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Abstract
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computability result of this sort on the additive complexity of algebraic circuits.

Key words. Additive complexity, algebraic circuits, root extracting, minimal computation.

AMS subject classi�cation. 68Q25, 68Q40, 68Q15, 26C15.

�

Dept. of Computer Science, The Pensylvania State University, University Park, PA 16802. Research par-

tially supported by NFS Grant CCR-9424358. Email: dima@cs.psu.edu.

y

Dept. of Computer Science, University of Bonn, 53117 Bonn, and the International Computer Science

Institute, Berkeley, California. Research partially supported by DFG Grant KA 673/4-1, by the ESPRIT BR

Grants 7097 and EC-US030. Email: marek@cs.bonn.edu.



1 Introduction

It is a well known open problem in the theory of computation, whether the additive complexity

of functions is computable. Note that both multiplicative and total complexities of functions are

computable. In this paper we prove, somewhat surprisingly, the computability of the generalized

additive complexity for algebraic circuits with root extraction. These circuits were considered

in [J 81] where a lower bound on the number of root extracting operations for computing on

algebraic functions has been proven. This was recently generalized in [GSY 93] for the algebraic

circuits which contain in addition also exponential and logarithmic functions. Our result is the

�rst computability result of this sort on the additive complexity of algebraic circuits.

Let us give the de�nition of the generalized additive complexity.

�

Q denotes the algebraic

closure of Q, the set of algebraic numbers. We say that a rational function f 2 Q(X

1

; : : : ;X

n

)

has a generalized additive complexity at most t, if there exists a sequence of algebraic functions:
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for 0 � i � t, where �

(t+1)

= 0, f = u

t+1

and all the exponents �

(i+1)

1

; : : : ; �

(i+1)

i

2 Q, 0 � i � t

are rationals, coe�cients "

(i+1)

; �

(i+1)

2

�

Q are algebraic. The rationality of the exponents

(rather than being integers) di�ers the generalized additive complexity from the usual additive

complexity.In other words, we consider algebraic circuits in which (in addition to the usual

arithmetic operations) extracting of arbitrary roots is allowed.

If t equals to the generalized additive complexity of f then we say that computation

u

1

; : : : ; u

t+1

of f is generalized additive-minimal.

In the section 2 we consider the computations in which the exponents �

(i+1)

1

; : : : ; �

(i+1)

i

,

0 � i � t are allowed to be algebraic and refer to it as the quasi-additive complexity. The

computation of the quasi-additive complexity is reduced (see lemma below) to the problem

of quanti�er elimination in the theory of di�erentially closed �elds (solved in [Se 56], for its

complexity see [G 89]).

In section 3 we prove (see proposition below) that any quasi-additive minimal computation

of a rational function can be transformed into a generalized additive-minimal computation

with the same number of additions which contains only rational exponents, thus quasi-additive

and generalized additive complexities coincide. Moreover, the corollary in section 3 gives a

possibility to construct the rational exponents of a generalized additive-minimal computation.

In section 4 we describe an algorithm for producing a generalized additive-minimal computation.

In the case of one variable (n = 1) we give an (elementary) complexity bound of the designed

algorithm (see theorem below) as it uses the quanti�er elimination algorithm from [G 89]. In

the general case (n � 2) we do not give complexity bounds as the quanti�er elimination method

from [Se 56] is used which relies in turn on the e�cient bounds in Hilbert's Idealbasissatz which

are not known to be elementary.
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Note that �rst lower bounds on the additive complexity of f in terms of the variety of

real roots of f were obtained in [BC 76] and [G 83] (see also [Ri 85]). One can �nd in [G 83]

also a survey on other lower bounds, in particular on the additive complexity (see also [G 82]

[SW 80]). The lower bound from [G 83] is used (see the end of section 3) to show that there are

polynomials with the generalized additive complexity equal to 3 and arbitrary large additive

complexity.

Another interesting issue is the dependance of the (standard) additive complexity on the

coe�cents which are involved in straight-line programs (cf. [W 78]). If we allow only real

algebraic coe�cents (from

�

Q\R) instead of

�

Q (see above), then the additive complexity could

jump drastically as the following example indicates. The polynominal (1 + iX)

n

+ (1� iX)

n

2

Z[x] (cf. [W 78]) has evidently the additive complexity at most 3 over

�

Q. It has also all its

roots in

�

Q\R, therefore its additive complexity over

�

Q\R is greater than 
(log

1

2

n) (cf. [G 83],

[Ri 85]).

2 Describing the quasi-additive complexity in terms of

the �rst-order theory of di�erentially closed �elds

We start with designing an algorithm for testing, whether there exist (and if so, also to produce)

algebraic exponents �

(i+1)

1

; : : : ; �

(i+1)

i

2

�

Q (the algebraic closure of Q in C ) in the computation

u

1

; : : : ; u

t+1

providing an identity u

t+1

= f holds. In this case we say that f has the quasi-

additive complexity at most t. For this purpose we introduce the (di�erential) unknowns

u

i+1

; ~�

(i+1)

1

; : : : ;

~

�

(i+1)

i

; v

(i+1)

1

; : : : ; v

(i+1)

n

; w

(i+1)

1

; : : : ; w

(i+1)

i

; ~v

(i+1)

1

; : : : ; ~v
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i

for all 0 � i � t and the system of (partial) di�erential equations (denote D

i

=

d

dX

i

and by D

any of the operators D

1

; : : : ;D

n

, by �(l; j) denote the Kronecker symbol):
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1
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~

�
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i

) = 0 (1a)
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j
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l
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l

X

l
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j
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l
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~
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X

l
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l
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l
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�
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(1d)

i+1

for all 0 � i � t together with the equation u

t+1

= f . The resulting system we denote by

(1).

Note that the equations (1a)

i+1

imply that ~�

(i+1)

1

; : : : ;

~

�

(i+1)

i

2

�

Q are the constants; (1b)

i+1

imply that v

(i+1)

l

= �

(i+1)

l

X

~�

(i+1)

l

l

; ~v

(i+1)

l

= ~�

(i+1)

l

X

~

(i+1)

l

l

for the appropriate constants �

(i+1)

l

;

~�

(i+1)

l

2

�

Q; (1c)

(i+1)

imply that w

(i+1)

l

= �

(i+1)

l

u

~

�

(i+1)

l

l

; ~w

(i+1)

l

= ~�

(i+1)

l

u

~

�

(i+1)

l

l

for the appropriate

constants �

(i+1)

l

; ~�

(i+1)

l

2

�

Q.
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Thus, the following lemma is proved.

Lemma. The solvability of system (1) (in all its di�erential unknowns) is equivalent to the

fact that the quasi-additive complexity of f is at most t.

Now we consider the statement of solvability of the system (1) as an existentional formula of

the �rst-order theory of di�erentially closed �elds [Se 56]. Applying to it a quanti�er elimination

algorithm [Se 56] one can eliminate unknowns

u

i+1

; v

(i+1)

1

; : : : ; v

(i+1)

n

; w

(i+1)

1

; : : : ; w

(i+1)

i

; ~v
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1

; : : : ; ~v

(i+1)

n

; ~w

(i+1)

1

; : : : ; ~w

(i+1)

i

for all 0 � i � t.

As a result we get an (existentional) equivalent formula containing only the unknowns ~�

(i+1)

1

;

: : : ;

~

�

(i+1)

i

; 0 � i � t. Because of (1a) the latter formula can be considered as a formula in the

language of polynomials (so, without derivatives), thus as a system of polynomial equations

and inequalities with integer coe�cients.

Thus, given a rational function f the algorithm tries t = 1; 2; : : : ; and for each t tests

(using [CG 83], [C 86]), whether the above constructed system of polynomial equations and

inequalities has a solution (over

�

Q). For a minimal such t we take any of these solutions

�

(i+1)

1

; : : : ; �

(i+1)

i

2

�

Q; 0 � i � t. In the next section we show that in this case there exists as

well a rational solution of this system and moreover we show how to construct it.

To solve the system (1) of di�erential equations we applied the algorithm from [Se 56] for

which elementary complexity bound is unknown since it relies on an e�cient bound in Hilbert`s

Idealbasissatz. But the complexity of quanti�er elimination is elementary in the case of ordinary

di�erential equations for the algorithm designed in [G 89], i. e. when n = 1, in another words

when there is only one independent variable X. In this case the system (1) contains O(t

2

)

unknows, the order of highest occurring derivatives in the equations is at most 1, the degree of

the equations is at most O(t)+deg f and the number of equations is at most O(t

2

), the bit-size

of the coe�cients of the occuring equations is at most O(1) +M , where M is the bit-size of

the coe�cients of f . Therefore (see the bounds in [G 89]), one can eliminate quanti�ers and

produce a system of polynomial equations and inequalities with integer coe�cients (see above)

in the unknowns ~�

(i+1)

1

; : : : ;

~

�

(i+1)

i

; 0 � i � t in time N = M

O(1)

(degf)

2

2

O(t

2

)

; the degrees of

the polynomials occurring in this system do not exceed N

1

= (degf)

2

2

O(t

2

)

the number of these

polynomials is at most N

1

and the bit-size of (integer) coe�cients occurring in this system can

be bounded by N .

Therefore to solve this system of polynomial equations and inequalities we apply the algo-

rithm from [CG 83] (cf. also [C 86]) which requires timeM

O(1)

(degf)

2

2

O(t

2

)

. The algorithm from

[CG 83] �nds (provided that the system is solvable) a solution �

(i+1)

1

; : : : ; �

(i+1)

i

2

�

Q; 0 � i � t in

the following form. The algorithm produces an irreducible overQ polynomial '(Z) 2 Q[Z], also
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polynomials ��

(i+1)

1

(Z); : : : ;

�

�

(i+1)

i

(Z) 2 Q[Z]; 0 � i � t such that �

(i+1)

1

= ��

1

(i+1)

(�); : : : ; �

(i+1)

i

=

�

�

(i+1)

i

(�) where � 2

�

Q is a root of '(�) = 0. From [CG 83] we obtain the following bounds:

deg(');deg(��

(i+1)

1

); : : : ;deg(

�

�

(i+1)

i

) � (deg f)

2

2

O(t

2

)

; 0 � i � t

and the bit-size of every coe�cient occurring in the listed polynomials does not exceed M

O(1)

(degf)

2

2

O(t

2

)

.

3 Rational exponents in the quasi-additive minimal

computation

In this section we prove (see the proposition below) the equivalence of the generalized additive

and quasi-additive complexities for rational functions. Moreover, we show (see Corollary be-

low) how for given algebraic exponents of a quasi-additive minimal computation to produce the

exponents of a certain generalized additive-minimal computation of the same rational function,

thus containing only rational exponents. The similar statements were proved also for the ratio-

nality of the exponents in the minimal sparse representations of a rational function [GKS 92a]

and of a real algebraic function [GKS 92a]. But the latter statements have di�erent (from the

one in the present paper) nature, also another di�erence is that we prove here the existence of

the rational exponents rather than the rationality as it was the case in [GKS 92a], [GKS 92a].

So, let
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�
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i

where 0 � i � t; �

(t+1)

= 0 and all the exponents and coe�cients

�

(i+1)

1

; : : : ; �

(i+1)

i

; "

(i+1)

; �

(i+1)

2

�

Q :

Proposition. Assume that f = u

(t+1)

2

�

Q(X

1

; : : : ;X

n

) is a rational function and t is the

minimal possible (so t equals to the quasi-additive complexity of f). Then there exist rational

exponents a

(i+1)

1

; : : : ; d

(i+1)

i

2 Q; 0 � i � t, respectively, providing also a computation of f (thus,

t equals also to the generalized additive complexity).

Proof. For each 1 � j � n consider a Q-basis

�

�

(1)

j

;

�

�

(2)

j

; : : : 2

�

Q of the Q-linear hull

Qf�

(s)

j

; 

(s)

j

g

1�s�t+1

. If 1 (thereby Q) is contained in the latter linear hull, then we set

�

�

(1)

j

= 1.

Denote f�

(1)

j

; �

(2)

j

; : : :g = f

�

�

(1)

j

;

�

�

(2)

j

; : : :g n f1g.

Consider a di�erential �eld F

j

; 0 � j � n generated over

�

Q(X

1

; : : : ;X

n

) by the ele-

ments logX

1

;X

�

(1)

1

1

;X

�

(2)

1

1

; : : : ; logX

j

;X

�

(1)

j

j

;X

�

(2)

j

j

; : : :. Then in the terminology of [RC 79] each
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F

j

; 0 � j � n is a log-explicit extension of its �eld of constants

�

Q (one can represent

X

�

= exp(� logX)).

We claim that the elements X

�

(1)

j+1

j+1

;X

�

(2)

j+1

j+1

; : : : 2 F

j+1

are algebraically independent over the

�eld F

j

(logX

j+1

). Assume the contrary. Then the corollary 3. 2 [RC 79] (see also [Ro 76])

implies the existence of a constant � 2

�

Q, rational numbers

l

(0)

1

; l

(1)

1

; : : : ; l

(0)

j

; l

(1)

j

; : : : ; l

(0)

j+1

; l

(1)

j+1

; : : : 2 Q

such that not all l

(1)

j+1

; l

(2)

j+1

; : : : are zeroes and

X

l

(0)

j+1

+

X

k�1

l

(k)

j+1

�

(k)

j+1

j+1

= �X

l

(0)

1

+

X

k�1

l

(k)

1

�

(k)

1

1

� � �X

l

(0)

j

+

X

k�1

l

(k)

j

�

(k)

j

j

but this leads to a contradiction since the derivative

d

dX

j+1

of the left side is nonzero, but of the

right side equals to zero.

For each 1 � i � t consider a Q-basis ��

(1)

i

; ��

(2)

i

; : : : 2

�

Q of the Q-linear hull

Qf�

(s)

i

; �

(s)

i

g

i+1�s�t+1

. If 1 (therebyQ) is contained in the latter linear hull, then we set ��

(1)

i

= 1.

Denote f�

(1)

i

; �

(2)

i

; : : :g = f��

(1)

i

; ��

(2)

i

; : : :g n f1g.

Denote by E

i

, 0 � i � t a �eld generated over F

n

by the elements

log u

1

; u

�

(1)

1

1

; u

�

(2)

1

1

; : : : ; log u

i

; u

�

(1)

i

i

; u

�

(2)

i

i

; : : : :

It is a log-explicit extension of its �eld of constants

�

Q.

We claim that for 0 � i � t � 1 the elements u

�

(1)

i+1

i+1

; u

�

(2)

i+1

i+1

; : : : 2 E

i+1

are algebraically

independent over the �eld E

i

(log u

i+1

). Assume the contrary. Then again using corollary 3.2

[RC 79] we conclude that there exist a constant " 2

�

Q, rational numbers

p

1

; p

(1)

1

; p

(2)

1

; : : : ; p

n

; p

(1)

n

; p

(2)

n

; : : : ; z

1

; z

(1)

1

; z

(2)

1

; : : : ; z

i+1

; z

(1)

i+1

; z

(2)

i+1

; : : : 2 Q

such that not all z

(1)

i+1

; z

(2)

i+1

; : : : are zeroes and

u

z

i+1

+

P

j�1

z

(j)

i+1

�

(j)

i+1

i+1

= "X

p

1

+

P

j�1

p

(j)

1

�

(j)

1

1

� � �X

p

n

+

P

j�1

p

(j)

n

�

(j)

n

n

u

z

1

+

P

j�1

z

(j)

1

�

(j)

1

1

� � � u

z

i

+

P

j�1

z

(j)

i

�

(j)

i

i

:

This provides an expression of u

i+1

as a product of powers of X

1

; : : : ;X

n

; u

1

; : : : u

i

and

thereby we can diminish t by one in the computation of f , this contradiction with the minimality

of t proves the algebraic independency of u

�

(1)

i+1

i+1

; u

�

(2)

i+2

i+1

; : : : over E

i

(log u

i+1

).

Consider the expansions

�

(s)

j

= a

(s)

j

+

X

k�1

a

(s)

j;k

�

(k)

j

; 

(s)

j

= c

(s)

j

+

X

k�1

c

(s)

j;k

�

(k)

j

; 1 � j � n; 1 � s � t+ 1

�

(s)

i

= b

(s)

i

+

X

k�1

b

(s)

i;k

�

(k)

i

; �

(s)

i

= d

(s)

i

+

X

k�1

d

(s)

i;k

�

(k)

i

; 1 � i � t+ 1; i < s � t+ 1

(2)
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where a

(s)

j

; : : : ; d

(s)

i;k

2 Q are suitable rationals. Remark that if 1 62 f

�

�

(1)

j

;

�

�

(2)

j

; : : :g then

a

(s)

j

= c

(s)

j

= 0, also if 1 62 f��

(1)

i

; ��

(2)

i

; : : :g then b

(s)

i

= d

(s)

i

= 0. Then the initial computation

u

1

; u

2

; : : : we can rewrite as follows:

u

i+1

= "

(i+1)

X

a

(i+1)

1

1

(X

�

(1)

1

1

)

a

(i+1)

1;1

(X

�

(2)

1

1

)

a

(i+1)

1;2

� � �X

a

(i+1)

n

n

(X

�

(1)

n

n

)

a

(i+1)

n;1

� � �

u

b

(i+1)

1

1
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1

1

)
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�
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1

)
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� � �u
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i

i
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�
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i

i

)

b
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i;1

(u

�
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i

i

)

b

(i+1)

i;2

� � �+

�

(i+1)

X

c

(i+1)

1

1

(X

�

(1)

1

1

)

c

(i+1)

1;1

(X

�

(2)

1

1

)

c

(i+1)

1;2

� � �X

c

(i+1)

n

n

(X

�

(1)

n

n

)

c

(i+1)

n;1

� � �

u

d

(i+1)

1

1

(u

�

(1)

1

1

)

d

(i+1)

1;1

(u

�

(2)

1

1

)

d

(i+1)

1;2

� � �u

d

(i+1)

i

i

(u

�

(1)

i

i

)

d

(i+1)

i;1

(u

�

(2)

i

i

)

d

(i+1)

i;2

� � �

(3)

From the latter expression one can show by induction on i that u

i+1

(and thereby each of the

previous elements u

1

; : : : ; u

i

) is algebraic over the �eld E

0

i

� E

i

generated over

�

Q(X

1

; : : : ;X

n

)

by the elements

X

�

(1)

1

1

;X

�

(2)

1

1

; : : : ;X

�

(1)

n

n

;X

�

(2)

n

n

; : : : ; u

�

(1)

1

1

; u

�

(2)

1

1

; : : : ; u

�

(1)

i

i

; u

�

(2)

i

i

; : : :

Above we have proved that the latter elements are algebraically independent over

�

Q(X

1

; : : : ;X

n

). As u

t+1

= f 2

�

Q(X

1

; : : : ;X

n

) we can substitute in the expression (3) instead

of the elements

X

�

(1)

1

1

;X

�

(2)

1

1

; : : : ;X

�

(1)

n

n

;X

�

(2)

n

n

; : : : ; u

�

(1)

1

1

; u

�

(2)

1

1

; : : : ; u

�

(1)

t

t

; u

�

(2)

t

t

; : : :

almost (in the sense of Zariski topology) arbitrary constants

y

(1)

1

; y

(2)

1

; : : : ; y

(1)

n

; y

(2)

n

; : : : ; z

(1)

1

; z

(2)

1

; : : : ; z

(1)

t

; z

(2)

t

; : : : 2

�

Q ;

respectively, with the mere requirement that in the intermediate computations of

u

1

; u

2

; : : : ; u

t+1

= f there is no taking nonpositive powers of zero (each time we choose some

branch of a rational power).

As a result we get a computation of ~u

1

; ~u

2

; : : : ; ~u

t+1

= f in which only rational exponents

occur, namely

~u

i+1

= ~"

(i+1)

X

a

(i+1)

1

1

� � �X

a

(i+1)

n

n

~u

b

(i+1)

1

1

� � � ~u

b

(i+1)

i

i

+ ~�

(i+1)

X

c

(i+1)

1

1

� � �X

c

(i+1)

n

n

~u

d

(i+1)

1

1

� � � ~u

d

(i+1)

i

i

(4)

for some ~"

(i+1)

; ~�

(i+1)

2

�

Q. The proposition is proved.

From the proof of the proposition we extract the

Corollary. For every 1 � i � t; 1 2 Qf�

(s)

i

; �

(s)

i

g

i+1�s�t+1

. For any Q-basis

�

�

(1)

j

;

�

�

(2)

j

; : : :

of Qf�

(s)

j

; 

(s)

j

g

1�s�t+1

and any Q-basis ��

(1)

i

; ��

(2)

i

; : : : of Qf�

(s)

i

; �

(s)

i

g

i+1�s�t+1

we get the rational

exponents of the resulting computation of ~u

1

; : : : ; ~u

t+1

(see (4)) from the expansions (2).

In order to show that 1 2 Qf�

(s)

i

; �

(s)

i

g

s

observe that otherwise b

(s)

i

= d

(s)

i

= 0 for all

i+1 � s � t+1 and we could diminish t by deleting ~u

i

from the computation ~u

1

; : : : ; ~u

t+1

and

get a contradiction with a minimality of t.
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Remark that the corollary together with lemma 12 [GKS 92a] entail that for any i the con-

structible set of all the possible exponent vectors (�

(i+1)

i

; : : : ; �

(t+1)

i

; �

(i+1)

i

; : : : ; �

(t)

i

) 2

�

Q

2t�2i+1

is contained in a �nite union of the hyperplanes of the kind

X

i+1�j�t+1

^

b

(j)

i

�

(j)

i

+

X

i+1�j�t

^

d

(j)

i

�

(j)

i

=

^

d

where

^

b

(j)

i

;

^

d

(j)

i

;

^

d 2 Z. The similar holds also for the vectors (�

(1)

i

; : : : ; �

(t+1)

i

; 

(1)

i

; : : : ; 

(t)

i

) 2

�

Q

2t+1

. But we will not use this remark.

Note also that in the resulting computation (4) the rational exponents depend on the choice

of the Q-basis (see the corollary). The following simple example demonstrates that the depen-

dency really can happen:

u

1

= X

�

(X + 1); u

2

= X

�a�

u

a

1

+X

�b�

u

b

1

= (X + 1)

a

+ (X + 1)

b

where � 2

�

Q nQ; a; b 2 Q. Choosing a basis �+ z; 1 2 Qf1; �g, for arbitrary

z 2 Q, we get

u

1

= (X

�+z

)X

1�z

+ (X

�+z

)X

�z

u

2

= (X

�+z

)

�a

X

za

u

a

1

+ (X

�+z

)

�b

X

zb

u

b

1

and by the corollary

u

1

= wX

1�z

+ wX

�z

u

2

= w

�a

X

za

u

a

1

+ w

�b

X

zb

u

b

1

for arbitrary w 2

�

Q n f0g.

4 Constructing a generalized additive-minimal compu-

tation

The previous two sections (see lemma and corollary) give us a possibility to compute a general-

ized additive complexity t of a rational function f . Now we complete an algorithm which �nds

some generalized additive-minimal circuit computing f . Using the corollary from the section 3

the algorithm �nds rational exponents �

(i+1)

1

; : : : ; �

(i+1)

i

2 Q; 0 � i � t, it remains to �nd the

coe�cients "

(i+1)

; �

(i+1)

2

�

Q; 0 � i � t.

Denote by M a bound on the bit-sizes of the rational exponents �

(i+1)

1

; : : : ; �

(i+1)

i

2 Q; 0 �

i � t. Then by induction on i one can easily show that each u

i+1

; v

(i+1)

1

; : : : ; ~w

(i+1)

i

; 0 � i � t is

an algebraic function of the degree (i.e. the degree of a minimal polynomial to which satis�es

8



the function) at most N = (exp(M))

t

O(t)

. Hence the coe�cients "

(i+1)

; �

(i+1)

; 0 � i � t �t if

and only if for every 1 � x

1

; : : : ; x

n

� N

2

for which all the intermediate computations of the

circuit are de�nable, the equality u

t+1

(x

1

; : : : ; x

n

) = f(x

1

; : : : ; x

n

) holds. So, for every �xed

1 � x

1

; : : : ; x

n

� N

2

we introduce the variables

u

t+1

(x

1

; : : : ; x

n

); v

(i+1)

1

(x

1

; : : : ; x

n

); : : : ; ~w

(i+1)

i

(x

1

; : : : ; x

n

); 0 � i � t

and write down a system of polynomial equations and inequalities expressing all the operations

of the circuit (provided that they are all de�nable) and �nally the relation u

t+1

(x

1

; : : : ; x

n

) =

f(x

1

; : : : ; x

n

). Then the algorithm invoking [CG 83] solves this system in N

2n

+2t+1 variables

and �nds in particular "

(i+1)

; �

(i+1)

2

�

Q; 0 � i � t. More precisely, for each subset J �

f1; : : : ; N

2

g

n

we consider a system as above including in it just the points (x

1

; : : : ; x

n

) 2 J (so,

J plays the role of the set of points in which the computation is de�ned). The algorithm solves

this system and takes J with the maximal cardinality for which the system is solvable. In a

more sophisticated way we can partition the cube f1; : : : ; N

2

g

n

into N

n

subcubes with sides

equal to N and as J take each of these subcubes, but this improvement does not change the

complexity bounds below.

In the ordinary case (n = 1) we can bound the complexity of the described algo-

rithm. First, observe that in this case M � M

O(1)

(degf)

2

2

O(t

2

)

(see the end of the sec-

tion 1). Therefore, the system of polynomial equations and inequalities constructed above

contains exp(M

O(1)

(degf)

2

2

O(t

2

)

) polynomials of degrees at most exp(M

O(1)

(degf)

2

2

O(t

2

)

)in

exp(M

O(1)

(degf)

2

2

O(t

2

)

) variables. Hence one can solve it using the algorithm from [CG 83]

in time exp(exp(M

O(1)

(degf)

2

2

O(t

2

)

)) and �nd "

(i+1)

; �

(i+1)

2

�

Q; 0 � i � t representing them as

algebraic numbers as at the end of section 1 with the size bounded also by the latter value.

Summarizing, we formulate

Theorem.

a) There is an algorithm calculating the generalized additive complexity of a rational function

f 2 Q(x

1

; : : : ; x

n

) and constructing a generalized additive-minimal circuit computing f ;

b) In the case of one-variable rational functions f the running time of the algorithm from

a) can be bounded by exp(exp(M

O(1)

(degf)

2

2

O(t

2

)

)), where M bounds the bit-size of each

(rational) coe�cient of f . The absolute values of the numerators and denominators of

the found rational exponents in a generalized additive-minimal circuit computing f do not

exceed exp(M

O(1)

(degf)

2

2

O(t

2

)

) .

At the end we demonstrate that there could be a big gap between the the additive complexity

9



and generalized additive complexity. Consider a polynomial

f

n

= (1 +X

1

2

)

n

+ (1�X

1

2

)

n

2Z[X]

with the generalized additive complexity at most 3. As all its b

n

2

c roots are negative reals, the

additive complexity of f

n

is at least 
((log n)

1

2

) because of the result of [G 83] (see also [Ri 85])

based on the method from [Kh 91].

5 Further Research

It remains an interesting open problem on improving the complexity bounds of our algorithm.

It will be also very interesting to shed somemore light on the status of the problem of computing

standard additive complexity of rational functions. At this point we do not know much about

this problem.
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