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Abstract

We obtain new algorithms to test if a given multivariate polynomial
over p-adic fields is identical to zero. We also consider zero testing of
polynomials in residue rings. The results complement a series of known
results about zero testing of polynomials over integers, rationals and

finite fields.
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1 Introduction

One of the central questions of zero-testing of functions can be formulated
as follows.

Assume that a function f from some family of functions F is given by a black
box B, that is for each point z from the definition domain of f entered into
B it computes the value of f at this point. The task is to design an efficient
algorithm testing if f is identical to zero and using as little of calls of B as
possible.

In a number of papers this question was considered for polynomials, rational
functions and algebraic functions belonging various families of functions over
various algebraic domains [1, 2, 3, 4, 5, 6, 7, 8, 14, 16, 18], some additional
references can be found in Section 4.4 of [15] and in Chapter 12 of [17].

In this paper we consider similar questions for multivariate polynomials over

p-adic fields.

As usual @), denotes the p-adic completion of the field of rationals, and €,
the p-adic completion of its algebraic closure.

We normalize the additive valuation ord, ¢t such that ord, p = 1.

The ring of p-adic integers Z,, is the set

Z,={tc @, : ord,t > 0}.

We consider exponential polynomials of the class P,(m,n) which consist of
the multivariate polynomials of the shape

n

f(X o X)) = Y an, L X X (1)

11 yernylm =0

of degree at most n over €, with respect to each variable and such that either
f is identical to zero or

min ord,a; ;. =0.
0<i1yim<n L (Lretm

Generally speaking, two different types of black boxes are possible.

We say that a multivariate polynomial (1) over a ring R is given by an exact
black box % of the exact if for any point x = (x1,...2,) € R™ it outputs
the exact value B(x) = f(x) and it does it in time which does not depend
on X.



For zero testing over finite fields and rings black boxes of this type are quite
natural but for infinite algebraic domains they are not.

For example for testing over €, the following we consider the following weaker
but more realistic black boxes.

We say that a multivariate polynomial (1) over €, is given by an approwi-
mating black box B if for any point x = (z1,...2,,) € 4" and any integer
k > 0 it computes a p-adic approximation B;(x) to f(x) of order k, that is

ord, (Br(x) — f(x)) > k

and does it in time T'(k) depends on k polynomially, T'(k) = k°0).
Informally, an approximating black box can make no miracles but just per-
forms ‘honest’ computation, its only advantage is that it knows the polyno-
mial f(x) explicitly.

Here we design a polynomial time algorithms of zero testing of polynomials
of class P,(m,n) by using a black box of the aforementioned type. Sparse
polynomials are considered as well. Using the Strassman theorem [9] one
can apply our result to zero testing of various analytic functions over p-adic
fields, exponential polynomials of the form

BY) = X0 A0, 2)

where ¢; € C,, fi(X) € C,[X], ¢:(X) € Z[X], in particular.
The we consider polynomials (1) with coefficients from the residue ring Z/M
modulo an integer M > 2.

Our methods is based on some ideas of [10, 11, 12, 13] related to p-adic
Lagrange interpolation and estimating of p-adic orders of some determinants.

2 Zero Testing of p-adic Polynomials

Here we consider the case of general polynomials f € P,(m,n). It is reason-
able to accept the total number of coefficients (n+1)™ as the measure of the
input-size of such polynomials.

We also assume that each polynomial f € P,(m,n) is given by an approwi-
mating black box B.



Theorem 1. A polynomial f € P,(m,n) can be zero tested within N =
(n+ 1)™ calls of an approzimating black box By with

=)

p—1

Proof. First of all we consider the case of univariate polynomials .
We set k= [n/(p—1)] and make n + 1 calls B(j), 7 =0,...,n

If f € P,(1,n) is identical to zero then obviously ord, Bx(j) > k,7 =0,...,n
We show that otherwise for at least one value of j we have ord, B;(j) < k.

Indeed, assuming that this is not true we obtain ord, f(j) >k, 7=10,...,n

Using the Lagrange interpolation we obtain

Z’ii £0)
= 116

(e
Because for every j =0,...,n
ord, H Jj—1) <ord,j! +ord, (n—])’<—1<k
1=0
(e

we see that all coefficients of f have positive p-adic orders which contradicts
our assumption f € P,(1,n). This finishes the proof of the theorem for
m = 1.

For m > 2 for a polynomial f € P,(m,n) we use the substitution
X; = Xt

v=1,....m

and consider the polynomial
FXXM XU e P (n 1)),

for which we apply the algorithm above. O

Now we consider a very important subclass P,(m,n, t) of t-sparse polynomials
f € Pp(m,n) with at most ¢ non-zero coefficients. It is reasonable to accept
the total number of non-zero coefficients times the bit-size of the coding the
m corresponding exponents tm log n as the measure of the input-size of such
polynomials.



Theorem 2. A polynomial f € P,(m,n,t) can be zero tested within

N:{t’ if m=1,;

mt3, if m > 2;
calls of an approximating black box By with

. 0.5t log, 4n| . if m = 1;
a [tz log,, 8mnt1 , ifm>2.

Proof. As in the proof of Theorem 1, first of all we consider the case of
univariate polynomials.

Let ¢ be a primitive root modulo p and therefore modulo all power of p, if
p >3 and let ¢ =5 if p = 2. In any case the multiplicative order 7, of ¢
modulo p® is at least

T, > 0.25p° (3)
for any integer s > 1.

We set k = [0.5t2 log, 4n1 and make ¢ calls By(¢’), 7 =0,...,t — 1.

If f € P,(1,n,t) is identical to zero then obviously ord, Bi(¢’) > k, j =
0,...,t — 1. We show that otherwise for at least one value of j we have
ord, Bi(g?) < k.

Indeed, assuming that this is not true we obtain ord, f(¢’) > k, 7 =0,...,{—
1.

Let .
f(X) = Z;AiX”}
where 0 < r; <...<7r; <n. Recalling; that
lr%igt ord, A; =0,

from the identities
t . .
Zzig]rl:f(g])v ]:Ovvt_l
=1

and the Cramer rule we derive that

ord, A= min ord, f(g') 2 k, (4)
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where A is the following determinant
- G=1ri)!
A = det (g J )mzl .
Therefore
A= I (g —=g7)

1<i<j<t

Because ¢ — ¢'7 € Z its p-adic order is just the largest power p® of p which
divides this number. Therefore the multiplicative order 7, of ¢ modulo p*
divides r; — r;. Recalling the inequality (3) we obtain 0.25p° < |r; —r;| < n.
Hence, obtain

ord, (¢" — g"7) <log, 4n, 1<i<yj<it.
Finally we derive
ord, A < 0.5t(t — 1)log,4n < k
which contradicts the inequality (4).

For m > 2 we use the reduction to the univariate case which for the first
time was used in [6].

Let [ be the smallest prime number exceeding mt(¢t — 1). Obviously
[ <2mit(t—1).

Integers 0 < ¢, <[ —1 we define from the congruences

1
u—+v

(mod 1), w,o=1,...,(l=1)/2.

C’U/U

The matrix

C = (c) L,
is a Cauchy matrix which has the property that each its minor is non-singular
modulo [, and therefore over integers. We claim that if f is a non identical

to zero polynomial then so is at least one of the polynomials

FXe LX), v=1,...,(l=1)/2. (5)
Let .
f(X17' . 7Xm) = ZAZXI“ .. X:nmz
i=1
with some integers r;;, + = 1,....4, 7 = 1,...,m. We show that for at
least one y = 1,...,l — 1 the powers of the monomials appearing in the
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polynomials (5) are pairwise different. Indeed, for each pair of distinct
exponents (ri;,...,rm;) and (rij,...,rm;), 1 <o < j <t, there are at most
m — 1 values of v =1,..., (]l — 1)/2 satisfying

CloTi t oo+ CpuTims = C1vT1y + ...+ CmvT'myj- (6)

Therefore the total number of v = 1,...,(l — 1)/2 for which (6) happens
for at least one pair of exponents is at most 0.5(m — 1)t(t — 1) < (I — 1)/2.
Thus if f is not identical to zero then at least one of the polynomials (5) is
not identical to zero polynomial of with at most { monomials and of degree
at most (I — 1)mn < 2m*nt* < 2m?*n*t*. Thus each of them can be tested
within ¢ calls of B, with k = [tz log,, 8mnt1 and the total number of calls is

tl—1)/2 < mt> O

3 Zero Testing of Sparse p-adic Polynomials

Let Q(M,m,n) denote the class of multivariate polynomials (1) with coef-
ficients from Z /M and such that either f is identical to zero in Z/M or its
coefficients are jointly relatively prime to M.

We also assume that each polynomial f € Q(M,m,n) is given by an exact
black box %8B.

We remark that as the polynomial

m

=1

shows there are non-zero polynomials of degree n which are identical to zero
as functions modulo M = n!. So one of the necessary conditions to make
such zero testing possible is

M > (n!)™. (7)

We obtain an algorithm which works for such M if m = 1 but unfortunately
only for substantially large M if m > 1.

Theorem 3. A polynomial f € Q(M,m,n) with M > ((n+1)")! can be
zero tested within N = (n+ 1)™ calls of an approzimating black box 8.



Proof. First of all we consider the case of univariate polynomials .
We make n + 1 calls B(j), j = 0,.

If f € Q(M,1,n) is identical to zero in Z/M then obviously B(j) = 0
(mod M), j =0,...,n. We show that otherwise for at least one value of
J we have B(j) 20 (mod M).

Indeed, assuming that this is not true we obtain f(j) =0 (mod M), j =
0,...,m.

Using the Lagrange interpolation we obtain

Because for every 5 =0, ...

ged (M, 16 - i)) — acd (M, j1(n — )1) | ged (M)
i;]

we see that all coefficients of f are divisible by M/ged(M,n!) > 1 which

finishes the proof of the theorem for m = 1.

For m > 2 for a polynomial f € P,(m,n) we use the substitution

Xy = X0, = 1,....,m

and consider the polynomial
FX XM XU e Py (n 1)),

for which we apply the algorithm above. O

4 Some Remarks and Further Applications

The Strassman’s theorem claim that if a function F(X) is given by a power
series

F(X)= 3 0 X" € G, [[X]

h=0



converging on some disk
D={xeC, : ord,z > ¢}

with

min ord,ay =0
hR=01,.

and n is defined by

n = max{h : ord,a, =0}

then
P(X) = f(X)U(X)

where f(X) € €C,[X]is a polynomial of degree at most n and the power series
U(X) € C,][X]] satisfies ord, U(x) = 0 for all = € D.

Thus an estimate on the grows of coefficients of F(X) is known then one
can bound M and them apply our results to zero testing of F'. In particular,
for exponential polynomials (2 such a bound of n (under some additional
conditions) can be found in [13] (see also [10, 12]).

We also remark that it would be interesting to obtain an algorithm of zero
testing of ¢-sparse polynomials.

Finally, the lower bound on M > ((n + 1)™)! in Theorem 3 can probably be
weaken and could be make closer to the lower bound (7). In fact we conjecture
that essentially smaller M can be dealt with if one considers polynomials
which are either identical to zero or take at least one value relatively prime

to M.
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