

1

2

. The parameter " bounds an error probability of computations of

a d{RDT.

It is readily seen that the class of sets S � IR

n

recognizable by d{RDTs

is closed under the complement.

The depth of T = fT

i

g is the maximum depth of T

i

's in T . It is straight-

forward to verify that the class of sets S � IR

n

recognizable by d{RDTs is

depth-invariant under changes of the error probability " in the interval (0;

1

2

):

for any two "

1

; "

2

2 (0;

1

2

), if S � IR

n

is recognized by a d{RDT with error

probability "

1

, and depth t, it is also recognizable by a d{RDT with error

probability "

2

and depth O(t) [M85c]. It is also known that a d{RDT with a

worst case expected depth t, a notion used by some authors, can be simulated

by a d{RDT with depth O(t) ([MT85]).

4 Main Results.

We shall deal here with the randomized complexity of linear arrangements,

and convex polyhedra. For the �rst class of sets several topological methods

were developed for obtaining lower bounds for deterministic algebraic deci-

sion trees, and deterministic computation trees cf. [DL78], [SY82], [B-O83],

[BLY92], [Y92] and [Y94]. In Ben-Or [B-O83] a general deterministic lower
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bound 
(logC) was proven for C being the number of connected components

of S � IR

n

or its complement. Yao [Y92] (see also Bj�orner, Lov�asz and Yao

[BLY92]) proved a decade later a deterministic lower bound 
(log �) for �

the Euler characteristic of S � IR

n

. A stronger lower bound 
(logB) for

B the sum of the Betti number of S � IR

n

was proven later in Yao [Y94].

We have obvious inequalities C;� � B. For the second class of sets, convex

polyhedra, the above topological methods fail because the invariant B = 1.

For this class of sets, Grigoriev, Karpinski and Vorobjov [GKV97] introduced

a drastically di�erent method of counting the number of faces of S � IR

n

of

all dimensions. The new method transforms a set S � IR

n

via "in�nitesimal

perturbations" into a smooth hypersurface and uses certain new calculus of

principal curvatures on it. The resulting lower bound was 
(logN) for N

being the number of faces of all dimensions provided N was large enough.

All the above mentioned methods did not work, and this for the both

classes of sets on the randomized algebraic decision trees, and this for a

fundamental reason. In fact, they even did not seem to work for the linear

decision trees; the gap in the proof of Meyer auf der Heide [M85a] was �rstly

closed for the generic case by Grigoriev and Karpinski in [GK94]. The �rst

very special randomized lower bounds were proven in B�urgisser, Karpinski

and Lickteig [BKL93], and Grigoriev and Karpinski [GK93].

In this paper we survey some new general methods for proving lower

bounds for d{RDTs recognizing linear arrangement and convex polyhedra.

Let H

i

� IR

n

, 1 � i � m, n � m be the hyperplanes, and H

+

i

� IR

n

,

1 � i � m, n � m, the closed halfspaces. De�ne S =

S

m

i=1

H

i

, a linear

arrangement, and S

+

=

T

m

i=1

H

+

i

, a polyhedron.

In [GKMS97] the following general theorem was proven.

Theorem 1. ([GKMS97]). Let "; c; �; � be any constants such that 0 �

" <

1

2

, c >0, and � > � �0. There exists a constant c

�

>0 with the following

property. If S (S

+

) has at least m

�(n�k)

k{faces for certain 0 � k < n, then

the depth of any d-RDT computing S (S

+

) with the error probability " is

greater than c

�

(n� k) logm for any degree d < cm

�

.

The original idea of this paper uses a nonarchimedean extension of a �eld,
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and consequently Tarski's transfer principle [T51], and a leading term sign

technique combined with a global labelled 
ag construction (attached to all

k-faces along the path of a decision tree) for counting number of faces of all

dimensions of the set S.

We recall now the bounds of Section 2 on the number of k-faces of the

n-dimensional restrictions of NP -complete problems. The result above yields

directly the following concrete applications towards a Bounded Integer Pro-

gramming Problem

L

n;k

= fx 2 IR

n

j 9a 2 f0; : : : ; kg

n

[<x; a>= k]g (cf: [M85a]);

and the Knapsack Problem K

n

= L

n;1

(cf. [M85b].

Corollary 1.

(i) 
(n

2

log(k+1)) is a lower bound for the depth of any d-RDT computing

the Bounded Integer Programming Problem L

n;k

.

(ii) 
(n

2

) is a lower bound for the depth of any d-RDT computing the

Knapsack Problem.

Theorem 1 gives in fact much stronger lower bounds for non-constant

degree d, d{RDTs. In the �rst case the su�cient condition on degree is

d = 
((k + 1)

�n

) for � <

1

16

, in the second case d = 
(2

�n

) for � <

1

16

.

It is also not too di�cult to derive further randomized lower bounds

(cf. [GKMS97]).

Corollary 2. 
(n log n) is a lower bound for the depth of any d-RDT com-

puting any of the following problems:

(i) Element Distinctness,

(ii) Set Disjointness,

(iii) Resultant.
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Corollary 2 holds also for the non-constant degree d{RDTs with d =


(n

�

) for � <

1

2

(cf. [GKMS97]). This leads us again to the very interesting

computational issue of the dependence of the actual computational power of

d{RDTs on the degree bound d.

It is also interesting to note that the proof method of [GKMS97] gives a

new elementary technique for deterministic algebraic decision trees without

making use of Milnor-Thom bound on Betti numbers of algebraic varieties.

5 Randomized Speedup.

We shall investigate now the computational power of linear degree and sub-

linear depth n{RDTs and compare it with deterministicn{DTs. Such models

can be easily simulated by randomized algebraic computational trees (CTs)

in linear time. Also, it is easy to see that linear time CTs and linear

time randomized CTs correspond to the non-uniform deterministic linear

time and randomized linear time classes on the real number machine models

(cf. [CKKLW95]).

Let us consider now the following permutational problem PERM(a) =

fxjx 2 IR

n

, x is a permutation of ag for a = (a

1

; :::; a

n

) 2 IR

n

, a

i

6= a

j

for i 6= j. The number of connected components of PERM(a) equals n!

and of its complement equals 1. By Ben-Or [B-O83] the lower bound of

any deterministic CT or any n � DT computing PERM(a) is 
(n log n).

However as noticed in [BKL93], there exists an n{RDT of constant depth

computing PERM(a) as follows. Construct a polynomial p(�) =

Q

n

i=1

(� �

a

i

)�

Q

n

i=1

(��x

i

) 2 IR[�]. We have x = (x

1

; :::; x

n)

2 PERM(a) i� p(�) � 0.

The identity p(�) can be checked probabilistically by randomly chosing � from

the set f1; :::; 4ng and verifying whether p(�) = 0. If p(�) = 0, we decide that

p(�) � 0 and x 2 PERM(a), otherwise we have a witness that P (�) 6� 0 and

x 62 PERM(a). The error probability is bounded by

1

4

. Construct now 4n

many n{DTs T

�

having a single decision element p(�), T = fT

�

g

�2f1;:::;4ng

. T

computes PERM(a) with error probability

1

4

.
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Lemma 1. ([BKL93]). There are problems S � IR

n

computable in O(1)

depth on n-RDTs which are not computable by any n-DT in depth o(n log n)

The next separation results will be muchmore powerful in nature. We extend

our underlying decision tree models to allow arbitrary analytic functions as

decision elements (cf. [R72]). We denote such decision trees by A{DTs, and

A{RDTs, respectively.

Let us consider now the Octant Problem IR

n

+

= f(x

1

; :::; x

n

) 2 IR

n

jx

1

�

0; :::; x

n

� 0g, the problem of testing the membership to IR

n

+

.

Rabin [R72] proved the following (see also [GKMS97])

Lemma 2. ([R72]). Any A-DT computing IR

n

+

has depth at least n.

Grigoriev, Karpinski, Meyer auf der Heide and Smolensky [GKMS97] were

able to prove the following degree hierarchy result on randomized decision

trees.

Lemma 3. ([GKMS97]). The depth of any d-RDT computing IR

n

+

with

error probability � 2 (0;

1

2

) is greater than or equal to

1

d

(1 � 2�)

2

n.

The Octant Problem is closely related to the well known MAX Problem:

given n real numbers x

1

; : : : ; x

n

, x

i

2 IR, compute the maximum of them.

Rabin [R72] proved a sharp bound n � 1 on depth of any A{DT computing

MAX. Ting and Yao [TY94] proved a dramatic improvement on the depth

of the randomized algebraic decision trees computing MAX for the case of

pairwise distinct numbers (the leaves of a decision tree are labelled now by

numbers 1; : : : ; n).

Theorem 2. ([TY94]). There exists an n-RDT computing MAX problem

for the case of pairwise distinct numbers in depth O(log

2

n).

We notice that the problem on whether x

1

= maxfx

1

; :::; x

n

g is equivalent

to the test whether (x

1

� x

2

; :::; x

1

� x

n

) belongs to the octant IR

n�1

+

.

Grigoriev, Karpinski and Smolensky [GKS97] were able to extend the

assertions of Lemma 3 and Theorem 2 to the following.
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Theorem 3. ([GKS97]). There exists an n-RDT computing IR

n

+

or de-

ciding whether x

i

= maxfx

1

; : : : ; x

n

g in depth O(log

2

n).

Theorem 4. ([GKS97]). There exists an n-RDT computing MAX in

depth O(log

5

n).

One notices a remarkable exponential randomized speed{up for the above

problems having all (!) deterministic linear lower bounds, and this even

for the general analytic decision trees ([R72]). An important issue remains

whether the randomized speed{up can be carried even further. Interestingly,

Wigderson and Yao [WY98] proved the following result connected to the

construction of [TY94].

Assume that the decision tree performs only tests of the form \x < V ", x

is smaller than all elements in V . We call it a subset minimum test. The test

of this form was used in the design of [TY94]. We denote a corresponding

randomized decision tree (using the subset minimum test only) by SM{RDT.

Theorem 5. ([WY98]). Every SM-RDT computing MAX problem has

depth 
(log

2

n= log log n).

We turn now to the problems of proving lower bounds on the size of alge-

braic decision trees. Theorem 4 entails the subexponential size of n{RDTs

computing MAX.

In this context Grigoriev, Karpinski and Yao [GKY98] proved the �rst

exponential deterministic size lower bound on (ternary) algebraic decision

trees for MAX. It should be noted that there was no size lower bound

greater than n� 1 known before.

The method used in this paper depends on the analysis of the so called

\touching frequency" of the sets computed along the branches of a decision

tree with the special "wall sets" related to the cellular decomposition of the

set of (x

1

; : : : ; x

n

) 2 IR

n

satisfying x

1

= maxfx

1

; : : : ; x

n

g.

Theorem 6. ([GKY98]). Any (ternary) algebraic decision tree of degree

d computing MAX problem in dimension n has size 
(2

c(d)n

) for the constant

c(d) > 0 depending only on d.
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Grigoriev, Karpinski and Yao [GKY98] discovered also a new connection

between a cellular decomposition of a set S � IR

n

de�ned by polynomial

constraints of degree d and the maximum number of minimal cutsets m

d;n

of

any rank{d hypergraph on n vertices.

Theorem 7. ([GKY98]). Any (ternary) algebraic decision tree of degree

d computing MAX problem in dimension n has size at least 2

n�1

=m

d;n�1

.

Interestingly, Theorem 7 gives improvements of the constants c(d) used

in Theorem 6. For any 2-DT computing MAX problem, c(d) computed via

Theorem 7 is � 0:47, and via Theorem 6 is � 0:18 (cf. [GKY98]).

We are still lacking basic general methods for proving nontrivial lower

bounds on the size (number of inner nodes) of both d{DTs, and d{RDTs

with an exception of linear decision trees. In most cases the topological, and

face counting methods cannot even deal with the questions about the size

lower bounds of the very weak form: "is the size t + 1 necessary?" for t a

known lower bound on the depth of algebraic decision trees.

6 Extensions.

We will turn now to the model of a randomized computation tree (RCT )

modeling straight line computation in which we charge for each arithmetic

operation needed to compute its decision elements (cf. [B-O83]).

The papers [GK97], [G98] generalize the results of Section 4 to the case

of RCTs using some new results on the border (generalization of the border

rank of a tensor) and multiplicative complexity of a polynomial.

Theorem 8. ([GK97], [G98]).

(i) 
(n

2

log(k + 1)) is a lower bound for the depth of any RCT computing

the bounded Integer Programming Problem L

n;k

.

(ii) 
(n

2

) is a lower bound for the depth of any RCT computing the Knap-

sack.
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(iii) 
(n log n) is a lower bound for the depth of any RCT computing the

Element Distinctness.

An important issue remains, and this in both cases, deterministic and

randomized, about the generalization of algebraic decision trees and com-

putation trees to the \ultimate models" of branching programs obtained by

merging together equivalent nodes in a decision tree. An extended research

on the boolean model of a branching program was carried throughout the last

decade (cf., e.g., Borodin [B93], Razborov [R91] for deterministic programs,

and Karpinski [K98a], [K98b], Thathachar [T98] for randomized ones). Much

less is known about the model of algebraic branching programs, see also Yao

[Y82].

7 Open Problems and Further Research.

An important issue of the tradeo�s between the size and the depth of alge-

braic decision trees, computational trees, and branching programs remains

widely open. We are not able at the moment, as mentioned before, to prove

any nontrivial lower bound on the size of algebraic decision trees for the n-

dimensional restrictions of NP-complete problems like Knapsack or Bounded

Integer Programming (cf. [M84], [M85b], [M93]). Nor can we prove any ran-

domized size upper bounds for these problems better than the best known

deterministic ones. For the recent randomized lower bounds for the Nearest

Neighbor Search Problem on the related cell probe model see also [BOR99]. It

will be very interesting to shed some more light on this model and also other

related models capturing hashing and re
ecting storage resources required

by an actual geometric computation.

Major problems remain open about the randomized decision complexity

of concrete geometric problems expressed by simultaneous positivity of small

degree polynomials, like quadratic or cubic ones, or the existential problems

of simultaneous positivity of small degree polynomials, corresponding to an

algebraic version of the SAT problem.

2
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