Zero Testing of p-adic and Modular Polynomials

Marek Karpinski * Alf van der Poorten ${ }^{\dagger}$
Igor Shparlinski ${ }^{\ddagger}$

Abstract

We obtain new algorithms to test if a given multivariate polynomial over p-adic fields is identical to zero. We also consider zero testing of polynomials in residue rings. The results complement a series of known results about zero testing of polynomials over integers, rationals and finite fields.

[^0]
1 Introduction

One of the central questions of zero-testing of functions can be formulated as follows.

Assume that a function f from some family of functions \mathcal{F} is given by a black box \mathfrak{B}, that is for each point x from the definition domain of f entered into \mathfrak{B} it computes the value of f at this point. The task is to design an efficient algorithm testing if f is identical to zero and using as little of calls of \mathfrak{B} as possible.
In a number of papers this question was considered for polynomials, rational functions and algebraic functions belonging various families of functions over various algebraic domains $[1,2,3,4,5,6,7,8,14,16,18]$, some additional references can be found in Section 4.4 of [15] and in Chapter 12 of [17].
In this paper we consider similar questions for multivariate polynomials over p-adic fields.

As usual \mathbb{Q}_{p} denotes the p-adic completion of the field of rationals, and \mathbb{C}_{p} the p-adic completion of its algebraic closure.
We normalize the additive valuation $\operatorname{ord}_{p} t$ such that $\operatorname{ord}_{p} p=1$.
The ring of p-adic integers \mathbb{Z}_{p} is the set

$$
\mathbb{Z}_{p}=\left\{t \in \mathbb{D}_{p}: \operatorname{ord}_{p} t \geq 0\right\} .
$$

We consider exponential polynomials of the class $\mathcal{P}_{p}(m, n)$ which consist of the multivariate polynomials of the shape

$$
\begin{equation*}
f\left(X_{1}, \ldots, X_{m}\right)=\sum_{i_{1}, \ldots, i_{m}=0}^{n} a_{i_{1}, \ldots, i_{m}} X_{1}^{i_{1}} \ldots X_{m}^{i_{m}} \tag{1}
\end{equation*}
$$

of degree at most n over \mathbb{C}_{p} with respect to each variable and such that either f is identical to zero or

$$
\min _{0 \leq i_{1}, \ldots, i_{m} \leq n} \operatorname{ord}_{p} a_{i_{1}, \ldots, i_{m}}=0 .
$$

Generally speaking, two different types of black boxes are possible.
We say that a multivariate polynomial (1) over a ring \mathcal{R} is given by an exact black box \mathfrak{B} of the exact if for any point $\mathbf{x}=\left(x_{1}, \ldots x_{m}\right) \in \mathcal{R}^{m}$ it outputs the exact value $\mathfrak{B}(\mathrm{x})=f(\mathrm{x})$ and it does it in time which does not depend on x .

For zero testing over finite fields and rings black boxes of this type are quite natural but for infinite algebraic domains they are not.
For example for testing over \mathbb{C}_{p} the following we consider the following weaker but more realistic black boxes.

We say that a multivariate polynomial (1) over \mathbb{C}_{p} is given by an approximating black box $\widetilde{\mathfrak{B}}$ if for any point $\mathbf{x}=\left(x_{1}, \ldots x_{m}\right) \in \mathbb{Z}_{p}^{m}$ and any integer $k \geq 0$ it computes a p-adic approximation $\tilde{\mathfrak{B}}_{k}(\mathbf{x})$ to $f(\mathbf{x})$ of order k, that is

$$
\operatorname{ord}_{p}\left(\widetilde{\mathfrak{B}}_{k}(\mathbf{x})-f(\mathbf{x})\right) \geq k
$$

and does it in time $T(k)$ depends on k polynomially, $T(k)=k^{O(1)}$.
Informally, an approximating black box can make no miracles but just performs 'honest' computation, its only advantage is that it knows the polynomial $f(x)$ explicitly.
Here we design a polynomial time algorithms of zero testing of polynomials of class $\mathcal{P}_{p}(m, n)$ by using a black box of the aforementioned type. Sparse polynomials are considered as well. Using the Strassman theorem [9] one can apply our result to zero testing of various analytic functions over p-adic fields, exponential polynomials of the form

$$
\begin{equation*}
E(X)=\sum_{i=1}^{r} f_{i}(X) \varphi_{i}^{g_{i}(X)}, \tag{2}
\end{equation*}
$$

where $\varphi_{i} \in \mathbb{C}_{p}, f_{i}(X) \in \mathbb{C}_{p}[X], g_{i}(X) \in \mathbb{Z}[X]$, in particular.
The we consider polynomials (1) with coefficients from the residue ring \mathbb{Z} / M modulo an integer $M \geq 2$.
Our methods is based on some ideas of $[10,11,12,13]$ related to p-adic Lagrange interpolation and estimating of p-adic orders of some determinants.

2 Zero Testing of p-adic Polynomials

Here we consider the case of general polynomials $f \in \mathcal{P}_{p}(m, n)$. It is reasonable to accept the total number of coefficients $(n+1)^{m}$ as the measure of the input-size of such polynomials.

We also assume that each polynomial $f \in \mathcal{P}_{p}(m, n)$ is given by an approximating black box $\widetilde{\mathfrak{B}}$.

Theorem 1. A polynomial $f \in \mathcal{P}_{p}(m, n)$ can be zero tested within $N=$ $(n+1)^{m}$ calls of an approximating black box $\widetilde{\mathfrak{B}}_{k}$ with

$$
k=\left\lceil\frac{(n+1)^{m}}{p-1}\right\rceil .
$$

Proof. First of all we consider the case of univariate polynomials .
We set $k=\lceil n /(p-1)\rceil$ and make $n+1$ calls $\tilde{\mathfrak{B}}_{k}(j), j=0, \ldots, n$.
If $f \in \mathcal{P}_{p}(1, n)$ is identical to zero then obviously $\operatorname{ord}_{p} \tilde{\mathfrak{B}}_{k}(j) \geq k, j=0, \ldots, n$. We show that otherwise for at least one value of j we have $\operatorname{ord}_{p} \widetilde{\mathfrak{B}}_{k}(j)<k$.
Indeed, assuming that this is not true we obtain $\operatorname{ord}_{p} f(j) \geq k, j=0, \ldots, n$. Using the Lagrange interpolation we obtain

$$
f(X)=\sum_{j=0}^{n} \frac{\prod_{\substack{i=0 \\ i \neq j}}^{n}(X-i)}{\prod_{\substack{i=0 \\ i \neq j}}^{n}(j-i)} f(j)
$$

Because for every $j=0, \ldots, n$

$$
\operatorname{ord}_{p} \prod_{\substack{i=0 \\ i \neq j}}^{n}(j-i) \leq \operatorname{ord}_{p} j!+\operatorname{ord}_{p}(n-j)!\leq \frac{n}{p-1}<k
$$

we see that all coefficients of f have positive p-adic orders which contradicts our assumption $f \in \mathcal{P}_{p}(1, n)$. This finishes the proof of the theorem for $m=1$.

For $m \geq 2$ for a polynomial $f \in \mathcal{P}_{p}(m, n)$ we use the substitution

$$
X_{i}=X^{(n+1)^{\nu-1}}, \nu=1, \ldots, m
$$

and consider the polynomial

$$
f\left(X, X^{n+1}, \ldots, X^{(n+1)^{m-1}}\right) \in \mathcal{P}_{p}\left(1,(n+1)^{m}\right)
$$

for which we apply the algorithm above.
Now we consider a very important subclass $\mathcal{P}_{p}(m, n, t)$ of t-sparse polynomials $f \in \mathcal{P}_{p}(m, n)$ with at most t non-zero coefficients. It is reasonable to accept the total number of non-zero coefficients times the bit-size of the coding the m corresponding exponents $t m \log n$ as the measure of the input-size of such polynomials.

Theorem 2. A polynomial $f \in \mathcal{P}_{p}(m, n, t)$ can be zero tested within

$$
N= \begin{cases}t, & \text { if } m=1 ; \\ m t^{3}, & \text { if } m \geq 2 ;\end{cases}
$$

calls of an approximating black box $\widetilde{\mathfrak{B}}_{k}$ with

$$
k= \begin{cases}\left\lceil 0.5 t^{2} \log _{p} 4 n\right\rceil, & \text { if } m=1 \\ \left\lceil t^{2} \log _{p} 8 m n t\right\rceil, & \text { if } m \geq 2\end{cases}
$$

Proof. As in the proof of Theorem 1, first of all we consider the case of univariate polynomials.
Let g be a primitive root modulo p and therefore modulo all power of p, if $p \geq 3$ and let $g=5$ if $p=2$. In any case the multiplicative order τ_{s} of g modulo p^{s} is at least

$$
\begin{equation*}
\tau_{s} \geq 0.25 p^{s} \tag{3}
\end{equation*}
$$

for any integer $s \geq 1$.
We set $k=\left\lceil 0.5 t^{2} \log _{p} 4 n\right\rceil$ and make t calls $\tilde{\mathfrak{B}}_{k}\left(g^{j}\right), j=0, \ldots, t-1$.
If $f \in \mathcal{P}_{p}(1, n, t)$ is identical to zero then obviously $\operatorname{ord}_{p} \widetilde{\mathfrak{B}}_{k}\left(g^{j}\right) \geq k, j=$ $0, \ldots, t-1$. We show that otherwise for at least one value of j we have $\operatorname{ord}_{p} \widetilde{\mathfrak{B}}_{k}\left(g^{j}\right)<k$.
Indeed, assuming that this is not true we obtain ord or $_{p} f\left(g^{j}\right) \geq k, j=0, \ldots, t-$ 1.

Let

$$
f(X)=\sum_{i=1}^{t} A_{i} X^{r_{i}}
$$

where $0 \leq r_{1}<\ldots<r_{t} \leq n$. Recalling that

$$
\min _{1 \leq i \leq t} \operatorname{ord}_{p} A_{i}=0
$$

from the identities

$$
\sum_{i=1}^{t} z_{i} g^{j r_{i}}=f\left(g^{j}\right), \quad j=0, \ldots, t-1
$$

and the Cramer rule we derive that

$$
\begin{equation*}
\operatorname{ord}_{p} \Delta \geq \min _{0 \leq j \leq t-1} \operatorname{ord}_{p} f\left(g^{j}\right) \geq k \tag{4}
\end{equation*}
$$

where Δ is the following determinant

$$
\Delta=\operatorname{det}\left(g^{(j-1) r_{i}}\right)_{i, j=1}^{t}
$$

Therefore

$$
\Delta=\prod_{1 \leq i<j \leq t}\left(g^{r_{i}}-g^{r_{j}}\right)
$$

Because $g^{r_{i}}-g^{r_{j}} \in \mathbb{Z}$ its p-adic order is just the largest power p^{s} of p which divides this number. Therefore the multiplicative order τ_{s} of g modulo p^{s} divides $r_{i}-r_{j}$. Recalling the inequality (3) we obtain $0.25 p^{s} \leq\left|r_{i}-r_{j}\right| \leq n$. Hence, obtain

$$
\operatorname{ord}_{p}\left(g^{r_{i}}-g^{r_{j}}\right) \leq \log _{p} 4 n, \quad 1 \leq i<j \leq t .
$$

Finally we derive

$$
\operatorname{ord}_{p} \Delta \leq 0.5 t(t-1) \log _{p} 4 n<k
$$

which contradicts the inequality (4).
For $m \geq 2$ we use the reduction to the univariate case which for the first time was used in [6].
Let l be the smallest prime number exceeding $m t(t-1)$. Obviously

$$
l \leq 2 m t(t-1)
$$

Integers $0 \leq c_{u v} \leq l-1$ we define from the congruences

$$
c_{u v} \equiv \frac{1}{u+v} \quad(\bmod l), \quad u, v=1, \ldots,(l-1) / 2
$$

The matrix

$$
C=\left(c_{i j}\right)_{i, j=1}^{l-1}
$$

is a Cauchy matrix which has the property that each its minor is non-singular modulo l, and therefore over integers. We claim that if f is a non identical to zero polynomial then so is at least one of the polynomials

$$
\begin{equation*}
f\left(X^{c_{1 v}}, \ldots, X^{c_{m v}}\right), \quad v=1, \ldots,(l-1) / 2 . \tag{5}
\end{equation*}
$$

Let

$$
f\left(X_{1}, \ldots, X_{m}\right)=\sum_{i=1}^{t} A_{i} X_{1}^{r_{1 i}} \ldots X_{m}^{r_{m i}}
$$

with some integers $r_{i j}, i=1, \ldots, t, j=1, \ldots, m$. We show that for at least one $j=1, \ldots, l-1$ the powers of the monomials appearing in the
polynomials (5) are pairwise different. Indeed, for each pair of distinct exponents ($r_{1 i}, \ldots, r_{m i}$) and ($r_{1 j}, \ldots, r_{m j}$), $1 \leq i<j \leq t$, there are at most $m-1$ values of $v=1, \ldots,(l-1) / 2$ satisfying

$$
\begin{equation*}
c_{1 v} r_{1 i}+\ldots+c_{m v} r_{m i}=c_{1 v} r_{1 j}+\ldots+c_{m v} r_{m j} . \tag{6}
\end{equation*}
$$

Therefore the total number of $v=1, \ldots,(l-1) / 2$ for which (6) happens for at least one pair of exponents is at most $0.5(m-1) t(t-1)<(l-1) / 2$. Thus if f is not identical to zero then at least one of the polynomials (5) is not identical to zero polynomial of with at most t monomials and of degree at most $(l-1) m n \leq 2 m^{2} n t^{2} \leq 2 m^{2} n^{2} t^{2}$. Thus each of them can be tested within t calls of $\tilde{\mathfrak{B}}_{k}$ with $k=\left\lceil t^{2} \log _{p} 8 m n t\right\rceil$ and the total number of calls is $t(l-1) / 2 \leq m t^{3}$.

3 Zero Testing of Sparse p-adic Polynomials

Let $\mathcal{Q}(M, m, n)$ denote the class of multivariate polynomials (1) with coefficients from \mathbb{Z} / M and such that either f is identical to zero in \mathbb{Z} / M or its coefficients are jointly relatively prime to M.
We also assume that each polynomial $f \in \mathcal{Q}(M, m, n)$ is given by an exact black box \mathfrak{B}.
We remark that as the polynomial

$$
f\left(X_{1}, \ldots, X_{m}\right)=\prod_{i=1}^{m} X_{i}\left(X_{i}-1\right) \ldots\left(X_{i}-n+1\right)
$$

shows there are non-zero polynomials of degree n which are identical to zero as functions modulo $M=n$!. So one of the necessary conditions to make such zero testing possible is

$$
\begin{equation*}
M \geq(n!)^{m} . \tag{7}
\end{equation*}
$$

We obtain an algorithm which works for such M if $m=1$ but unfortunately only for substantially large M if $m \geq 1$.

Theorem 3. A polynomial $f \in \mathcal{Q}(M, m, n)$ with $M>\left((n+1)^{m}\right)$! can be zero tested within $N=(n+1)^{m}$ calls of an approximating black box \mathfrak{B}.

Proof. First of all we consider the case of univariate polynomials .
We make $n+1$ calls $\mathfrak{B}(j), j=0, \ldots, n$.
If $f \in \mathcal{Q}(M, 1, n)$ is identical to zero in \mathbb{Z} / M then obviously $\mathfrak{B}(j) \equiv 0$
$(\bmod M), j=0, \ldots, n$. We show that otherwise for at least one value of j we have $B(j) \not \equiv 0 \quad(\bmod M)$.
Indeed, assuming that this is not true we obtain $f(j) \equiv 0(\bmod M), j=$ $0, \ldots$, n.
Using the Lagrange interpolation we obtain

$$
f(X) \equiv \sum_{j=0}^{n} \frac{\prod_{\substack{i=0 \\ i \neq j}}^{n}(X-i)}{\prod_{\substack{i=0 \\ i \neq j}}^{n}(j-i)} f(j) \quad(\bmod M)
$$

Because for every $j=0, \ldots, n$

$$
\operatorname{gcd}\left(M, \prod_{\substack{i=0 \\ i \neq j}}^{n}(j-i)\right)=\operatorname{gcd}(M, j!(n-j)!) \mid \operatorname{gcd}(M, n!)
$$

we see that all coefficients of f are divisible by $M / \operatorname{gcd}(M, n!)>1$ which finishes the proof of the theorem for $m=1$.
For $m \geq 2$ for a polynomial $f \in \mathcal{P}_{p}(m, n)$ we use the substitution

$$
X_{i}=X^{(n+1)^{\nu-1}}, \nu=1, \ldots, m
$$

and consider the polynomial

$$
f\left(X, X^{n+1}, \ldots, X^{(n+1)^{m-1}}\right) \in \mathcal{P}_{p}\left(1,(n+1)^{m}\right)
$$

for which we apply the algorithm above.

4 Some Remarks and Further Applications

The Strassman's theorem claim that if a function $F(X)$ is given by a power series

$$
F(X)=\sum_{h=0}^{\infty} a_{h} X^{h} \in \mathbb{T}_{p}[[X]]
$$

converging on some disk

$$
D=\left\{x \in \mathbb{C}_{p}: \operatorname{ord}_{p} x \geq \delta\right\}
$$

with

$$
\min _{h=0,1, \ldots} \operatorname{ord}_{p} a_{h}=0
$$

and n is defined by

$$
n=\max \left\{h: \operatorname{ord}_{p} a_{h}=0\right\}
$$

then

$$
F(X)=f(X) U(X)
$$

where $f(X) \in \mathbb{C}_{p}[X]$ is a polynomial of degree at most n and the power series $U(X) \in \mathbb{C}_{p}[[X]]$ satisfies $\operatorname{ord}_{p} U(x)=0$ for all $x \in D$.
Thus an estimate on the grows of coefficients of $F(X)$ is known then one can bound M and them apply our results to zero testing of F. In particular, for exponential polynomials (2 such a bound of n (under some additional conditions) can be found in [13] (see also [10, 12]).
We also remark that it would be interesting to obtain an algorithm of zero testing of t-sparse polynomials.
Finally, the lower bound on $M \geq\left((n+1)^{m}\right)$! in Theorem 3 can probably be weaken and could be make closer to the lower bound (7). In fact we conjecture that essentially smaller M can be dealt with if one considers polynomials which are either identical to zero or take at least one value relatively prime to M.

References

[1] M. Ben-Or and M. Tiwari, 'A deterministic algorithm for sparse multivariate polynomial interpolation', Proc. 20th ACM Symp. on Theor. Comp. Sci., 1988, 301-309.
[2] M. Clausen, A. Dress, J. Grabmeier and M. Karpinski, 'On zero testing and interpolation of k-sparse multivariate polynomials over finite field', Theor. Comp. Sci., 84 (1991), 151-164.
[3] D. Grigoriev, 'Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines', Theor. Comp. Sci., 180 (1997), 217-228.
[4] D. Grigoriev and M. Karpinski, 'Algorithms for sparse rational interpolation', Proc. Intern. Symp. on Symbolic and Algebraic Comp., 1991, 7-13.
[5] D. Grigoriev and M. Karpinski, 'A zero-test and an interpolation algorithm for the shifted sparse polynomials', Lect. Notes in Comp. Sci., 673 (1993), 162-169.
[6] D. Grigoriev, M. Karpinski and M. Singer, 'Fast parallel algorithm for sparse multivariate polynomials over finite fields', SIAM J. Comput., 19(1990), 1059-1063.
[7] D. Grigoriev, M. Karpinski and M. Singer, 'Computational complexity of sparse rational interpolation', SIAM J. Comput., 23 (1994), 1-11.
[8] M. Karpinski and I. E. Shparlinski, 'On some approximation problems concerning sparse polynomials over finite fields', Theor. Comp. Sci., 157(1996), 259-266.
[9] N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Springer-Verlag, Berlin, 1977.
[10] A. J. van der Poorten, 'Zeros of p-adic exponential polynomials', Indag. Math., 38 (1976), 46-49.
[11] A. J. van der Poorten, 'Hermite interpolation and p-adic exponential polynomials, J. Austral. Math. Soc., 23 (1976), 12-26.
[12] A. J. van der Poorten and R. Rumely, 'Zeros of p-adic exponential polynomials, 2', J. Lond. Math. Soc., 36 (1987), 1-15.
[13] A. J. van der Poorten and I. E. Shparlinski, 'On the number of zeros of exponential polynomials and related questions' Bull. Austral. Math. Soc. 46 (1992), 401-412.
[14] R. M. Roth and G. M. Benedek, 'Interpolation and approximation of sparse multivariate polynomials over $G F(2)^{\prime}$, SIAM J. Comp. 20 (1991), 291-314.
[15] I. E. Shparlinski, Finite fields: Theory and Computation, Kluwer Acad. Publ., Dordrecht, 1997.
[16] K. Werther, 'The complexity of sparse polynomials interpolation over finite fields', Appl. Algebra in Engin., Commun. and Comp., 5(1994), 91-103.
[17] R. Zippel, Effective polynomial computation, Kluwer Acad. Publ., Dordrecht, 1993.
[18] R. Zippel, 'Zero testing of algebraic functions', Inform. Proc. Letters, 61 (1997) 63-67.

[^0]: *Dept. of Computer Science, University of Bonn, 53117 Bonn, and the International Computer Science Institute, Berkeley, California. Research supported by DFG Grant KA $673 / 4-1$, and by the ESPRIT BR Grants 7097 and EC-US 030, by DIMACS, and by the Max-Planck Research Prize. Email: marek@cs.uni-bonn. de
 ${ }^{\dagger}$ School of MPCE, Macquarie University, NSW 2109, Australia. Email: alf@mpce.mq.edu.au
 ${ }^{\ddagger}$ School of MPCE, Macquarie University, NSW 2109, Australia. Email: igor@mpce.mq.edu.au

