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Abstract

In this paper we consider real counterparts of classical probabilistic complexity classes in

the framework of real Turing machines as introduced by Blum, Shub, and Smale [2]. We give

an extension of the well-known \BPP � P=poly" result from discrete complexity theory to a

very general setting in the real number model. This result holds for real inputs, real outputs,

and random elements drawn from an arbitrary probability distribution over IR

m

. Then we turn

to the study of Boolean parts, that is, classes of languages of zero-one vectors accepted by real

machines. In particular we show that the classes BPP, PP, PH, and PSPACE are not enlarged

by allowing the use of real constants and arithmetic at unit cost provided we restrict branching

to equality tests.
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1 Introduction

This paper deals with probabilistic complexity classes in the real number model of computation.

We consider both uniform and non-uniform models. The classical non-uniform models are straight-

line programs, algebraic circuits and algebraic decision trees. Our uniform model is the real Turing

machine introduced by Blum, Shub and Smale in the foundational paper [2].

In section 3 we present a generalization of the well-known \BPP � P=poly" result from dis-

crete complexity theory to the real number model. This problem implicitly goes back at least to

Heintz and Schnorr [17]. After giving a deterministic counterpart to Schwarz's probabilistic al-

gorithm for testing polynomials [30], these authors write that \This statement sounds much like

Adleman's (1978) observation that every problem which is decidable in random polynomial time

has polynomial network size. However in our situation Adleman's argument is not applicable since

W (d; n; v) is not �nite

1

". The main tool for our proof is a result of probability theory based on the

notion of Vapnik-Chervonenkis (VC) dimension (see section 2). The VC dimension was invented

exactly to remedy the lack of �niteness pointed out by Heintz and Schnorr. This tool was originally

developed to study some statistical aspects of pattern recognition, or learning theory as one would

say nowadays (see e.g. [36]). It turned out to have important applications in other areas as well,

especially in computational geometry (see e.g. the survey [6]).

A similar theorem was established by Meyer auf der Heide [25] for the algebraic decision tree

model. Our result has a much wider range of applicability since it is only based on a VC dimension

hypothesis and therefore, it is distribution independent. In the algebraic decision tree model,

and for random elements drawn from f0; 1g we recover Meyer auf der Heide's O(nT

2

) bound for

deterministically simulating a probabilistic algorithm that runs in time T on IR

n

.

In section 3 we work with non-uniform models since this can only strengthen our results. Of

course the classical proof that BPP � P=poly also applies to non-uniform models, the corresponding

result being that probabilistic boolean circuits are not more powerful than deterministic boolean

circuits (up to a polynomial increase in size). Some applications of our simulation are presented

in section 4. In particular, we prove by quite di�erent methods a theorem which is very similar to

Heintz and Schnorr's [17]. Lower bounds are discussed in section 5.

A recent issue in the theory initiated by Blum, Shub and Smale [2] is the comparison of the

computational power of real and classical (discrete) Turing machines. This comparison is performed

by feeding the real machines with binary inputs, i.e. with �nite strings of zeros and ones. Depending

on the resources allowed to the real machines, this de�nes a class of binary sets whose position in

the taxonomy of Boolean complexity classes makes the desired comparison possible. In other words,

for any real complexity class C we want to characterize its Boolean part, which is de�ned to be

BP(C) = fS \ f0; 1g

�

: S 2 Cg:

Typical examples of resource bounds in the real setting de�ne versions of the well known classes

P, NP, �

k

, PH and PAR, the latter denoting parallel polynomial time (and being thus equivalent

to PSPACE in the Boolean case). These resource bounds can apply to several kinds of real Turing

1

W (d; n; v) is the set of inputs considered by Heintz and Schnorr. It plays the same role as f0; 1g

n

for boolean

circuits or f0; 1g

�

for Turing machines.
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machines according to whether they can multiply or divide at unit cost, whether they cannot

multiply or divide at all (additive machines) or whether they can do it in a restricted way (the

weak model introduced in [21]). Finally, a last di�erentiation can be done according to whether

these machines branch over order tests or only over equalities (in this case we will say that the

machine is equational or order-free).

Results concerning Boolean parts have been established for all these settings. Thus, in [22] and

[9] Boolean parts of several complexity classes for additive machines are characterized. Also, in [21]

and [12] Boolean parts of some complexity classes in the weak model are characterized whereas for

complexity classes de�ned with unrestricted multiplications and divisions, this task is carried out

in [10]. We begin section 7 with a more detailed exposition of these previous results.

In the last sections of this paper, we pursue the study of Boolean parts for equational real

Turing machines. In order to do so, we introduce in section 6 probabilistic real Turing machines

along with the complexity classes they de�ne, i.e. real versions of the classes ZPP, R, BPP and

PP. The kind of randomization we use here is \coin tossing" i.e. random elements are chosen from

f0; 1g with equal probability. For this computational model it is shown that randomization does

not help in the sense that P

IR

= BPP

IR

. This is not necessarily true for the order-free case and for

this case the study of Boolean parts is pursued. The main theorem is established in section 7 and

characterizes the Boolean parts of several complexity classes.

2 Uniform convergence and the Vapnik-Chervonenkis

dimension

In this section we recall a few well-known facts about the Vapnik-Chervonenkis dimension.

De�nition 1 Let F be a class of indicator (f0; 1g-valued) functions on a domain X . We say that

F shatters a set A � X if for every subset E � A, there exists some function f

E

2 F satisfying:

� f

E

(x) = 0 for every x 2 AnE;

� f

E

(x) = 1 for every x 2 E.

The VC dimension of F is the cardinality of the largest set that is shattered by F .

Goldberg and Jerrum gave bounds on the VC dimension of classes of subsets of IR

n

de�ned by

quanti�er-free polynomial formulas over the reals ([15], Theorem 2.2).

Theorem 1 (Goldberg-Jerrum) Let �

k;n

(x; y) be a boolean formula containing s distinct atomic

predicates, where each predicate is a polynomial equality or inequality over n + k variables (repre-

senting x 2 IR

n

and y 2 IR

k

, respectively) of degree at most D. For any y 2 IR

k

, let F

y

� IR

n

be

the set of instances x such that �

k;n

(x; y) is satis�ed. The family fF

y

; y 2 IR

k

g has VC dimension

at most 2k log(8eDs).

Since the behavior of arithmetic circuits can be characterized by such formulas, they went on to

give bounds on the VC dimension of classes of sets recognized by these circuits ([15], Theorem 2.3).

See De�nition 3 in the next section if you are not familiar with this computation model.
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Corollary 1 Let fC

k;n

; k; n 2 INg be a family of arithmetic circuits of size s = s(k; n) with inputs

in IR

n+k

. For any y 2 IR

k

, let F

y

� IR

n

be the set of instances x such that (x; y) is accepted by C.

The family fF

y

; y 2 IR

k

g has VC dimension at most O(sk).

This result was actually stated in the algebraic computation tree model, but in this paper we

are mostly interested in circuits.

By quanti�er elimination, one can also deal with formulas in the �rst-order theory of the reals

([15], Corollary 2.4).

Corollary 2 Assume now that formula �

k;n

in Theorem 1 is a �rst-order formula in the theory

of the reals; assume further that the number of bound variables is polynomial in k and n, that the

number of quanti�er alternations is uniformly bounded and that the atomic predicates are bounded in

number and degree by an exponential function of k and n. Then the VC dimension of fF

y

; y 2 IR

k

g

is polynomial in k and n.

The proof of Theorem 1 relies on a deep result from real algebraic geometry due to Warren [37].

Consider a family f

1

; : : : ; f

m

of polynomials in IR[X

1

; : : : ; X

k

]. An m-tuple (�

1

; : : : ; �

m

) of sign

conditions (that is, �

i

is one of > 0, = 0, or > 0, for all i � k) is said to be satis�ed by the family

when the set of x 2 IR

n

such that

f

1

(x)�

1

& : : : & f

m

(x)�

m

is non-empty. An immediate upper bound for the number of satis�able tuples of sign conditions

is 3

m

. Warren's result shows that the crucial parameter is not m but the number k of variables.

Theorem 2 (Warren) Let f

1

; : : : ; f

m

be polynomials in IR[X

1

; : : : ; X

k

] whose degrees are bounded

by d. The number of satis�able m-tuples of sign conditions is bounded by (8md=k)

k

.

In his paper, Warren gave only a bound on the of non-zero sign assignements. The generalization

to arbitrary sign assignements is easy, see for instance [15].

In fact, a slightly weaker bound is used by Meyer auf der Heide in [25]. There, the bound is

easily derived from a well known result of Milnor [27] and Thom [34] that bounds the number of

connected components of polynomial systems in IR

n

. Note also that a related result in Warren's

paper plays a crucial role in [20]. It seems thus that these geometric bounds are at the core of the

problem.

The notion of VC dimension can be generalized to real-valued functions as follows.

De�nition 2 Let F be a class of real valued functions on a domain X . We say that F P -shatters

a set A � X if there exists a function s : A ! IR such that for every subset E � A, there exists

some function f

E

2 F satisfying:

� f

E

(x) < s(x) for every x 2 AnE;

� f

E

(x) � s(x) for every x 2 E.
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The pseudo-dimension of F , denoted P (F), is the cardinality of the largest set that is P -shattered

by F .

For indicator functions, the pseudo-dimension reduces to the VC dimension.

Remark 1 The pseudo-dimension of F is the VC dimension of the subgraph of F (the subgraph

of F is the class of sets of the form f(x; y) 2 X � IR; y � f(x)g for some f 2 F).

The key property of classes of functions of �nite pseudo-dimension is that they satisfy a uniform

law of large numbers, as shown by the following result ([16], Corollary 2).

Theorem 3 Let F be a class of functions from a set X into a bounded range [0;M ]. Assume that

F has �nite pseudo-dimension d. Then, for any distribution P over X, any �; � > 0 and any

k �

64M

2

�

2

(2d ln

16eM

�

+ ln

8

�

)

the following statement holds

2

: if k points x

1

; : : : ; x

k

are independently drawn from P , then with

probability at least 1� �,

�

�

�

�

�

1

k

k

X

i=1

f(x

i

)�E

x2X

f(x)

�

�

�

�

�

� �

for every f 2 F (E denotes the mathematical expectation).

3 Simulations of probabilistic circuits by deterministic circuits

For the sake of generality, we shall deal here with circuits that can draw random elements from an

arbitrary probability distributions P on IR

m

(from section 6 onward, we will require P to be the

uniform distribution on f0; 1g

m

). Thus we consider circuits with n+m real inputs and the last m

of them are to be interpreted as \random inputs". Let us de�ne more formally our computational

model.

To do so, we will consider the sign function

sg : IR! f0; 1g

de�ned by sg(x) = 1 if x � 0 and 0 otherwise. Thus, the sign function is the characteristic function

of the set of positive elements in IR.

De�nition 3 An arithmetic circuit C over IR is a directed acyclic graph where each node has

indegree 0, 1 or 2. Nodes with indegree 0 are either labeled as input nodes or with elements of IR

(we shall call them constant nodes). Nodes with indegree 2 are labeled with the binary operators

2

F must satisfy a benign measurability condition called permissibility. See for instance Appendix A.1 in [3] or

Appendix C in [28]. In the rest of the paper, we assume implicitly that this condition is satis�ed. One can show that

it is indeed satis�ed in all concrete examples considered.
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on IR, i.e., +, �, � or =. Nodes of indegree 1 are sign nodes; nodes of outdegree 0 are called output

nodes.

For an arithmetic circuit C, the size s(C) of C, is the number of nodes in C. The depth d(C)

of C, is the length of the longest path from some input node to some output node.

Let n be the number of input nodes of a circuit C. To each node g of C we inductively associate

a function f

g

from IR

n

to IR. We shall refer to the function f

C

from IR

n

to IR

s

associated to the s

output gates as the function computed by the circuit. It is immediate to note that f

C

is a piecewise

rational function from IR

n

to IR

s

. If it is a characteristic function, i.e., if s = 1 and its image

is included in f0; 1g, we shall say that the set S � IR

n

given by S = fx 2 IR

n

j f

C

(x) = 1g is

recognized by C. We will also say that C is a decision circuit.

This way of recognizing a set is deterministic. We are now going to allow arithmetic circuits to

draw random elements from IR.

De�nition 4 Let P be a probabilistic distribution on IR

m

and let C be an arithmetic decision

circuit with n +m input nodes. Let also S be a subset of IR

n

. We say that C recognizes S with

error probability bounded by " <

1

2

when for any x 2 IR

n

the following probability (with respect

to random elements y 2 IR

m

)

Pr(f

C

(x; y) = 1 & x 62 S) + Pr(f

C

(x; y) = 0 & x 2 S)

is bounded by ". By abuse of language we shall say that the circuit C above is probabilistic, and

if the value of " is not relevant in the context, we shall simply say that C recognizes S.

Our positive results are based on the following \abstract" theorem, which in fact does not

depend on the real number model at all.

Theorem 4 Let P be an arbitrary probability distribution on a set Y ; let f : X ! Z and g :

X � Y ! Z be two functions such that

Pfy 2 Y ; g(x; y) = f(x)g � 3=4

for every x 2 X. Assume that the family of functions

F = fF

x;z

: Y ! f0; 1g; x 2 X; z 2 Zg

de�ned by

F

x;z

(y) =

(

1 if g(x; y) = z;

0 if g(x; y)6=z

has �nite VC dimension d. Then, there exists a universal constant C such that for every k �

Cd, there are points y

1

; : : : ; y

k

2 Y such that for every x 2 X, at least 2/3 of the elements

g(x; y

1

); : : : ; g(x; y

k

) are equal to f(x). In other words, f(x) can be computed by taking a majority

vote on g(x; y

1

); : : : ; g(x; y

k

).

6



Proof. Let us draw k points y

1

; : : : ; y

k

independently from P . According to Theorem 3, the

probability that

�

�

�

�

�

1

k

k

X

i=1

F

x;z

(y

i

)� E

y2Y

F

x;z

(y)

�

�

�

�

�

> � (1)

for at least one (x; z) 2 X�Z is smaller than one for k = 
(

d

�

2

log

1

�

). Hence for this value of k, there

must exist at least one realization of y

1

; : : : ; y

k

such that (1) does not hold for any (x; z) 2 X �Z.

The result follows from the choice z = f(x) and � = 3=4� 2=3.

Note that using Theorem A.2 in ([36], p. 170) instead of Theorem 3 yields the bound k =

O(d logd) instead of k = O(d). This sharper bound also follows implicitly from the proof of

Theorem 4.2 in [13].

Corollary 3 Let C be a probabilistic arithmetic circuit of size s with inputs in IR

n

, outputs in IR

and random elements drawn from an arbitrary probability distribution on IR

m

. Then C can be

simulated by a deterministic arithmetic circuit of size polynomial in n, s and m.

Proof. Follows immediately from Theorem 4 with X = IR

n

, Y = IR

m

, g : IR

n+m

! f0; 1g the

function computed by C and f : IR

n

! f0; 1g the characteristic function of the set recognized by

C. In this case, the VC dimension of the resulting F is O(sn) by Corollary 1.

For circuits with output in IR

p

it is well known that the class of real functions f : IR

n

! IR

p

computed by deterministic circuits is the class of piecewise rational functions. This fact readily

extends to probabilistic circuits with random elements drawn from f0; 1g with the uniform distri-

bution. A straightforward consequence of Corollary 3 is that it also holds for arbitrary probability

distributions.

Corollary 4 Let C be a probabilistic arithmetic circuit with inputs in IR

n

output in IR

p

and random

elements drawn from an arbitrary probability on IR

m

. Then the function f

C

: IR

n

! IR

p

computed

by C is piecewise rational.

This result also holds in the more powerful algebraic tree model if the circuit size s is replaced by

the tree depth T (that was actually the computational model used in Goldberg-Jerrum [15]). Hence

we retrieve Meyer auf der Heide's O(nT

2

) bound for deterministically simulating probabilistic deci-

sion trees [25]. Note that this author only considered the case where P is the uniform distribution

over f0; 1g

m

, and his argument cannot be generalized to arbitrary probability distributions. One

big advantage of our approach is that it provides distribution-independent bounds. For instance,

in the next section we work with the uniform probability distribution over f1; : : : ; ug

n

, where u is

some positive integer. Meyer auf der Heide's result can be applied in this case, but the resulting

bounds increase with u. In contrast, our bounds are independent of u.

One may ask whether Corollary 3 remains true if the real number model is extended by adding

new operations. Corollary 5 shows that the answer to this question is positive if these operations

are semi-algebraic (we also give a negative result for the cosine function in the next section). We

�rst recall the following de�nitions.
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De�nition 5

� A basic semi-algebraic set S � IR

k

is de�ned by the conjunction of a �nite number of con-

straints of the form P

i

< 0, P

i

= 0 or P

i

> 0, where P

i

: IR

k

! IR is a polynomial.

� A semi-algebraic set is a �nite union of basic semi-algebraic sets.

� A function s : IR

k

! IR is a semi-algebraic function if its graph is a semi-algebraic subset of

IR

k+1

.

Corollary 5 Corollary 3 still holds if the real number model is extended by adding any �xed, �nite

set of semi-algebraic operations to the four arithmetic operations.

Proof. The condition F

x;z

(y) = 1 can be turned into an existential formula of the �rst-order

theory of the reals by performing the following transformation on every instruction of the straight-

line program evaluating this condition: replace an instruction v := s(u

1

; : : : ; u

k

) by the subformula

R(v; u

1

; : : : ; u

k

), where v is a new variable and R is the (non-quanti�ed) formula de�ning s (s can

be a sign gate, one of the four arithmetic operations or one of the new semi-algebraic functions).

Then take the conjunction  of all these subformulas. The function computed by the straight-line

program above is described by the formula 9v

1

: : :9v

r

 where v

1

; : : : ; v

r

are the new variables

added through this process.

The size of the resulting formula is exponentially (in fact, polynomially) bounded in s; n andm.

The number of quanti�ed variables is also polynomial in these parameters. Hence the VC dimension

of the resulting F (de�ned as in Corollary 3) is polynomial according to Corollary 2.

This corollary makes it possible to include in our computation model such natural functions as,

for instance, the square root function, since the map x 7!

p

jxj is semi-algebraic. It is also possible

to obtain good bounds in the case where pfa�an functions (such as, e.g., the exponential function)

are allowed, using the recent results of [20]. The �eld of p-addic numbers is a more exotic domain

of computation where some of the results given here for the real number model may apply. To our

knowledge, no explicit bound is known on the VC dimension of classes of concepts de�nable in the

�rst-order theory of the p-addic numbers, but it is known to be �nite.

The following result is the counterpart of Theorem 4 for approximation algorithms.

Theorem 5 Let P be an arbitrary probability distribution on a set Y ; let f : X ! IR and g :

X � Y ! IR be two functions such that jE

y2P

g(x; y) � f(x)j � � for every x 2 X. Assume

that the family of functions G = fG

x

: Y ! IR; x 2 Xg de�ned by G

x

(y) = g(x; y) has �nite

pseudo-dimension d, and that g(X � Y ) � [0;M ] for some M > 0. Then, for every �; � > 0 and

every

k >

64M

2

�

2

(2d ln

16eM

�

+ ln 8) (2)

there are points y

1

; : : : ; y

k

2 Y such that for every x 2 X,

�

�

�

�

�

1

k

k

X

i=1

g(x; y

i

)� f(x)

�

�

�

�

�

� 2�:

8



Proof. Let us draw k points y

1

; : : : ; y

k

independently from P . According to Theorem 3, the

probability that

�

�

�

�

�

1

k

k

X

i=1

g(x; y

i

)� E

y2Y

g(x; y)

�

�

�

�

�

> � (3)

for at least one x 2 X is smaller than one if (2) holds. Hence for such a value of k, there must exist

at least one realization of y

1

; : : : ; y

k

such that (3) does not hold for any x 2 X .

By Remark 1, corollaries 3 and 5 clearly hold in this approximation setting as well.

Remark 2 All the results in this section can be also shown for the algebraic tree model of com-

putation. Moreover, in this case they can be strengthened in the following way. The complexity

we have considered is the worst{case cost. However, we can provide additional power to algebraic

trees by averaging the cost over all the random choices in IR

m

. The application of theorem 4 is

then still possible and allows us to obtain stronger results.

4 Applications

In this section, we give a few applications of the techniques developed in the previous section. We

start with a deterministic version of Schwarz's randomized testing algorithm [30].

Theorem 6 For any integers n; d; d

0

; k; v, we de�ne a set L = L(n; d; d

0

; k; v) of straight-line pro-

grams as follows. A straight-line program L is in L if:

� It is made of at most v arithmetic operations (no divisions or comparisons are allowed), uses k

real parameters (or \constants") and computes a polynomial P

L

in n variables.

� The degree of P

L

in the n variables is at most d.

� The degree of P

L

in the k parameters is at most d

0

.

Set u = 4nd. Then there exists a set S of s = O(v log v + k log d

0

) points in f1; 2; : : : ; ug

n

which

satis�es the property that for every L 2 L, P

L

� 0 if and only if P

L

(x) = 0 for every x 2 S.

By Schwarz's lemma, if P

L

6�0 and x is drawn from the uniform distribution on f1; : : : ; ug

n

,

PrfP

L

(x) = 0g � dn=u = 1=4:

This probabilistic test can be \derandomized" by Theorem 4 and Corollary 3, providing a polyno-

mial bound for s. We explain below how one can obtain the sharper result claimed here by going

through the proof of the VC dimension bounds in [15]. The only di�erence with [15] is that we

have to count how many straight-line programs in L have a di�erent syntactical structure, i.e.,

cannot be obtained from one another by changing numerical constants. This issue is dealt with in

a perhaps more complicated way in ([29], Theorem 4.4), where the program syntax is encoded in a

real constant.

9



Proof of Theorem 6. For L 2 L, let F

L

: IR

n

! f0; 1g be de�ned by: F

L

(x) = 0 if P

L

(x) = 0,

F

L

(x) = 1 otherwise. The bound that can be obtained from Theorem 4 is s = O(N), where N is the

VC dimension of the family of functions F = fF

L

; L 2 Lg: Take any �xed L

0

2 L, and consider the

class L(L

0

) of straight-line programs that can be obtained from L

0

by letting the parameters in L

0

take arbitrary values in IR

k

. It follows from the proof of Theorem 1 (see [15]) that the number of

functions induced by fF

L

;L 2 L(L

0

)g on any subset fx

1

; : : : ; x

N

g � IR

n

is bounded by (8ed

0

N=k)

k

.

Since there are at most 2

O(v log v)

distinct classes L(L

0

) when L

0

ranges over L, the number of

functions induced by F can be bounded by 2

O(v log v)

(8ed

0

N=k)

k

. It can be shown by elementary

calculations that this number can be larger or equal to 2

N

only if N = O(v log v + k log d

0

).

Heintz and Schnorr [17] gave the bounds s = 6(v

0

+ n)(v

0

+ n + 1) and u = 2v

0

(d+ 1)

2

, where

v

0

counts only the so-called non-scalar operations. Their result holds over any algebraically closed

�eld K of characteristic zero. We can show that Theorem 6 also holds in this case since it is

possible to recover the VC dimension bounds given in [15] for the real case. This follows from a

O((md=k)

2k

) bound on the number of consistent sign assignments for a set of m polynomials of

degree d in k variables (in this context, by \sign assignment", we mean a condition of the form

\P = 0" or \P 6=0"). Indeed, one can write K = R[i] where R is a real closed �eld. A O((md=k)

k

)

bound for R follows from the Warren bound and the Tarski transfer principle. Then the claimed

bound follows by separating the \real" and \imaginary" parts.

We can also prove a result which is even more similar to Heintz & Schnorr's, namely, s = O((v

0

+

n)

2

log v

0

n) and u = 4nd. This follows from the fact that if a polynomial of degree d in n variables

can be evaluated in v

0

non-scalar operations its coe�cients are polynomials of degree d(2v

0

+ 1) in

n+ (v

0

+ n)(v

0

+ n+ 1) indeterminates ([17], originally [18]), and then from Theorem 1.

One advantage of our approach to Theorem 6 is that its relation with Schwarz's probabilistic

testing algorithm is clearly established. That these two results are closely related was already

pointed out in [17], but the nature of this relation remained somewhat mysterious. We have shown

here that the existence of a deterministic testing method is not fortuitous: it follows from a general

\derandomization" principle.

Corollary 3 can also be useful for proving lower bounds on the size of probabilistic circuits,

since it reduces this problem to the (a priori easier) task of proving lower bounds for the size of

deterministic circuits.

Theorem 7 If a function f : IR

n

! IR cannot be computed by a deterministic circuit of size s then

it cannot be computed (in the sense of Theorem 4) by a probabilistic circuit of size C

p

s=n, where

C is a universal constant.

This result is a straightforward consequence of Corollary 3. As Corollary 3, it can be formulated in

the algebraic decision tree model. Lower bounds for probabilistic decision trees were also obtained

by B�urgisser et al. [5]. Their results hold only for the (quite large) class of algebraic probability

measures, whereas Theorem 7 holds for arbitrary probability measures.

Finally, randomization does not help much for parallel computing with circuits.

Theorem 8 If for some l > 0 a family of functions f

n

: IR

n

! IR cannot be computed by a family

of deterministic circuits of polynomial size and O(log

l

(n)) depth, it cannot be computed by a family

of polynomial-size probabilistic circuits of depth O(log

l

(n)) either.

10



Proof. Assume by contradiction that f

n

can be computed by a circuit of size s = n

O(1)

and

depth O(log

l

(n)). The k = O(d) elements g(x; y

1

); : : : ; g(x; y

k

) in the statement of Theorem 4 can

be computed in parallel by a deterministic circuit. Then a majority vote can be taken in depth

O(log k). The resulting circuits are still of polynomial size and O(log

l

(n)) depth since d = O(sn)

as we have seen in Corollary 3.

5 Lower bounds on deterministic samples

It would be most interesting to obtain lower bounds on the size of deterministic circuits simulating

probabilistic circuits. This is often a very di�cult task, to say the least. Here we will be more

modest, and will consider only a very speci�c class of deterministic circuits: those that work exactly

as suggested by theorems 4 and 5, i.e., replace the probabilistic sample by the same \deterministic

sample" for every input. Thus, we are interested in lower bounds on the size of such a deterministic

sample, or results of non-existence of such a sample. In the next theorem we give a result of the

�rst kind and in theorem 10 one of the second kind.

Theorem 9 Let X and Y be two arbitrary sets and let g : X � Y ! f0; 1g be such such that the

family G = fG

x

: Y ! f0; 1g; x 2 Xg de�ned by G

x

(y) = g(x; y) has VC-dimension at least d.

Let S = fY

1

; : : : ; Y

d

g be a shattered set and let P be the uniform distribution on S. Let the \target

function" be f(x) = E

y2P

g(x; y).

� Let us draw k points y

1

; : : : ; y

k

independently from P . For any � > 0, the probability that

j

P

k

i=1

g(x; y

i

)=k � f(x)j � � is smaller than � for any k >

3

�

2

ln

1

�

.

� A \deterministic sample" S

0

= fy

1

; : : : ; y

k

g � S satis�es the property that

j

P

k

i=1

g(x; y

i

)=k � f(x)j < � for every x 2 X if and only if k > d(1� �).

Proof. Part one follows from the Cherno� bounds since they bound the probability that

j

P

k

i=1

g(x; y

i

)=k � f(x)j � � by e

�k�

2

=3

and this value is smaller than � for k >

3

�

2

ln

1

�

.

For part two, the worst case is given by an x such that g(x; y) = 1 if y 2 S

0

and g(x; y) = 0 if

y 2 SnS

0

. In this case j

P

k

i=1

g(x; y

i

)=k� f(x)j = (d�k)=d. This error is smaller than � if and only

if k > d(1 � �). Note that the same argument applies if S

0

is a multiset rather than an ordinary

set.

We now consider a problem involving the cosine function. As shown in [33], one has in�nite

VC dimension in this case. On an input w 2 IR, we wish to estimate the area of the subset E

w

of Y = [0; 1]

2

de�ned by the condition y � (1 + coswx)=2. By e.g. the Cherno� bounds, this can

be done e�ciently by drawing points (x

1

; y

1

); : : : ; (x

k

; y

k

) from the uniform distribution on [0; 1]

2

and counting how many belong to E

w

. On the other hand, we shall see that no �nite deterministic

sample can achieve a worst-case error better than 1/4 when w ranges over IR. Again, this does not

mean that there are no other e�cient ways of determining the area. Indeed, this area is simply

Z

1

0

1 + coswx

2

dx =

1

2

(1 +

sinw

w

):

Our result is based on the following lemma.

11



Lemma 1 For every � > 0, every w

0

> 0 and every �nite set fx

1

; : : : ; x

k

g � IR, there exists

w > w

0

such that coswx

i

> 1� � for every i = 1; : : : ; k.

Proof. Let f(w) = (wx

1

mod 2�; : : :; wx

k

mod 2�), and assume �rst that the x

i

's are rationally

independent. As pointed out in [33], it follows from Theorem 3.2 and Lemma 2.7 in [24] that f(IR)

is dense in [0; 2�]

k

. This implies in particular that for any � > 0, any � < �=2, and any x 2 IR

k

such

that jjxjj < �=2, some f(w) falls in the ball of center x and radius �. Since the set f([�w

0

; w

0

])

is supported by a �nite number of lines, we can choose this ball so that it does not intersect

f([�w

0

; w

0

]). A corresponding w satis�es coswx

i

> 1� � for every i = 1; : : : ; k, and the lemma is

proved since cosine is even.

If the points are not rationally independent, we can assume without loss of generality that

fx

1

; : : : ; x

l

g is a basis of the vector space over 0Q spanned by fx

1

; : : : ; x

k

g. Thus there are rationals

�

ij

such that x

i

=

P

l

j=1

�

ij

x

j

for every i 2 fl + 1; : : : ; kg. Let A be a su�ciently large integer.

By setting y

i

= x

i

=A for i = 1; : : : ; l, one can ensure that x

i

=

P

l

j=1

�

ij

y

j

for every i = 1; : : : ; k,

where �

ij

2 IN. Since y

1

; : : : ; y

l

are rationally independent, one can �nd for every � > 0 some

w 2]�1;�w

0

[ [ ]w

0

;+1[ such that wy

i

mod 2� 2 [0; �[ for i = 1; : : : ; l. Hence wx

i

mod 2� 2 [0; �[

if

P

l

j=1

�

ij

� � � for every i = 1; : : : ; k.

Theorem 10 Let s be the sign function: s(x) = 1 for x � 0, s(x) = 0 otherwise. For any �nite

set f(x

1

; y

1

); : : : ; (x

k

; y

k

)g � [0; 1]

2

,

sup

w2IR

�

�

�

�

�

1

k

k

X

i=1

s

�

1 + coswx

i

2

� y

i

�

�

Z

1

0

1 + coswx

2

dx

�

�

�

�

�

� 1=4:

Proof. According to Lemma 1, for every w

0

> 0 there exist w > w

0

such that

s

�

1+coswx

i

2

� y

i

�

= 1 for every i such that y

i

< 1. Two cases can be distinguished.

� If more than 3=4 of the y

i

's are smaller than 1, then there are \large" values of w for which

the di�erence between the \empirical area" and the true area is at least 1/4. This is because

lim

w!+1

R

1

0

1+coswx

2

dx = 1=2.

� If at least 1=4 of the y

i

's are equal to 1, then the di�erence between the \empirical area" and

the true area converges to 1/4 or more when w ! 0 (w 6=0).

6 Probabilistic complexity classes within PAR

IR

In the rest of this paper we shall deal with the theory of computability and complexity over the

reals introduced in [2]. The ground concepts and notations in what follows are taken from there.

In particular, we denote by IR

1

the direct sum

L

1

1

IR and we de�ne the size jxj of an element

x 2 IR

1

as the largest i such that its ith coordinate x

i

is di�erent from zero. We note that if f0; 1g

�

12



denotes the set of all �nite sequences of elements in f0; 1g there is a natural inclusion of f0; 1g

�

in

IR

1

that we shall freely use.

Borodin [4] has proved that the class of sets PAR recognized in parallel polynomial time coincides

with PSPACE. In the real model the role of PSPACE is then taken over by PAR

IR

since after a result

of Michaux (cf.[26]) all recursive sets can be recognized with constant work space and consequently,

space is not a meaningful resource in the real model. A formal de�nition of PAR

IR

can be found in

[8].

In [11] the subclass DNP

IR

of NP

IR

is de�ned by requiring the guesses to belong to the set f0; 1g.

Based on this class of digital non-deterministic polynomial time one can construct a polynomial

time hierarchy as in the Boolean case, and likewise real probabilistic polynomial time classes can

be de�ned.

De�nition 6 We shall consider the classes �

k;IR

, �

k;IR

, ZPP

IR

, R

IR

, BPP

IR

and PP

IR

that are all

de�ned upon DNP

IR

by just mimicking their de�nitions in the Boolean case (see chapters 6 and 8

of [1]). Moreover, if C is any one of these classes then C

=

IR

denote the corresponding class de�ned

by equational machines. In the Boolean case the class R is also denoted by RP.

Remark 3 In order to de�ne real probabilistic complexity classes the real model should be

equipped with the ability of picking random elements from IR, and an issue is the question of

which sort of probability measure �ts into the BSS model. For the probabilistic classes above con-

sidered we have chosen a �nite distribution since each randomly chosen element belongs to f0; 1g

with equal probability. This choice has the advantage of its simplicity and it is not far from appli-

cations since in the majority of numerical problems where randomization helps it su�ces to pick

the random elements from a bounded interval of integers.

Some basic properties of the above considered complexity classes follow again in the same

manner as in the Boolean case (see Chapters 6 and 8 of [1]). We state them without proof in the

following proposition. Recall before from [11] that the set

BSCP = fB j 9b 2 f0; 1g

n

that satis�es the decision circuit Bg

is DNP

IR

-complete with decision circuit as de�ned in Section 3.

Proposition 1

i) ZPP

IR

� R

IR

� DNP

IR

� PP

IR

� PAR

IR

.

ii) ZPP

IR

;BPP

IR

;PP

IR

are closed under complementation, closed under polynomial time reduc-

tions, and the sets

#BSCP = f(B; i) j s.t. the decision circuit B has more

than i satisfying binary assignmentsg

and

CMAJ = fB j s.t. B is satis�ed by more than one half

of all possible binary assignmentsg

are PP

IR

-complete under polynomial time reductions.

13



iii) BPP

IR

� �

2;IR

\ �

2;IR

.

iv) The above statements also hold for the corresponding equational classes, reductions by equa-

tional polynomial time machines and equational decision circuits.

A �rst di�erence with the discrete setting is that for the standard case (machines that branch

on order conditions) randomization with bounded probability error does not help.

Theorem 11 The equality P

IR

= BPP

IR

holds.

Proof. Let M be a probabilistic machine accepting a set S in polynomial time and with

bounded probability error. According to the proof of Corollary 3, for every input size n there are

a polynomial number of bits that can act as a deterministic sample for all inputs of size n with

respect to the behaviour of M . We consider the real number � whose binary expansion encodes

the sequence of all these deterministic samples. A deterministic machine

~

M having � as a built-in

constant can then be designed running in polynomial time and accepting the set S.

Remark 4 Note that the equality above is essentially theoretical in the sense that it does not

provide a constructive way for designing

~

M . In fact, for some problems, the best deterministic

algorithm known up to date (without using non-constructive real constants) takes exponential time

while a probabilistic polynomial time solution is possible. This is the case for instance for the

problem of deciding whether a given straight-line program computes the zero function.

On the other hand, there are sets for which coin ipping can help (see [5]).

7 On Boolean parts of subclasses of PAR

=

IR

One research direction that has been worked out intensively during the last few years is the study

of the computational power of real Turing machines over binary inputs. The general problem can

be roughly stated in the following way. Let us consider a class C of real Turing machines that work

under some resource bound (for instance polynomial time, branching only on equality, etc.). If we

restrict these machines to work on binary inputs (i.e. �nite words over f0; 1g) they de�ne a class

of binary languages D. The question is, what can we say about D depending on C?

More formally, let us consider the subset f0; 1g

�

of IR

1

consisting of those vectors whose com-

ponents belong to f0; 1g. Given any complexity class C � P(IR

1

) (the set of parts of IR

1

), we

de�ne its Boolean part to be the class of binary languages

BP(C) = fX \ f0; 1g

�

: X 2 Cg

Our problem now can be stated as: given a complexity class of real sets C characterize BP(C).

A possible origin of the problem is the recent interest in the computational power of neural

networks. The �rst results characterized the power of nets with rational weights working within

polynomial time by showing that they recognize exactly the sets in P (cf. [31]). The same problem

14



was then considered for neural networks with real weights and it was shown that they recognize in

polynomial time exactly the sets in P/poly (cf. [32] and [23]).

It is important to notice that this latter problem deals in a natural way with a framework in

which an algebraic model having real constants operates over binary inputs. Other references where

this setting is also considered are the papers by Gashkov [14] and by Tur�an and Vatan [35]. Here

the authors consider analog circuits that compute Boolean functions and they focus on lower and

upper bounds for the size of those circuits with respect to some Boolean functions. Quoting the

latter paper, \It appears that analog circuits form a natural model of computation, and studying

the complexity of Boolean functions in this framework may, among other things, contribute to the

understanding of the relation between the discrete and continuous aspects of computations".

A further step was taken in [21] which passed from a structured model |the neural net| to

a general one |the real Turing machine. However, that paper did not deal with the real Turing

machine as introduced in [2] but with a restricted version of it that can do only a moderate use

of multiplication namely, all rational functions intermediately computed (in the input variables as

well as in the machine's constants) must have degree and coe�cient size bounded by the running

time. It was shown that BP(P

W

) = P/poly, where P

W

is the class of sets accepted in polynomial

time in this weak model.

Subsequently, several papers exhibited new results on Boolean parts. In [12] it was shown

that BP(PAR

W

) = PSPACE/poly where PAR

W

is the class of subsets of IR

1

recognized in weak

parallel polynomial time. Also, for additive machines (i.e. real Turing machines that do not perform

multiplications at all), it was shown in [22] that BP(P

add

) = P/poly and that BP(NP

add

) = NP/poly.

Here P

add

and NP

add

denote the obvious classes but we recall that the nondeterministic guesses in

this model are real numbers. Moreover, if the machines are order-free, i.e. they are required to

branch only on equality tests, we now have that BP(P

=

add

) = P and that BP(NP

=

add

) = NP ([22]).

These results were subsequently generalized in [9] to all the levels of the polynomial hierarchy

constructed upon NP

add

(or NP

=

add

) as well as to the class PAR

add

(or PAR

=

add

) of sets computed

in parallel polynomial time. The Boolean part of the latter are proven there to be PSPACE/poly

(respectively PSPACE). Finally, in [10] it was shown that the Boolean part of PAR

IR

(the class

of sets computed in parallel polynomial time with no restrictions on the use of multiplication) is

PSPACE/poly.

One notes that, in the results quoted above, a clear distinction appears depending on whether

the real Turing machines are allowed to branch on inequalities or only on equalities. In the former

case, the ability of the machine to code a polynomial advice in a single real number gives to the

real Turing machine a computational power proper of non-uniform models. On the contrary, in

the latter, the use of an analog model does not yield non-uniformity when restricted to binary

inputs. As a matter of fact, the study of the equational case has mostly been done for additive

machines and in this case, the Boolean part of a class C

=

add

is the Boolean class C (here C can be P,

NP, EXP, or any level in the polynomial hierarchy). The only previous results on machines with

multiplication can be found in [21], where it is shown that BP(P

=

W

) = P and BP(P

=

IR

) � BPP.

The aim of this section is to compute the computational power of real Turing machines (that

can freely use multiplication) branching on equalities. Again, the Boolean parts computed will

be uniform complexity classes but the extra power of the multiplication in the analog model will
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appear under the form of an oracle in R (the class of one-side error probabilistic polynomial time).

We begin with an easy lemma taken from [21] that will be helpful in the sequel.

Lemma 2 For every equational real Turing machine M with time bound p : IN! IN

+

there exists

a constant c > 0 and an equational real Turing machine M

0

such that

1. the machine constants �

1

; : : : ; �

k

;  of M

0

are such that �

1

; : : : ; �

k

are algebraically indepen-

dent over ZZ

2. M

0

does not perform divisions,

3. M

0

has running time bounded by c � p,

4. the accepted languages in IR

1

of M and M

0

coincide.

Proof. Let �

1

; : : : ; �

p

be the machine constants of M . If k is the trascendence degree of 0Q(�)

over 0Q we can �nd elements �

1

; : : : ; �

k

;  s.t. �

1

; : : : ; �

k

is a transcendence basis of 0Q(�) over 0Q

and 0Q(�) = 0Q(�)[]. Moreover, we can choose �

1

; : : : ; �

k

to be any k algebraically independent

elements among the �'s and the remaining �'s can be written as rational functions on �

1

; : : : ; �

k

; .

Therefore, calculation of �'s from the �'s and  can be done in constant time and one may

assume the machine constants to be the �'s and .

Finally, representing elements r 2 0Q(�) by pairs (s; t) 2 ZZ[�]

2

such that t 6= 0 and r = s=t,

division can be avoided within a constant factor as well.

We can now state the main theorem of this section.

Theorem 12 Let C denote any complexity class appearing in De�nition 6. Then

BP(C

=

IR

) � C

R

:

One also has the BP(PAR

=

IR

) = PSPACE

R

.

For the classes C closed under R-oracles, i.e. satisfying C

R

= C, we get \stability" under Boolean

parts.

Corollary 6 The classes BPP, PP, PH, and PAR satisfy

BP(BPP

=

IR

) = BPP; BP(PP

=

IR

) = PP;

BP(PH

=

IR

) = PH; BP(PAR

=

IR

) = PAR = PSPACE:

Proof. This immediately follows from the well known fact that the above classes are closed

under R-oracles.
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Corollary 7 For the levels of the polynomial hierarchy the following inclusions hold:

BP(�

=

k;IR

) � �

k+1

;

BP(�

=

k;IR

) � �

k+1

;

BP(�

=

k;IR

) � �

k+1

:

Proof. The inclusions are consequences of the fact that R � �

1

= NP. Therefore, we use the

fact that, by de�nition �

NP

k

= �

k+1

, �

NP

k

= �

k+1

, and �

NP

k

= �

k+1

.

We can now return to the proof of Theorem 12.

Let k � 1 be �xed. Consider the language ZSLP

k

� f0; 1g

1

of (suitable encodings of)

f0; 1;+;�; �g-straight-line programs with k inputs and last result equal to the zero polynomial

when executed on input (X

1

; : : : ; X

k

) 2 ZZ[X ]

k

. Using the modular techniques from [30], Ibarra

and Moran [19] have located it in co� R.

Proposition 2 [19] For all k � 1, ZSLP

k

2 co� R:

Proof of Theorem 12. Let C one of these classes, M an equational real Turing machine (that

can be nondeterministic, probabilistic, parallel, etc) with respective resource bounds recognizing a

language L in C

=

IR

. By Lemma 2, M can be assumed to have machine constants �

1

; : : : ; �

k

;  the

�rst k of them being algebraically independent over ZZ. We describe now a classical oracle machine

~

M (that, as M can be nondeterministic, probabilistic, parallel, etc) accepting the Boolean part of

L. The (�nite) \program text" of M is coded into the program of

~

M which behaves as follows:

given an input x

1

; : : : ; x

n

2 f0; 1g

n

,

~

M writes down the straight-line program S

1

with k+ 1 \input

variables" �

1

; : : : ; �

k

;  corresponding to a run of M up to the �rst zero test. Note that we can

work modulo the minimal polynomial of  to keep the degree in  of the resulting polynomial

bounded by a constant. Moreover, in this case, the resulting polynomial is zero if and only if all its

coe�cients are the zero polynomial in ZZ[�

1

; : : : ; �

k

]. Therefore, to decide the outcome of this test,

~

M queries the oracle ZSLP

k

. Then

~

M extends S

1

to the straight-line program S

2

corresponding to

a run ofM up to the second zero test and continues this simulation accordingly until M halts. The

machine generates polynomially (in n) many straight-line programs, all of them being of length

polynomially (in n). Clearly,

~

M recognizes L \ f0; 1g

�

.
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