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Abstract

We obtain new algorithms to test if a given multivariate polynomial

over p-adic �elds is identical to zero. We also consider zero testing of

polynomials in residue rings. The results complement a series of known

results about zero testing of polynomials over integers, rationals and

�nite �elds.
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1 Introduction

One of the central questions of zero-testing of functions can be formulated

as follows.

Assume that a function f from some family of functions F is given by a black

box B, that is for each point x from the de�nition domain of f entered into

B it computes the value of f at this point. The task is to design an e�cient

algorithm testing if f is identical to zero and using as little of calls of B as

possible.

In a number of papers this question was considered for polynomials, rational

functions and algebraic functions belonging various families of functions over

various algebraic domains [1, 2, 3, 4, 5, 6, 7, 8, 14, 16, 18], some additional

references can be found in Section 4.4 of [15] and in Chapter 12 of [17].

In this paper we consider similar questions for multivariate polynomials over

p-adic �elds.

As usual Q

p

denotes the p-adic completion of the �eld of rationals, and C

p

the p-adic completion of its algebraic closure.

We normalize the additive valuation ord

p

t such that ord

p

p = 1.

The ring of p-adic integers ZZ

p

is the set

ZZ

p

= ft 2 Q

p

: ord

p

t � 0g:

We consider exponential polynomials of the class P

p

(m;n) which consist of

the multivariate polynomials of the shape

f(X

1

; : : : ;X

m

) =

n

X

i

1

;:::;i

m

=0

a

i

1

;:::;i

m

X

i

1

1

: : :X

i

m

m

(1)

of degree at most n over C

p

with respect to each variable and such that either

f is identical to zero or

min

0�i

1

;:::;i

m

�n

ord

p

a

i

1

;:::;i

m

= 0:

Generally speaking, two di�erent types of black boxes are possible.

We say that a multivariate polynomial (1) over a ring R is given by an exact

black box B of the exact if for any point x = (x

1

; : : : x

m

) 2 R

m

it outputs

the exact value B(x) = f(x) and it does it in time which does not depend

on x.
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For zero testing over �nite �elds and rings black boxes of this type are quite

natural but for in�nite algebraic domains they are not.

For example for testing over C

p

the following we consider the following weaker

but more realistic black boxes.

We say that a multivariate polynomial (1) over C

p

is given by an approxi-

mating black box

e

B if for any point x = (x

1

; : : : x

m

) 2 ZZ

m

p

and any integer

k � 0 it computes a p-adic approximation

e

B

k

(x) to f(x) of order k, that is

ord

p

�

e

B

k

(x)� f(x)

�

� k

and does it in time T (k) depends on k polynomially, T (k) = k

O(1)

.

Informally, an approximating black box can make no miracles but just per-

forms `honest' computation, its only advantage is that it knows the polyno-

mial f(x) explicitly.

Here we design a polynomial time algorithms of zero testing of polynomials

of class P

p

(m;n) by using a black box of the aforementioned type. Sparse

polynomials are considered as well. Using the Strassman theorem [9] one

can apply our result to zero testing of various analytic functions over p-adic

�elds, exponential polynomials of the form

E(X) =

r

X

i=1

f

i

(X)'

g

i

(X)

i

; (2)

where '

i

2 C

p

, f

i

(X) 2 C

p

[X], g

i

(X) 2 ZZ[X], in particular.

The we consider polynomials (1) with coe�cients from the residue ring ZZ=M

modulo an integer M � 2.

Our methods is based on some ideas of [10, 11, 12, 13] related to p-adic

Lagrange interpolation and estimating of p-adic orders of some determinants.

2 Zero Testing of p-adic Polynomials

Here we consider the case of general polynomials f 2 P

p

(m;n). It is reason-

able to accept the total number of coe�cients (n+1)

m

as the measure of the

input-size of such polynomials.

We also assume that each polynomial f 2 P

p

(m;n) is given by an approxi-

mating black box

e

B.
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Theorem1. A polynomial f 2 P

p

(m;n) can be zero tested within N =

(n+ 1)

m

calls of an approximating black box

e

B

k

with

k =

&

(n + 1)

m

p � 1

'

:

Proof. First of all we consider the case of univariate polynomials .

We set k = dn=(p � 1)e and make n+ 1 calls

e

B

k

(j), j = 0; : : : ; n.

If f 2 P

p

(1; n) is identical to zero then obviously ord

p

e

B

k

(j) � k, j = 0; : : : ; n.

We show that otherwise for at least one value of j we have ord

p

e

B

k

(j) < k.

Indeed, assuming that this is not true we obtain ord

p

f(j) � k, j = 0; : : : ; n.

Using the Lagrange interpolation we obtain

f(X) =

n

X

j=0

n

Y

i=0

i6=j

(X � i)

n

Y

i=0

i6=j

(j � i)

f(j)

Because for every j = 0; : : : ; n

ord

p

n

Y

i=0

i6=j

(j � i) � ord

p

j! + ord

p

(n � j)! �

n

p � 1

< k

we see that all coe�cients of f have positive p-adic orders which contradicts

our assumption f 2 P

p

(1; n). This �nishes the proof of the theorem for

m = 1.

For m � 2 for a polynomial f 2 P

p

(m;n) we use the substitution

X

i

= X

(n+1)

��1

; � = 1; : : : ;m

and consider the polynomial

f

�

X;X

n+1

; : : : ;X

(n+1)

m�1

�

2 P

p

(1; (n+ 1)

m

):

for which we apply the algorithm above. ut

Now we consider a very important subclass P

p

(m;n; t) of t-sparse polynomials

f 2 P

p

(m;n) with at most t non-zero coe�cients. It is reasonable to accept

the total number of non-zero coe�cients times the bit-size of the coding the

m corresponding exponents tm log n as the measure of the input-size of such

polynomials.
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Theorem2. A polynomial f 2 P

p

(m;n; t) can be zero tested within

N =

(

t; if m = 1;

mt

3

; if m � 2;

calls of an approximating black box

e

B

k

with

k =

8

<

:

l

0:5t

2

log

p

4n

m

; if m = 1;

l

t

2

log

p

8mnt

m

; if m � 2:

Proof. As in the proof of Theorem 1, �rst of all we consider the case of

univariate polynomials.

Let g be a primitive root modulo p and therefore modulo all power of p, if

p � 3 and let g = 5 if p = 2. In any case the multiplicative order �

s

of g

modulo p

s

is at least

�

s

� 0:25p

s

(3)

for any integer s � 1.

We set k =

l

0:5t

2

log

p

4n

m

and make t calls

e

B

k

(g

j

), j = 0; : : : ; t� 1.

If f 2 P

p

(1; n; t) is identical to zero then obviously ord

p

e

B

k

(g

j

) � k, j =

0; : : : ; t � 1. We show that otherwise for at least one value of j we have

ord

p

e

B

k

(g

j

) < k.

Indeed, assuming that this is not true we obtain ord

p

f(g

j

) � k, j = 0; : : : ; t�

1.

Let

f(X) =

t

X

i=1

A

i

X

r

i

;

where 0 � r

1

< : : : < r

t

� n. Recalling that

min

1�i�t

ord

p

A

i

= 0;

from the identities

t

X

i=1

z

i

g

jr

i

= f(g

j

); j = 0; : : : ; t� 1

and the Cramer rule we derive that

ord

p

� � min

0�j�t�1

ord

p

f(g

j

) � k; (4)
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where � is the following determinant

� = det

�

g

(j�1)r

i

�

t

i;j=1

:

Therefore

� =

Y

1�i<j�t

(g

r

i

� g

r

j

)

Because g

r

i

� g

r

j

2 ZZ its p-adic order is just the largest power p

s

of p which

divides this number. Therefore the multiplicative order �

s

of g modulo p

s

divides r

i

� r

j

. Recalling the inequality (3) we obtain 0:25p

s

� jr

i

� r

j

j � n.

Hence, obtain

ord

p

(g

r

i

� g

r

j

) � log

p

4n; 1 � i < j � t:

Finally we derive

ord

p

� � 0:5t(t� 1) log

p

4n < k

which contradicts the inequality (4).

For m � 2 we use the reduction to the univariate case which for the �rst

time was used in [6].

Let l be the smallest prime number exceeding mt(t� 1). Obviously

l � 2mt(t� 1):

Integers 0 � c

uv

� l� 1 we de�ne from the congruences

c

uv

�

1

u+ v

(mod l); u; v = 1; : : : ; (l � 1)=2:

The matrix

C = (c

ij

)

l�1

i;j=1

is a Cauchy matrix which has the property that each its minor is non-singular

modulo l, and therefore over integers. We claim that if f is a non identical

to zero polynomial then so is at least one of the polynomials

f(X

c

1v

; : : : ;X

c

mv

); v = 1; : : : ; (l� 1)=2: (5)

Let

f(X

1

; : : : ;X

m

) =

t

X

i=1

A

i

X

r

1i

1

: : :X

r

mi

m

with some integers r

ij

, i = 1; : : : ; t, j = 1; : : : ;m. We show that for at

least one j = 1; : : : ; l � 1 the powers of the monomials appearing in the
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polynomials (5) are pairwise di�erent. Indeed, for each pair of distinct

exponents (r

1i

; : : : ; r

mi

) and (r

1j

; : : : ; r

mj

), 1 � i < j � t, there are at most

m� 1 values of v = 1; : : : ; (l� 1)=2 satisfying

c

1v

r

1i

+ : : :+ c

mv

r

mi

= c

1v

r

1j

+ : : :+ c

mv

r

mj

: (6)

Therefore the total number of v = 1; : : : ; (l � 1)=2 for which (6) happens

for at least one pair of exponents is at most 0:5(m � 1)t(t� 1) < (l � 1)=2.

Thus if f is not identical to zero then at least one of the polynomials (5) is

not identical to zero polynomial of with at most t monomials and of degree

at most (l � 1)mn � 2m

2

nt

2

� 2m

2

n

2

t

2

. Thus each of them can be tested

within t calls of

e

B

k

with k =

l

t

2

log

p

8mnt

m

and the total number of calls is

t(l� 1)=2 � mt

3

. ut

3 Zero Testing of Sparse p-adic Polynomials

Let Q(M;m;n) denote the class of multivariate polynomials (1) with coef-

�cients from ZZ=M and such that either f is identical to zero in ZZ=M or its

coe�cients are jointly relatively prime to M .

We also assume that each polynomial f 2 Q(M;m;n) is given by an exact

black box B.

We remark that as the polynomial

f(X

1

; : : : ;X

m

) =

m

Y

i=1

X

i

(X

i

� 1) : : : (X

i

� n+ 1)

shows there are non-zero polynomials of degree n which are identical to zero

as functions modulo M = n!. So one of the necessary conditions to make

such zero testing possible is

M � (n!)

m

: (7)

We obtain an algorithm which works for such M if m = 1 but unfortunately

only for substantially large M if m � 1.

Theorem3. A polynomial f 2 Q(M;m;n) with M > ((n+ 1)

m

)! can be

zero tested within N = (n+ 1)

m

calls of an approximating black box B.
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Proof. First of all we consider the case of univariate polynomials .

We make n+ 1 calls B(j), j = 0; : : : ; n.

If f 2 Q(M; 1; n) is identical to zero in ZZ=M then obviously B(j) � 0

(mod M), j = 0; : : : ; n. We show that otherwise for at least one value of

j we have B(j) 6� 0 (mod M).

Indeed, assuming that this is not true we obtain f(j) � 0 (mod M), j =

0; : : : ; n.

Using the Lagrange interpolation we obtain

f(X) �

n

X

j=0

n

Y

i=0

i6=j

(X � i)

n

Y

i=0

i6=j

(j � i)

f(j) (mod M)

Because for every j = 0; : : : ; n

gcd

0

B

@

M;

n

Y

i=0

i6=j

(j � i)

1

C

A

= gcd (M; j!(n � j)!)

�

�

� gcd (M;n!) :

we see that all coe�cients of f are divisible by M= gcd(M;n!) > 1 which

�nishes the proof of the theorem for m = 1.

For m � 2 for a polynomial f 2 P

p

(m;n) we use the substitution

X

i

= X

(n+1)

��1

; � = 1; : : : ;m

and consider the polynomial

f

�

X;X

n+1

; : : : ;X

(n+1)

m�1

�

2 P

p

(1; (n+ 1)

m

):

for which we apply the algorithm above. ut

4 Some Remarks and Further Applications

The Strassman's theorem claim that if a function F (X) is given by a power

series

F (X) =

1

X

h=0

a

h

X

h

2 C

p

[[X]]
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converging on some disk

D = fx 2 C

p

: ord

p

x � �g

with

min

h=0;1;:::

ord

p

a

h

= 0

and n is de�ned by

n = maxfh : ord

p

a

h

= 0g

then

F (X) = f(X)U(X)

where f(X) 2 C

p

[X] is a polynomial of degree at most n and the power series

U(X) 2 C

p

[[X]] satis�es ord

p

U(x) = 0 for all x 2 D.

Thus an estimate on the grows of coe�cients of F (X) is known then one

can bound M and them apply our results to zero testing of F . In particular,

for exponential polynomials (2 such a bound of n (under some additional

conditions) can be found in [13] (see also [10, 12]).

We also remark that it would be interesting to obtain an algorithm of zero

testing of t-sparse polynomials.

Finally, the lower bound on M � ((n + 1)

m

)! in Theorem 3 can probably be

weaken and could be make closer to the lower bound (7). In fact we conjecture

that essentially smaller M can be dealt with if one considers polynomials

which are either identical to zero or take at least one value relatively prime

to M .
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