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Abstract

We prove for the �rst time an existence of the short (polynomial size)

proofs for nondivisibility of two sparse polynomials (putting thus this prob-

lem is the class NP) under the Extended Riemann Hypothesis. The divis-

ibility problem is closely related to the problem of rational interpolation.

Its computational complexity was studied in [GKS 90], [GK 91], and [GKS

92].

We prove also, somewhat surprisingly, the problem of deciding whether

a rational function given by a black box equals to a polynomial belong to

the parallel class NC (see, e. g., [KR 90]), provided we know the degree of

its sparse representation.
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1 Introduction

Algorithmic symbolic manipulation of sparse polynomials, given as lists of ex-

ponents and nonzero coe�cients, appears to be much more complicated a

computational task than dealing with polynomials in dense encoding (see e.g.

[GKS 90, KT 88, P 77a, P 77b]). The �rst results in this direction are due to

Plaisted [P 77a, P 77b], who proved, in particular, the NP-completeness of divis-

ibility of a polynomial x

n

� 1 by a product of sparse polynomials. On the other

hand, essentially nothing nontrivial is known about the complexity of the divisi-

bility problem of two sparse integer polynomials. (One can easily prove that it is

in PSPACE with the help of [M 86].) Here we prove that nondivisibility of two

sparse multivariable polynomials is in NP, provided that the Extended Riemann

Hypothesis (ERH) holds (see e.g. [LO 77]). For more information on ERH we

refer to [T 51] and [E 74].

The divisibility problem is closely related to the rational interpolation problem

(whose decidability and complexity bound were determined in [GKS 90], [GKS

92]). In this setting we assume that a rational function is given by a black box

for evaluating it. We prove also that the problem of deciding whether a rational

function given by a black box equals a polynomial belongs to the parallel class

NC ([KR 88]), provided the ERH holds and moreover, that we know the degree

of some sparse rational representation of it.

2 Nondivisibility problem for

sparse polynomials

We start with the de�nition of the problem. Let f =

P

1�i�t

a

i

X

J

i

, g =

P

1�i�t

b

i

X

K

i

2 Z[X

1

; : : : ;X

n

] be two at most t-sparse polynomials. Assume

that every degree deg

x

j

(f), deg

x

j

(g) < d, 1 � j � n and the bit-size l(a

i

), l(b

i

)

of each integer coe�cient a

i

, b

i

is less than M . The problem is to test, whether

g divides f . Observe that the bit-size of input data is O(t(M + n log d)).

First, we consider the case n = 1 of one-variable polynomials f =

P

1�i�t

a

i

x

j

i

,

g =

P

1�i�t

b

i

x

k

i

.

Lemma 1. Any nonzero root of g (also of f) has multiplicity less than t.
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Proof. Assume the contrary and let x

0

6= 0 be a root of g with multiplicity at

least t. Then g(x

0

) = g

(1)

(x

0

) = � � � = g

(t�1)

(x

0

) = 0. Hence the t� t matrix

1 � � � 1

k

1

� � � k

t

k

1

(k

1

� 1) � � � k

t

(k

t

� 1)

k

1

(k

1

� 1)(k

1

� 2) � � � k

t

(k

t

� 1)(k

t

� 2)

.

.

.

k

1

(k

1

� 1) � � � (k

1

� t+ 2) � � � k

t

(k

t

� 1) � � � (k

t

� t+ 2)

is singular. This leads to a contradiction since this matrix by elementary trans-

formations of its rows can be reduced to a Vandermonde matrix. �

Assume that g does not divide f . Then there exists a factor h 2 Z[x] of g

that is irreducible over Q, and such that its multiplicity m

g

in g is larger than

its multiplicity m

f

in f . The Lemma 1 above shows m

g

< t.

There exist polynomials u; v 2 Q[x] with deg(u), deg(v) < d such that 1 =

uh+v

�

f

h

m

f

�

. Taking into account the bounds l(h), l

�

f

h

m

f

�

�M+d that apply to

factors of g, f , respectively, we obtain l(u), l(v) �Md

O(1)

by virtue of the bounds

on the bit-size of minors of the Sylvester matrix (see e.g. [CG 82, L 82, M 82]).

Let us rewrite the equality in the following way: w

0

= u

0

h + v

0

�

f

h

m

f

�

, where

w

0

2 Z, u

0

, v

0

2 Z[x]. There exist at most M � d

O(1)

primes which divide w

0

.

Therefore, there exists a prime p � N = (Md)

O(1)

(provided the ERH holds

[LO 77, W 72]) which does not divide any of w

0

, the leading coe�cient lc(g) of

g and the discriminant of h, and moreover the polynomial h(modp) 2 GF (p)[x]

has a root in GF (p). Then the multiplicity of this root in f equals m

f

and in g

is at least m

g

.

The nondeterministic procedure under construction guesses a prime p � N

and an element � 2 GF (p) and tests whether for some 0 � i � t � 1 one has

g(�) = g

(1)

(�) = � � � = g

(i)

(�) = 0, f

(i)

(�) 6= 0, lc(g) 6= 0 in GF (p).

One can easily see that if such p, � exist then g does not divide f . Indeed, in

the opposite case, (lc(g))

s

f = ge for some integer s and a polynomial e 2 Z[x].

Reducing this equation mod p, one gets a contradiction.

Now we return to the multivariate case. Suppose again that g does not divide
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f . Let h 2 Z[X

1

; : : : ;X

n

] have a similar property to the h in the univariate

case. Assume without loss of generality that a variable X

1

occurs in h. Then

g also does not divide f in the ring Q(X

2

; : : : ;X

n

)[X

1

] by the Gauss lemma.

Consider division of f by g with remainder in the latter ring: f = g�+ �. Then

deg

X

i

(�), deg

X

i

(�) < d

2

, 2 � i � n (cf. [L 82]) and the denominators of �, � are

the powers of lc

X

1

(g) 2 Z[X

2

; : : :X

n

]. Hence for some integers 0 � x

2

; : : : ; x

n

�

d

2

+ d we have (lc

X

1

(g) � lc

X

1

(�))(x

2

; : : : ; x

n

) 6= 0. Therefore, the polynomial

g(X

1

; x

2

; : : : ; x

n

) 2 Z[X

1

] does not divide f(X

1

; x

2

; : : : ; x

n

) 2 Z[X

1

] in the ring

Q[X

1

].

The nondeterministic procedure guesses an index 1 � i � n, thus X

i

(in our

argument above its role was played by X

1

), the integers 0 � x

2

; : : : ; x

n

� d

2

+ d

and applies the nondeterministic procedure described before to one-variable poly-

nomials g(X

1

; x

2

; : : : ; x

n

), f(X

1

; x

2

; : : : ; x

n

). Thus, we have proved the following

(NP stands for the class of problems computable in nondeterministic polynomial

time)

Theorem 1. Nondivisibility of sparse multivariate polynomials belongs to the

class NP provided the Extended Riemann Hypothesis holds.

3 Divisibility problem for sparse rational

function given by a black box

The Theorem 1 can be improved if t-sparse f , g 2 Z[X

1

; : : : ;X

n

] are not ex-

plicitely given, but we have a black box (see e.g. [GK 91, GKS 90]) for the

rational function f=g provided that lc

X

1

(g) = 1, i.e. g = X

m

1

+

P

0�i�m�1

g

i

X

i

1

where the polynomials g

i

2 Z[X

2

; : : : ;X

n

], and a bound on d is given. This is

due to the fact that in the one-variable case we need only a bound on M which

one can compute by the parallel NC-algorithm from a black box relying on the

construction from [GK 91]. (We refer to [KR 88] for the de�nition of the parallel

NC-class.) To do this we proceed as follows.

Assume that f =

P

1�i�t

1

a

i

x

j

i

, g =

P

1�i�t

2

b

i

x

k

i

, t

1

; t

2

� t and g has a minimal

possible degree for any t-sparse representation of the rational function q = f=g.

Let M = max

i

fl(a

i

); l(b

i

)g+ 1.
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Take successive primes p

1

; � � � ; p

t

and for each p among them calculate (by

black box) q(p); q(p

2

); � � � ; q(p

2t

2

+1

). For at least one p all these values are de�ned,

i.e. g does not vanish in these points. Let us �x such p.

Lemma 2. At least one of q(p); q(p

2

); � � � ; q(p

2t

2

+1

) has absolute value greater

than 2

M=2t

=t

4dt

2

.

Proof. Denote N = maxfjq(p)j; � � � ; jq(p

2t

2

+1

)jg. The homogenous linear sys-

tem in the indeterminates A

i

; B

i

X

1�i�t

1

A

i

p

sj

i

= (

X

1�i�t

2

B

i

p

sk

i

)q(p

s

); 1 � s � 2t

2

+ 1

has a unique solution since the polynomials f; g provide a minimal t-sparse rep-

resentation of q, hence (

P

1�i�t

1

A

i

x

j

i

)=(

P

1�i�t

2

B

i

x

k

i

) = q(x). Therefore, each a

i

; b

i

equals to a quotient of a suitable pair of (t

1

+ t

2

� 1) � (t

1

+ t

2

� 1) minors of

this linear system. Then maxfja

i

j; jb

i

jg � (Np

2t

2

d

_

2t)

2t

� (N t

4dt

2

)

2t

. The lemma

is proved. �

One can construct (by an NC-algorithm) the integer t

4dt

2

(see, e.g., [BCH 86]),

then by Lemma 2 an integer larger than 2

M=2t

and again using [BCH 86] an integer

larger than 2

M

.

Then the algorithm constructs an integer N

0

> 36 � 2

3M

� d

5

. Finally, the

algorithm yields the number N = q(q(N

0

)). We claim that N is big enough (see

[GK 91]), namely, divide with the remainder f = eg + rem(f; g), then for each

integer N

1

� N we have 0 < j

rem(f;g)

g

(N

1

)j <

1

2

, provided that rem(f; g) 6= 0.

Let us prove the claim. Denote d

1

= deg(f), d

0

= deg(g). Without loss of

generality, assume that lc(f) > 0. Then f(N

0

) > N

d

1

0

� dN

d

1

�1

0

2

M

>

1

2

N

d

1

0

,

0 < g(N

0

) < N

d

0

0

+ dN

d

o

�1

0

2

M

<

3

2

N

d

0

0

, hence q(N

0

) >

1

3

N

d

1

�d

0

0

. On the other

hand f(N

0

) < 2

M

dN

d

1

0

, g(N

0

) > N

d

0

0

� 2

M

dN

d

0

�1

0

>

1

2

N

d

0

0

, therefore q(N

0

) <

2

M+1

dN

d

1

�d

0

0

. We get that q(N

0

) <

1

3

N

0

if and only if d

1

= d

0

. In this case g

divides f if and only if f=g � const; arguing as in the proof of Lemma 2 the latter

identity is equivalent to the equalities q(p) = � � � = q(p

2t

2

+1

). So, we assume now

that d

1

� d

0

> 0. Notice that the absolute value of each coe�cient of rem(f; g) is

at most ((d

1

�d

0

+2)2

M

)

d

1

�d

0

+2

(see e.g. [L 82]). In a similar way N = q(q(N

0

)) >

1

3

(q(N

0

))

d

1

�d

0

> 3

d

0

�d

1

�1

N

(d

1

�d

0

)

2

0

and g(N) > N

d

0

� 2

M

d

0

N

d

0

�1

>

1

2

N

d

0

. Hence

0 < jrem(f; g)(N)j < ((d

1

� d

0

+ 2)2

M

)

d

1

�d

0

+2

d

0

N

d

0

�1

<

1

4

N

d

0

. This proves the

claim.
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So, divisibility gjf is equivalent to (f=g)(N) being an integer. The number of

the black box evaluations and arithmetic operations of the exhibited algorithm

is at most (t log d)

O(1)

with the depth O(log t log log d). Thus, the divisibility

problem for one-variable rational function given by a black box, is in NC.

In the multivariate case divide with the remainder f = eg + rem(f; g)

with respect to the variable X

1

, namely in the ring Q(X

2

; � � � ;X

n

)[X

1

], thus

e; rem(f; g) 2 Q[X

1

; � � � ;X

n

] since lc

X

1

(g) = 1. After substituting X

1

=

X

d

n�1

; X

2

= X

d

n�2

; � � � ;X

n

= X

d

0

, we get an equality f = e g + rem(f; g)

for polynomials f; e; g; rem(f; g) 2 Q[X] that do not vanish identi�cally and an

inequality deg

X

(g) = d

n�1

deg

X

1

(g) > deg

X

rem(f; g). Therefore 0 6= rem(f; g) =

rem(f; g) and we conclude that g divides f if and only if g divides f . So, we

apply the divisibility test for one-variable case exhibited above to the rational

function q = f=g.

Hence the number of arithmetic operations can be bounded by (tn log d)

O(1)

with the depth O(log(tn) log log d) invoking the bounds for one-variable case.

Theorem 2. The problem of testing whether a sparse multivariate rational

function, given by a black box, equals to a polynomial, belongs to the class NC,

provided that a bound on the degree of some t-sparse representation f=g is given

such that lc

X

1

(g) = 1. �

4 Open Problem and Further Research

There remains an important open problem whether the (explicit) sparse divisi-

bility problem can be solved in polynomial (deterministic or randomized) time.

At present we do not know even whether the problem is in NP\co-NP (and this

even under ERH).

Another important problem is to characterize computational complexity of

(explicit) sparse GCD computation. At present we are not even able to character-

ize the resulting sparsity of the GCD of given two sparse univariate polynomials.
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