
Randomized E�cient Algorithms for

Compressed Strings:

the Finger-Print Approach

(Extended Abstract)

Leszek G�asieniec

1 ?

Marek Karpinski

2 ??

Wojciech Plandowski

3 ???

Wojciech Rytter

3 y

1

Max-Planck Institut f�ur Informatik, Im Stadtwald, Saarbr�ucken D-66123, Germany.

2

Dept. of Computer Science, University of Bonn, D-53117, Bonn, Germany.

3

Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02{097 Warszawa,

Poland.

Abstract. Denote by LZ(w) the coded form of a string w produced by

Lempel-Ziv encoding algorithm. We consider several classical algo-

rithmic problems for texts in the compressed setting. The �rst of them is

the equality-testing: given LZ(w) and integers i; j; k test the equality:

w[i : : : i+ k] = w[j : : : j+k]. We give a simple and e�cient randomized

algorithm for this problem using the �nger-printing idea. The equality

testing is reduced to the equivalence of certain context-free grammars

generating single strings. The equality-testing is the bottleneck in other

algorithms for compressed texts. We relate the time complexity of several

classical problems for texts to the complexity Eq(n) of equality-testing.

Assume n = jLZ(T )j, m = jLZ(P )j and U = jT j. Then we can compute

the compressed representations of the sets of occurrences of P in

T , periods of T , palindromes of T , and squares of T respectively

in times O(n log

2

U � Eq(m) + n

2

log U), O(n log

2

U � Eq(n) + n

2

log U),

O(n log

2

U �Eq(n)+n

2

log U) and O(n

2

log

3

U �Eq(n)+n

3

log

2

U), where

Eq(n) = O(n log log n). The randomization improves considerably upon

the known deterministic algorithms ([7] and [8]).

1 Introduction

In the algorithmics of textual problems only recently the problems related to

compressed objects were investigated ([1], [2], [3] and [8]). A very natural way

?

On leave from Institute of Informatics, Warsaw University, ul. Banacha 2, 02{

097, Warszawa, Poland. WWW: http://zaa.mimuw.edu.pl/�lechu/lechu.html,

Email:leszek@mpi-sb.mpg.de

??

This research was partially supported by the DFG Grant KA 673/4-1, and by the

ESPRIT BR Grant 7097 and the ECUS 030. Email:marek@cs.uni-bonn.de

???

Supported partially by the grant KBN 8T11C01208. Email:wojtekpl@mimuw.edu.pl

y

Supported partially by the grant KBN 8T11C01208. Email:rytter@mimuw.edu.pl



and practical method of the text compression is the LZ-compression (see [12]).

In this paper we consider several problems for LZ-compressed strings: pattern

matching and computation of all periods,palindromes and squares of a given

compressed string (without decompression). The �rst considered problem is the

Fully Compressed Matching Problem:

Instance: a compressed pattern LZ(P ) and a compressed text LZ(T )

Question: does pattern P occur in text T? If \yes" then report the �rst

occurrence, the exact number of all occurrences and a compressed set of

all occurrences.

The size of the problem is n+m, where n = jLZ(T )j and m = jLZ(P )j. Denote

U = jT j. Assume for simplicity that m � n, and jP j � jT j then n determines

the size of the compressed problem and U corresponds to the total size of the

uncompressed problem. Note that in general U and the size of the set S =

Occ(P; T ) of all occurrences of P in T can be exponential with respect to n.

Thus the algorithm which decompresses the pattern P and the text T could

work in exponential time. Moreover by computing S we mean constructing its

compressed representation, i.e. a data structure which size jSj is known and

the �rst element of S is given explicitly. In case of pattern matching membership

queries in the set S can be answered in time O(n), and in case of palindromes

and squares in time O(n log logU ).

The key concepts in our algorithms are �nger-printing, periodicity and linearly-

succinct representations of exponentially many periods.

Due to space limitations we omit several technical proofs.

2 The Lempel-Ziv compression and LZ-factorization.

We consider the same version of the LZ compression algorithm as one used

in [5] (where it is called LZ1). Intuitively, LZ algorithm compresses the input

word because it is able to discover some repeated subwords. We consider here

the version of LZ algorithm without self-referencing but our algorithms can be

extended to the general self-referential case. Assume that � is an underlying

alphabet and let w be a string over �. The factorization of w is given by a

decomposition: w = c

1

f

1

c

2

: : : f

k

c

k+1

, where c

1

= w[1] and for each 1 � i �

k, c

i

2 � and f

i

is the longest pre�x of f

i

c

i+1

: : : f

k

c

k+1

which appears in

c

1

f

1

c

2

: : : f

i�1

c

i

. We can identify each f

i

with an interval [p; q], such that f

i

=

w[p : : : q] and q � jc

1

f

1

c

2

: : : f

i�1

c

i

j. If we drop the assumption related to the

last inequality then it occurs a self-referencing (f

i

is the longest pre�x which

appears before but not necessarily terminates at a current position). We assume

that this is not the case.

Example. The factorization of a word aababbabbaababbabba# is given by:

c

1

f

1

c

2

f

2

c

3

f

3

c

4

f

4

c

5

= a a b ab b abb a ababbabba #.

After identifying each subword f

i

with its corresponding interval we obtain the

following LZ encoding of the string:

LZ(aababbabbababbabb#) = a[1; 1]b[1; 2]b[4; 6]a[2; 10]#.



First we make the following modi�cation of the LZ encoding, which allows

to move all terminal symbols to the beginning of the code. The encoding starts

from all terminal symbols from the word. The symbols are assumed to stay at

positions �1;�2 : : : of the word. Then each reference to a terminal symbol is

replaced by an interval inside those positions. After this modi�cation the LZ-

code of the word in the Example is

ab[�2;�2][1; 1][�1;�1][1;2][�1;�1][4; 6][�2;�2][2; 10]#:

The Lempel-Ziv code de�nes a natural factorization of the encoded word into

subwords which correspond to intervals in the code. The subwords are called

factors. We deal later (to the end of the paper) with LZ-factorization:

w = f

1

f

2

f

3

: : : f

k

.

The LZ-factorization of w is of size k = jLZ(w)j. The last positions of factors

are called active points and are denoted by a

i

, hence a

i

=

P

i

j=1

jf

j

j and

f

i

= w[a

i�1

+ 1 : : :a

i

]. We assume that together with the LZ-factorization we

have the sequence of intervals [l

i

: : : r

i

] such that r

i

� a

i�1

and f

i

= w[l

i

: : : r

i

],

if a

i

> 0.

In other words for each nontrivial factor f

i

we know its occurrence [l

i

: : : r

i

]

in the text preceding this factor.

finger

active point

f f f f f f
a a aa a1
1

2
2

3
3

4
4

5
5

6 a6

l 6 r6

occurrence of f6

* *

Fig. 1. A LZ-factorization of some string, the symbols '*' in the string corre-

spond to (some) �ngers. For example, r

6

is a �nger since r

6

= Pred(a

6

).

Unfortunately the consideration of active points only is not su�cient. We have

to introduce additional points, called �ngers, which appear in the previous oc-

currences of factors f

i

(see Figure 1).

Assume that the position b in the word w is in the factor f

i

. Denote by

Pred[b] the position b + r

i

� a

i

in w. The function Pred (predecessor) de�nes

a partial order "to be a predecessor" on positions in w. We de�ne the set of

�ngers as a minimal set F of positions such that both ends of each factor are

�ngers and the predecessor of any �nger is a �nger. The number of all �ngers

is O(jLZ(w)j

2

) since for each position in w there is at most one predecessor of

this position in each factor of w. This means also that in each factor there are



O(jLZ(w)j) �ngers. The �rst phase of our algorithms is a preprocessing which

essentially consists of computing all �ngers.

Lemma1. We can compute the set F of all �ngers in O(jLZ(w)j

2

) time.

Assume later that the set F of all �ngers is precomputed.

3 Compressed representation of sets and general

structure of their computation

The concept of periodicity appears in many advanced string algorithms, it is

naturally related to LZ compression, since the high compression ratio is achieved

when there are many repetitions in the text and repetitions are closely related

to the periodicity.

Denote Periods(w) = fp : p is a period of wg. A set of integers forming an

arithmetic progression is called here linear. We say that a set of positive integers

from [1 : : :U ] is linearly-succinct i� it can be decomposed in at most blog

2

(U )c+1

linear sets. The following lemma was shown in [8].

Lemma2 linearly-succinct sets lemma.

The set Periods(w) is linearly-succinct.

The lemma below shows that there are strings w

i

which are \well compressible"

but the sets of occurrences of a given pattern P in w

i

are not well representable

as families of linear sets.

Lemma3. There is a sequence of words w

i

such that jLZ(w

i

)j = O(log(jw

i

j)),

and the sets of occurrences of a single letter in w

i

are not representable as a

union of polynomially many (with respect to jLZ(w

i

)j) linear sets.

Proof. Consider the sequence of words fw

i

g

i�0

de�ned by the following recur-

rences:

w

0

= a w

i

= w

i�1

b

jw

i�1

j

w

i�1

for i � 1:

Let S

i

be the set of positions of occurrences of the letter a in the word w

i

.

Clearly, jS

i

j = 2

i

. It can be shown that there is no sequence in S

i

of length

3 which forms an arithmetic progression. Thus each decomposition of the set

S

i

into arithmetic sequences contains at least jS

i

j=2 = 2

i�1

sequences and the

set S

i

is not linearly-succinct. However all the words w

i

are \well compressible"

since jLZ(w

i

)j � 4i+ 1 and jw

i

j = 3

i

. ut

Due to Lemma 3 the set of occurrences of a pattern even in a highly com-

pressed text is not necessarily linearly-succinct, so we have to introduce com-

pressed representations which have more general meaning (but each linearly-

succinct set has such compressed representation). Essentially our compressed

representations consist of O(n) linear sets, for example the representation for

the set Occ(P; T ) of occurrences of the pattern P in T consists (explicitly) only

of sets of occurrences which overlap active points. Despite the fact that the union

of these sets is not necessarily the set Occ(P; T ) of all occurrences, it provides



enough information about Occ(P; T ). By an interval-occurrence of a subword x

we mean any interval [i : : : j] such that w[i : : :j] = x. We say that a subword x

covers a position r in w i� there is its interval-occurrence containing r. The data

structures used in our algorithms consist of some sets of subwords of w which

cover active points ofw. The sets of subwords are represented by linearly-succinct

sets and an additional constant-size information. Restriction to subwords which

cover active points is justi�ed by the following fact.

Fact 4 If x is a subword of w then there is an occurrence of x in w which covers

an active point.

Our data structure D for the occurrences of a pattern, of palindromes or

squares in a given string consists of a collection of sets LeftSet(i), RightSet(i)

for each factor f

i

. The sets represent certain subwords (related to patterns,

palindromes or squares) which cover points a

i�1

+ 1 and a

i

, respectively. The

sets can be represented in O(logU ) space and their de�nitions di�er according to

the problem. The data structures allow to compute the number of all occurrences

of the pattern, of palindromes or of squares in O(n

2

) time.

We start with a more exact description of the data structure for the pattern-

matching problem. Denote by D

pat

the representation of the set of occurrences

of the pattern as a collection

D

pat

= f D

pat

(i) : 1 � i � k g,

where D

pat

(i) is the set of occurrences (starting positions) of the pattern covering

the i-th active point and k is the number of factors. Hence in this case we have

LeftSet(i) = ; and RightSet(i) = D

pat

(i).

Lemma5.

(1) Each set D

pat

(i) consists of a single arithmetic progression.

(2) Assume we know the set D

pat

(t) for each factor f

t

. Then for a given interval

[i : : : j] we can check all occurrences of the pattern within this interval in time

O(n).

The data structure D

pal

for palindromes consists of the sets of centers and radii

of palindromes which cover active points. Then the set Leftset(i), denoted by

LeftPal(i), contains all palindromes whose centers are inside f

i

and which cover

the left end of f

i

, similarly RightSet(i), denoted by RightPal(i), corresponds

to palindromes which cover the right end of f

i

.

Lemma6.

(1) The sets LeftPal(i) and RightPal(i) can be represented in O(logU ) space.

(2) Assume we know the data structure D

pal

. Then for a given interval [i : : : j] we

can test for the existence of a palindrome within this interval in time O(n logU ).

Similarly our data structure D

square

for squares consists of the sets of centers

of the words ww which cover active points. Then the set LeftSet(i), denoted

by LeftSq(i), contains all centers of words ww which cover left end of f

i

and

are inside f

i

. The set RightSet(i), denoted by RightSq(i), contains all centers

of words ww which are inside f

i

and cover the right end of f

i

.



Lemma7.

(1) The sets LeftSq(i) and RightSq(i) can be represented in O(logU ) space.

(2) Assume we know the data structure D

square

. Then for a given interval [i : : : j]

we can test for the existence of a square within this interval in time O(n logU ).

Let D denote the compressed set D

pat

or D

pal

. The computation of D consists of

k iterations, where k is the total number of factors f

i

. During the ith iteration the

information related to �ngers in the ith active set ACTIV E(i) is computed.

Set ACTIV E(i) consists of all �ngers which are in f

i

or which are relevant with

respect to further computation, this means they are predecessors of �ngers in

factors to the right of f

i

, more formally:

ACTIV E(i) = f b 2 F : b 2 f

i

or RightMost(b) > ig, where

RightMost(b) = maxfj : ( b = Pred(b

0

) and b

0

2 f

j

and b

0

2 F , j > i ) or j = 0g

Lemma8. jACTIV E(i)j = O(n), and all sets ACTIV E(i) can be computed

in O(n

2

) time.

In the algorithms for each �nger b we compute a certain set of subwords, de-

noted by Info(b), which satis�es the following property: if b is not an end-

point of a factor, then all words in Info(b) are inside the word f

1

: : : f

i

, where

i = RightMost(b).

The algorithms compute also the sets Info(b; k) corresponding to all subwords

in Info(b) which are inside f

1

: : : f

k

. We compute the sets Info(b; i) for consecutive

is from 1 to n. Also LeftSet(i) and RightSet(i � 1) are computed. Note that if

a �nger b is not active then the last computed set Info(b; i) equals Info(b).

ALGORITHM Scheme of Algorithms ;

fcomputation of compressed representation Dg;

for i := 1 to n do

for each �nger b 2 ACTIV E(i) do compute Info(b; i)

for i := 1 to n do

compute RightSet(i � 1), LeftSet(i)

on the basis of Info(a

i�1

), Info(a

i�1

+ 1)

4 The Randomized Equality-Test Algorithm

Our auxiliary problem is the Compressed Equality Testing problem:

Instance: a compressed text LZ(w) and integers i; j; i

0

; j

0

Question: does w[i::j] = w[i

0

::j

0

] ? If \no" then �nd the �rst mismatch.

Assume for simplicity that the alphabet is binary, de�ne the following one-to-one

function val from the set of all strings to the set of 2� 2 matrices as follows:

val(0) =

�

1 0

1 1

�

val(1) =

�

1 1

0 1

�

and

val(a

1

a

2

: : :a

k

) = val(a

1

) � val(a

2

) : : : � val(a

k

).



For a string x = a

1

a

2

: : :a

k

de�ne

FingerPrint

p

(x) = val(x) mod p ,

where val(x) mod p is the matrix val(x) with all components taken modulo p.

Lemma9. Let p be a random prime number from the interval [U : : :U

q

] and let

w1 and w2 be two distinct strings of length at most U . Then

Probabilityf FingerPrint

p

(w1) = FingerPrint

p

(w2) g � 1=U

q�1

We say that the probability is very small i� it does not exceed 1=U

2

. We shall

use twice the following simple property of parse trees in context-free grammars.

Lemma10 concatenation lemma.

Assume we have a context-free grammar G in Chomsky's normal form and T

is a parse tree for a string w. Then each subword of w can be generated from a

concatenation of O(height(T )) nonterminals.

Theorem11 randomized equality testing.

Assume a string w given in LZ-compressed form, then we can preprocess w in

O(n

2

logn) time in such a way that each equality query about w can be answered

in O(n � log logn) time with a very small probability of error.

Proof. In [8, 11] the compressed strings were considered in terms of context-free

grammars (grammars, in short) generating single words. We can prove:

Claim. Let n = jLZ(w)j. Then we can construct a context-free grammar G of

size O(n

2

logn) which generates w and which is in the Chomsky normal form.

Moreover the height of the derivation tree ofw with respect toG isO(n�log logn).

Proof. (of the claim) The �ngers partition the string w into consecutive subwords

sub

1

; sub

2

; : : : sub

p

, where p = O(n

2

). We associate a nonterminal A

i

with each

subword sub

i

, this nonterminal generates sub

i

in the constructed grammar. First

we construct the grammarG

0

, its starting nonterminal is a special nonterminal S

with the production S ! A

1

A

2

: : :A

p

. For each nonterminalA

i

we have the pro-

duction A

i

! A

j

A

j+1

: : :A

r

, where sub

i

= sub

j

sub

j+1

: : : sub

r

. Such subwords

exist due to properties of �ngers. The constructed grammar G

0

has O(n

2

) non-

terminals, but its total size can be cubic since the right sides of productions can

be too long. We introduce O(n

2

) new nonterminals and build an almost complete

regular binary tree T

0

generating A

1

A

2

: : :A

p

. We have height(T

0

) = O(logn).

Due to Lemma 10 we can replace each right side of a production in G

0

by a con-

catenation of O(logn) nonterminals. After that the right sides are of logarithmic

size. And now the height of derivation trees is O(n) since the productions corre-

spond to operations Pred, and after linear number of applications of Preds we

are at the beginning of the string. However the grammar is not in Chomsky's

normal form. We replace each right side by a special small derivation subtree of

height O(log logn). Then we obtain the grammar G. This completes the proof

of the claim. ut

Let G be the grammar from the claim, for each nonterminal A we com-

pute FingerPrint

p

(A) = FingerPrint

p

(w

A

), where w

A

is the string generated



from A. The computation is done bottom-up using a kind of dynamic program-

ming. Due to Lemma 10 each subword w

0

of w is generated from a concatenation

A

j

A

j+1

: : :A

r

of at most O(n log logn) nonterminals. The �nger-print of w

0

can

be computed as follows:

FingerPrint

p

(w

0

) =

= FingerPrint

p

(A

j

) �FingerPrint

p

(A

j+1

) : : : F ingerPrint

p

(A

r

)

For each two subwords we can compute and compare their �nger-prints in

O(n log logn) time. The probability of error is very small due to lemma 9. ut

5 Computation of D

pat

, D

pal

and D

square

First we describe how to apply the Compressed Equality Testing in pattern

matching algorithm. Let j be any position in the text T . De�ne Pre(j; T ) to

be the lengths of subwords of T that end at position j in T and that are pre�xes

of the pattern P . Similarly, denote by Suf (j; T ) the lengths of subwords of T

that begin at position j in T and that are su�xes of P . Formally:

Pre(j; T ) = f1 � i � j : T [j � i + 1 : : : j] is a pre�x of Pg.

Suf (j; T ) = f1 � i � U � j + 1 : T [j : : : j + i� 1] is a su�x of Pg.

Denote Prefs(b; i) = Pre(b; f

1

: : : f

i

), Su�s(b; i) = Suf (b; f

1

: : : f

i

). Let k be

the biggest number in Prefs(j; i), thus all other numbers in Prefs(j; i) are of the

form k � p

0

where p

0

is a period of P [1 : : :k]. Hence Lemma 2 implies directly

the following fact.

Lemma12. The sets Su�s(b; i) and Prefs(b; i) are linearly-succinct.

We are now able to give a sketch of the whole structure of the pattern matching

algorithm. In the algorithm for each �nger b we compute the sets Prefs(b; i) and

Su�s (b; i), where i = Rightmost[b]. Hence in the case of pattern matching we

have Info(b; i) = Su�s(b; i) [Prefs(b; i). Using the information about Prefs(b; i)

and Su�s(b; i) we can test for the pattern occurrence and compute number of

occurrences by solving certain linear diofantine equations (see [9]) related to

arithmetic progressions representing local occurrences.

Now we show how in the ith iteration the sets Su�s(b; i) for active �ngers b are

computed. The sets Prefs(b; i) are computed similarly. The set Su�s(a

i�1

+1; i)

is properly computed on the basis of Su�s(Pred[a

i�1

+ 1]; i � 1). During the

ith iteration, for each arithmetic sequence in Su�s (a

i�1

+ 1; i), we compute the

set of maximal pattern su�xes which end at the positions of the sequence.

As it is proved in [8] such a set can be represented in constant space and it is

enough to compute such su�xes only for three positions in the sequence. Given

a position i in w the length of the maximal pattern su�x which ends at i in

w can be computed by binary search, using log jwj times the equality test

procedure. Then the sets Su�s(b; i) are computed for active �ngers b. For each

active �nger (note that each �nger inside f

i

is active) in position b > a

i�1

we put

to Su�s(b; i), the su�xes from Su�s (Pred[b]; i�1) which are shorter than a

i

�b,

and for active �ngers b � a

i�1

the parts of sequences from Su�s(a

i�1

+ 1; i),

for which the maximal su�xes extend over b. Similarly we compute the sets



Prefs(b; i). The time complexity is dominated by computing maximal pre�xes

and the sets Prefs(b; i), Su�s(b; i). Computing one maximal pre�x is done in

O(Eq(m) logU ) time where m = jLZ(P )j. There are totally at most 2n logU

maximal pre�xes and su�xes to compute. This gives the total time complex-

ity O((n log

2

U )Eq(m)) for computing maximal pre�xes and su�xes. Given the

maximal pre�xes and su�xes all sets Prefs(b; i) and Su�s(b; i) can be computed

in O(n

2

logU ) time.

Theorem13.

The compressed representation D

pat

of the set of occurrences of a given pattern

can be computed in O((n log

2

U )Eq(m) + n

2

logU ) time with a small probability

of error.

As a side e�ect of our pattern-matching algorithm we can compute the set

of all periods (use our string-matching algorithm with P = T ).

Theorem14. Assume P is a compressed pattern. Then we can compute in

O((n logU )Eq(m)) time the compressed representation of the set Periods(P ).

The representation consists (in this case) of logU number of linear sets.

Our algorithms for compressed palindromes and squares use ideas which

apeared in [4]: palindromes are searched using periodicities implied by se-

quences of many palindromes which are close to each other and searching of

squares is reduced to multiple application of pattern-matching.

First we consider a data structure for palindromes, consider only even length

palindromes (the algorithms for odd length palindromes are quite similar). Let

w[i : : : j] be a subword of w which is a palindrome. This palindrome is centered

in position (i+j)=2 in w and its radius is (j�i)=2. Let Rad[1 : : : jwj] be an array

of radii of palindromes, this means that the entry Rad[i] contains the maximal

radius of a palindrome centered in i. The array Rad is a representation of all

even length palindromes inside a word. Indeed, w[i : : : j] is an even palindrome

i� (i + j) is odd and Rad[(i + j � 1)=2] > (j � i � 1)=2. D

pal

is a compressed

representation of the array Rad.

A palindrome which is a pre�x (su�x) of a word is called initial (�nal) palin-

drome. Denote by InitPal(w; i) (FinPal(w; i)) the set of initial palindromes in

w[i+ 1 : : : jwj] (�nal palindromes in w[1 : : : i]).

Lemma15.

The sets InitPal(w; i) and FinPal(w; i) are linearly-succinct.

D

pal

consists of sequences of numbers which are assigned to factors of the text

T . With a factor f

i

the sets RightPal(i) and LeftPal(i) are assigned. The sets

are represented by arithmetic sequences of positions of centers of palindromes

and each arithmetic sequence is equipped with the values of Rad for the �rst,

last and a certain other element of the sequence. By Lemma 15 sets RightPal(i)

and LeftPal(i) can be represented in O(logU ) space. The basic component in

the algorithm is the equality-testing.



Theorem16. The compressed representation D

pal

of all palindromes in the

compressed text can be computed in O((n log

2

U )Eq(n) + n

2

logU ) time with

a small probability of error.

An analogous theorem for squares looks as follows.

Theorem17. The compressed representation D

square

of the set of all squares

in the compressed text can be computed in O((n

2

log

3

U )Eq(n)+n

3

log

2

U )) time

with small probability of error.

Proof. (sketch) We concentrate on the set of squares in LeftSq(i) for a factor f

i

.

The set RightSq(i) can be considered similarly. Consider a square s which is in

LeftSq(i), its larger part is in B = T [1 : : :a

i�1

], and its size is between 2

k

and

2

k+1

. The squares whose larger part is in C = T [a

i�1

+1 : : :U ] can be processed

in the same way.

Similarly as in [4] we consider the sample v of size 2

k�1

which is a su�x of B.

Then s = uvw, for some u and w. An occurrence of the sample v is found in C by

applying the pattern-matching algorithm. The size of s is the distance between

two occurrences. The parts u; w are found by �nding the �rst mismatch with

respect to certain parts of the text, we omit the details. The equality-test is

applied. In this way we �nd a single occurrence of a square in LeftSq(i). ut

6 Concluding remarks

We have shown that randomization helps in sequential computations for com-

pressed texts. We are unable to construct deterministic NC algorithms for the

main problems related to compressed texts. Does randomization helps in parallel

computations too? We pose the following two open questions. Does there exist

an RNC-algorithm for the fully compressed pattern matching? Are the follow-

ing three problems P-complete: compressed equality, compressed palindrome and

compressed square-free testing?

References

1. A.Amir, G. Benson and M. Farach, Let sleeping �les lie: pattern-matching in Z-

compressed �les, in SODA'94.

2. A.Amir, G. Benson, E�cient two dimensional compressed matching, Proc. of the

2nd IEEE Data Compression Conference 279-288 (1992)

3. A.Amir, G. Benson and M. Farach, Optimal two-dimensional compressed matching,

in ICALP'94

4. A. Apostolico, D. Breslauer, Z. Galil, Optimal parallel algorithms for periods,

palindromes and squares, in ICALP'92, 296-307

5. M. Farach and M. Thorup, String matching in Lempel-Ziv compressed strings, in

STOC'95, pp. 703-712.

6. R.M. Karp and M. Rabin, E�cient randomized pattern matching algorithms, IBM

Journal of Research and Dev. 31, pp.249{260 (1987).

7. M. Karpinski, W. Plandowski and W. Rytter, The fully compressed string matching

for Lempel-Ziv encoding. Technical Report, Institute of Informatics, Bonn Univer-

sity (1995)



8. M. Karpinski, W. Rytter and A. Shinohara, Pattern-matching for strings with short

description, in Combinatorial Pattern Matching, 1995

9. D. Knuth, The Art of Computing, Vol. II: Seminumerical Algorithms. Second edi-

tion. Addison-Wesley (1981).

10. A. Lempel and J.Ziv, On the complexity of �nite sequences, IEEE Trans. on Inf.

Theory 22, 75-81 (1976)

11. W. Plandowski, Testing equivalence of morphisms on context-free languages,

ESA'94, Lecture Notes in Computer Science 855, Springer-Verlag, 460{470 (1994).

12. J.Ziv and A.Lempel, A universal algorithm for sequential data compression, IEEE

Trans. on Inf. Theory 17, 8-19, 1984

This article was processed using the L

A

T

E

X macro package with LLNCS style


