
A Lower Bound for Integer

Multipliation on Randomized

Read-One Branhing Programs

Farid Ablayev

�

Marek Karpinski

y

Abstrat

We prove an exponential lower bound 2

(n= logn)

on the size of any

randomized ordered read-one branhing program omputing integer mul-

tipliation. Our proof depends on proving a new lower bound on Yao's ran-

domized one-way ommuniation omplexity of ertain boolean funtions.

It generalizes to some other ommon models of randomized branhing pro-

grams. In ontrast, we prove that testing integer multipliation, ontrary

even to nondeterministi situation, an be omputed by randomized or-

dered read-one branhing program in polynomial size. It is also known

that omputing the latter problem with deterministi read-one branhing

programs is as hard as fatoring integers.

1 Preliminaries

Oblivious (or ordered) read-one branhing programs beome an important tool

in the �eld of digital design and veri�ation (see, for example, [8℄ and [22℄). In

�

Dept. of Computer Siene University of Bonn. Visiting from University of Kazan. Re-

searh partially supported by the Volkswagen-Stiftung and Russia Fund for Basi Researh

96-01-01962. Email: ablayev�s.uni-bonn.de

y

Dept. of Computer Siene University of Bonn, and International Computer Siene In-

stitute, Berkeley, California. Researh partially supported by DFG Grant KA 673/4-1, by the

ESPRIT BR Grants 7097, and EC-US 030, and by the Max{Plank Researh Prize. Email:

marek�s.uni-bonn.de

1

these �elds they are also known as \OBDDs" (ordered binary deision diagrams).

There are some important pratial funtions whih are hard for OBDDs. One

of suh funtions is integer multipliation [7℄. The other funtion is testing mul-

tipliation for whih there is an exponential lower bound (2

(n

1=4

)

) known for

nondeterministi OBDDs [12℄. An interesting open problem remained whether

randomization an help in omputation of these funtions by OBDDs. In this

paper we show, �rstly, that the method of [4℄ yields polynomial size (O(n

6

log

4

n))

bound for the latter funtion for randomized OBDDs. Interestingly, it is known

that omputing this funtion with deterministi read-one branhing programs is

as hard as integer fatoring [22, 15℄. Further we prove an exponential lower bound

2

(n= logn)

on the size of any randomized OBBD omputing integer multipliation.

During last deade there were several attempts to �nd generalizations of OB-

DDs model for hardware veri�ation, strong enough to ompute eÆiently integer

multipliation. But again the results showed that multipliation remained hard

for these models ([11, 15℄).

In [4℄, a randomized model of branhing programs was introdued. The im-

portane of this model was highlighted by the fat that there is a funtion whih

is hard for deterministi OBDDs but is easy for randomized OBDDs [4℄. During

the last ouple of years new examples of suh funtion were presented by di�erent

authors. For example, lique-only funtion is hard for nondeterministi synta-

ti read-k-times branhing programs [5℄ but is simple for randomized OBDDs

[18, 20℄. See [21℄ for another example.

It was proved that randomized and nondeterministi models of OBDD are

inomparable [2℄. So there was still hope (note that multipliation is hard for

nondeterministi OBDD [11℄) that randomized OBDDs an ompute integer mul-

tipliation in polynomial size. Our results show that randomized OBDDs an test

integer multipliation in polynomial size but integer multipliation itself requires

exponential size.

Up to now it was not lear what is harder to multiply or to test the mul-

tipliation (see [16℄ for more information). It is known that DMULT (testing

multipliation) is hard for syntati nondeterministi read-k-times branhing pro-

grams [12℄. Note that DMULT funtion is AC

0

equivalent to MULT [9℄. Our

result answers also to the open problem raised in [22℄ about suint representa-

tions for funtions DMULT and MULT .

2

We reall now basi de�nitions ([17℄).

A deterministi branhing program P for omputing a boolean funtion g :

f0; 1g

n

! f0; 1g is a direted ayli multi-graph with a distinguished soure

node s and a distinguished sink node t. The out degree of of eah non-sink

node is exatly 2 and the two outgoing edges are labeled by x

i

= 0 and x

i

= 1

for variable x

i

assoiated with the node. Call suh node an x

i

-node. The label

\x

i

= Æ" indiates that only inputs satisfying x

i

= Æ may follow this edge in the

omputation. The branhing program P omputes a funtion g in the obvious

way: for eah � 2 f0; 1g

n

we let f(�) = 1 i� there is a direted s� t path starting

in the soure s and leading to to the (aepting) node t suh that all labels x

i

= �

i

along this path are onsistent with � = �

1

; �

2

; : : : ; �

n

.

We de�ne a randomized branhing program [4℄ as a program having in addition

speially designated random (\oin-toss") inputs. When values of these random

inputs are hosen from the uniform distribution, the output of the branhing

program is a random variable.

We say that a randomized branhing program (a; b)-omputes a boolean fun-

tion f if it outputs 1 with probability at most a for input � suh that f(�) = 0

and outputs 1 with probability at least b for inputs � suh that f(�) = 1. For

1 � p > 1=2 we write shortly \p-omputes" instead of \(1 � p; p)-omputes".

A randomized brahing program omputes a funtion g with on-sided error if it

(�; 1)-omputes g.

We de�ne the size of (P), size(P), (omplexity of the branhing program P)

as the number of its internal nodes.

Read-one branhing program is a branhing program in whih every variable

is tested at most one in every path. A � -ordered read-one branhing program is

a read-one branhing program whih respets an ordering � of the variables, i.e.

if an edge leads from an x

i

-node to an x

j

-node, the ondition � (i) < � (j) has to

be ful�lled. An OBDD (alternatively ordered read-one branhing program) is a

� -ordered read-one branhing program respeting some ordering � of variables.

2 Results

We start with de�ning a boolean deision funtion: the testing integer multi-

pliation funtion (or alternatively, deision problem of reognizing the graph

3

of multipliation) DMULT as follows. DMULT : f0; 1g

3n

! f0; 1g and

DMULT (X;Y;Z) = 1 i� XY = Z. Here X;Y , and Z are binary represen-

tations of integer numbers, jXj = jY j = n, jZj = 2n.

Theorem 1 Funtion DMULT an be omputed by a randomized OBDD with

one-sided "(n)-error of size

O

n

6

"

5

(n)

log

4

n

"(n)

!

:

Proof. Uniformly at random selet a prime number p from the set Q

d(n)

=

fp

1

; : : : ; p

d(n)

g, d(n) = O(n), of �rst d(n) primes. Then deterministially ount

a = X mod p, b = Y mod p, multiply ab, then ount = Z mod p, and verify

whether ab = . If ab = then aept an input else rejet. Chinese reminder the-

orem provides the orretness of suh omputation and �ngerprinting arguments

of [4℄ provide a orret result of testing XY = Z mod p by randomized OBDDs

with high probability. All these manipulations an be done by a polynomial size

randomized OBDD P onstruted below.

Phase 1. (randomized). Choose d(n) to be some funtion in O(n), s.t. d(n) >

4n. P randomly selets a prime number p from the set Q

d(n)

= fp

1

; p

2

; : : : ; p

d(n)

g

of �rst d(n) prime numbers.

P uses t = dlog d(n)e random bits for seleting a prime number p. P reads

random bits in the order �

1

; : : : ; �

t

. � = �

1

: : : �

t

is interpreted as binary notation

of a number N(�). P selets i-th prime number p

i

2 Q

d(n)

i� N(�) = i mod d(n).

Phase 2. (deterministi). During a omputation path P ounts a = X mod p,

by reading onsequently bits from X. P stores a by internal node (state). Then,

P ounts b = Y mod p and stores the produt ab. At last P ounts = Z mod p

and verify whether ab = . If ab = then it aepts else it rejets.

So, if XY = Z, then P with probability 1 outputs the orret answer. If

XY 6= Z, then it an happen that XY = Z (mod p) for some p 2 Q

d(n)

. In

these ases P makes an error.

For XY 6= Z we have jXY � Zj � 2

2n

< p

1

� � � p

2n

where p

1

; : : : ; p

2n

are

the �rst 2n prime numbers. This means that in the ase when XY 6= Z, the

probability "(n) of the error of P on the input X;Y;Z is less than equal to

4n=d(n) (less than equal to 2n=d(n) if t is a power of 2).

4

For p 2 Q

d(n)

denote by S

p

a deterministi subprogram of P that arries out

the deterministi part of omputations of the phase 2 with the prime p.

The size of P is bounded by

2

t+1

� 1 +

X

p2Q

d(n)

size(S

p

):

S

p

has the length 3n. For the realization of the proedure desribed

in the phase 2 it is suÆient to store in the internal nodes four numbers:

X mod p; Y mod p;XY mod p and Z mod p. The i-th prime is of order O(i log i).

Therefore we have

size(S

p

) = O(np

4

) = O(n(d(n) log d(n))

4

):

>From the above upper bounds for the size(S

p

), size(P) and from the upper

bound for "(n) ("(n) < 4n=d(n)), the upper bound of the theorem follows.

We de�ne now integer multipliation funtion MULT as follows. The funtion

MULT

k

: f0; 1g

2n

! f0; 1g omputes the k-th bit, 0 � k � 2n � 1 in the

produt of two n-bit integers. That isMULT

k

(X;Y) = z

k

where X = x

n�1

: : : x

0

,

Y = y

n�1

: : : y

0

, and Z = z

2n�1

: : : z

0

. Now denote by MULT funtion MULT

n�1

whih omputes the middle bit in the produt xy. It is known that the middle

bit is the \hardest" bit (see, for example [15℄).

For p 2 (1=2; 1), k 2 f0; : : : ; 2n � 1g, and a permutation � of f1; : : : ; 2ng let

P

p

(k; �) be a randomized OBDD with the ordering � that p-omputes MULT

k

.

Theorem 2 Given p 2 (1=2; 1). For every � there exists a k suh that

size(P

p

(k; �)) � 2

n(1�H(p))=8

;

where H(p) = �p log p� (1 � p) log(1 � p) is Shannon entropy.

Theorem 3 Let for p 2 (1=2; 1) the funtion MULT (X;Y) is p-omputed by a

randomized OBDD P . Then

size(P) � 2

(n= logn)

:

5

These two theorems state that multipliation is hard for randomized OBDD.

The �rst one is \theoretially weaker" than the seond. But the proof of the

�rst one is shorter and more diret. It is based on proving lower bound for the

polynomial projetion funtion ofMULT

k

([6℄). The proof of the theorem 3 itself

is based on proving lower bound for another polynomial projetion of MULT

[7, 11℄ using randomized binary searh ommuniation game. See [14, 13℄ for

more information. Proofs of the theorems are presented in the next setion.

3 Proofs

3.1 Proof of the theorem 2

Our proof proeeds as follows:

i) we onstrut a polynomial projetion f

k;�

of MULT

k

and then

ii) we prove that f

k;�

is hard for a randomized � -ordered OBDD.

For an arbitrary ordering � in a randomized OBDD, there are two subsets L

and W of equal sizes l � n=2 suh that:

1) P reads all variables from L before starting reading variables from W and

2) L � X and W � Y or L � Y and W � X.

W.l.g. assume in the rest of the proof that L � X and W � Y . So, L =

fx

i

1

; : : : ; x

i

l

g and W = fy

j

1

; : : : ; y

j

l

g.

>From now on we are interested only in inputs � 2 f0; 1g

2n

suh that:

for variables Y all bits of � exept for a one bit of W are 0. Call suh W ontrol

set. Variables from L an take arbitrary values from f0; 1g. For onveniene �x

the remaining variables from XnL to be 0. Call suh L data set.

Denote by [k℄ a set of pair of bits of data and ontrol sets that are transmitted

to the k-th bit of the produt XY . Formally

[k℄ = f(x

i

; y

j

) 2 L�W : i+ j = kg:

As jL�W j = l

2

� n

2

=4, there exists a k suh that

j[k℄j = t � l

2

=(2n) = n=8: (1)

Now �x this set [k℄. Denote by L

k

� L (W

k

� W) a subset of L (W) that

onsists of all variables x

i

(y

j

) that \take part" in the set [k℄.

6

Consider a projetion f

k;�

: L

k

� W

k

! f0; 1g of MULT

k

, for whih all

variables from (Y [X)n(L

k

[W

k

)) are �xed and equal 0. The ommuniation

matrix CM of f

k;�

for a partition (L

k

;W

k

) of inputs has the following property:

1) it is 2

t

� t boolean matrix and

2) all rows of CM are di�erent.

We use now Yao's standard randomized one-way ommuniation omputation

[23, 24℄ (see also [13℄) for boolean funtions.

The following lemma is proved in [2℄. It states the onnetion between the

size of OBDDs and the one-way ommuniation omplexity. Consider a boolean

funtion h : f0; 1g

m

! f0; 1g. Let U = V � R be partition of a set of variables

of h into two parts. For p > 1=2 denote by PC

U

p

(h) a randomized one-way

ommuniation p-omputation for h (a omputation whih outputs the orret

result with the probability greater or equal to p) aording to the partition U of

inputs.

Lemma 1 Let " 2 [0; 1=2℄, p = 1=2 + ". Let a randomized OBDD P p-omputes

the funtion h. Let U = V �R be a partition of inputs between players with V and

R de�ned aording to ordering � of inputs of P . That is P an read variables

from R only after reading variables from L and does not read variables from L

after starting reading variables from R. Then

size(P) � 2

PC

U

p

(h)�1

:

Now use the theorem proved in [1℄ whih states that the randomized one-way

ommuniation omplexity annot be too \small" for a funtion with a \large"

data set and a \small" ontrol set.

Choose a set Z � R suh that for an arbitrary two words u; u

0

2 V there

exists a word y 2 Z suh that h(u; y) 6= h(u

0

; y). The set Z is alled the ontrol

set for the matrix CM .

Denote by ts(CM) the minimum size of a ontrol set for matrix CM and

nrow(CM) the number of di�erent rows of matrix CM .

For a number p 2 [1=2; 1℄, de�ne (probabilisti ommuniation harateristi

(f. [1℄)) p

U

p

(h) =

ts(CM)

lognrow(CM)

H(p), where H(p) = �p log p � (1 � p) log(1 � p)

is the Shannon entropy [10℄.

7

Theorem 4 ([1℄) Let " 2 [0; 1=2℄ and p = 1=2 + ". Let U � f0; 1g

n

be suh that

U = V � R, where V and R are de�ned in aording to partition � of inputs of

funtion h : f0; 1g

n

! f0; 1g. Then

PC

U

p

(h) � DC

U

(h)(1 � p

U

p

(h))� 1;

where DC

U

(h) is the deterministi one-way ommuniation omplexity of h.

In our ase we have that 1) for U = L

k

� W

k

p

U

p

(f

k;�

) = H(p) and 2)

DC

U

(f

k;�

) = log t (beause all rows of the ommuniation matrix CM are dif-

ferent). From the above we get that

size(P) � 2

t(1�H(p))

:

Using (1) and the inequality above we get the lower bound of the theorem.

3.2 Proof of the theorem 3

The proof onsists of 3 steps:

i) we onstrut a polynomial projetion f of MULT (f. [7, 11℄),

ii) using randomized OBDD P for MULT (whih is turned to a randomized

OBDD for f when values of proper variables are �xed) onstrut a randomized

one-way ommuniation protool for omputing the funtion g de�ned in [19℄,

and

iii) �nally we prove the lower bound of the theorem, using the fat

| that randomized one-way ommuniation omplexity gives the lower bound

for randomized OBDD size [2℄ and

| that g is hard for randomized one-way ommuniation omputation [2℄.

Let � be an ordering of variables of randomized OBDD P . Then there are

two subsets L and W of the set X suh that:

1) jLj = jW j = l(n) =
(n) and

2) P reads all variables from L before starting reading variables from W .

Now if the remaining variables (variables from (Y [X)n(L [W)) are �xed in a

proper way, then randomized OBDD P p-omputes the boolean funtion f (poly-

nomial projetion ofMULT) whih has the following ommuniation desription.

Communiation matrix CM(f) of size 2

l(n)

� 2

l(n)

for f with rows orrespond-

ing to variables from L and olumns to variables from W is the lower triangle

8

boolean matrix. That is all the elements above the seond diagonal are 0 and all

elements in the seond diagonal and below it | are 1 [11℄. Formally, funtion

f(L;W) an be desribed as follows. View L and W as a binary presentation of

numbers. Numbers presented in the reverse order (�rst bits of L andW represent

the lowest bits and last bits | the highest bit of a number). Then f(L;W) = 1

i� L +W � 2

l(n)+1

[11℄.

We assume in the remaining part of the proof the variables from (Y [X)n(L[

W) been �xed as needed. So P is turned to the randomized OBDD that p-

omputes f . Below, using P we onstrut a randomized one-way ommuniation

protool � for a \pointer" funtion.

The \pointer" funtion g

n

([19℄) is de�ned as follows. Let n be an integer and

let p[n℄ be the smallest prime number greater than or equal to n. Then, for every

integer s, let !

n

(s) be de�ned as follows. Let j be the unique integer satisfying

j = s mod p[n℄ and 1 � j � p[n℄. Then, !

n

(s) = j, if 1 � j � n, and !

n

(s) = 1

otherwise.

For every n, the boolean funtion g

n

: f0; 1g

n

! f0; 1g is de�ned as g

n

(�) =

�

j

, where j = !

n

(

P

n

i=1

i�

i

).

For the purposes of the proof we use the following \ommuniation" variant

of the \pointer" funtion g in the remaining part of the proof.

Let L = fx

i

1

; : : : ; x

i

l(n)

g. Let for k(n) = log l(n) (w.l.g. we onsider that l(n)

is a power of 2) R = fz

1

; z

2

; : : : ; z

k(n)

g is a set of \new" variables, that is R does

not ontains variables from X [Y . Then de�ne a \ommuniation" variant of

the \pointer" funtion g as g : L �R! f0; 1g.

We use now Yao's standard randomized one-way ommuniation omputation

for g when the �rst player I gets values of the variables from L and the seond

player II gets values from the remaining variables R. Player I starts the om-

putation on his part of inputs, then the player II, on reeiving a message from I

and his part of the input, outputs the result.

Below, in Lemma 2 we onstrut a randomized one-way ommuniation pro-

tool � for q-omputing (q 2 (1=2; 1)) g suh that

C(�) � a(log bl(n))(log size(P)); (2)

where a, b are positive onstants. Then we prove (see Lemma 3 below) that for

this partition of inputs between players, the following lower bound for randomized

9

one-way ommuniation q-omputation is true

PC

q

(g) � (q)l(n); (3)

where (q) is positive onstant. As the inequality (3) is orret for all the ran-

domized one-way ommuniation protools that q-omputes g then from (2) we

get the lower bound of the theorem.

size(P) � 2

l(n)= log l(n)

:

Lemma 2 For q 2 (1=2; 1) there is a randomized one-way ommuniation pro-

tool � for q-omputing funtion g suh that

C(�) � a(log bl(n))(log size(P));

where a, b are positive onstants.

Proof. We desribe a randomized one-way ommuniation protool � for q-

omputing the \pointer" funtion g as follows. Let � = �

1

; : : : ; �

l(n)

be an input

sequene of player I and ! = !

1

; : : : ; !

k(n)

| an input sequene of player II.

Let t(n) = a log(bl(n)). We de�ne onstants a; b later in a proper way. Player I

runs branhing program P on his part of inputs t(n) times and sends t(n) nodes

v

1

; : : : ; v

t(n)

whih were reahed by P during the omputations to the player II.

The goal of player II is to determine the input string � of player I with prob-

ability no less than q (more preisely player II determines a string �

0

suh that

probability of the event �

0

= � is no less than q). Then, player II having his

part of input an outputs the orret result with probability no less than q. Let

B

0

:= f0; 1g

l(n)

. In eah step i � 1, II redues a set B

i�1

and in the last step

l(n) of proedure II gets a set B

l(n)

= f�

0

g. Player II after getting v

1

; : : : ; v

t(n)

determines �

0

by a randomized binary searh proedure as follows.

Step 1. Take a \middle" input sequene �

1

(sequene �

1

determines the mid-

dle olumn of the ommuniationmatrixCM(f). Columns of CM(f) are ordered

in a natural order of input strings, that is 0 = (0; : : : ; 0); : : : ;1 = (1; : : : ; 1)).

Run P on �

1

t(n) times starting from nodes v

1

; : : : ; v

t(n)

and take the majority

result �

1

2 f0; 1g. Using �

1

, selet a set B

1

of potential inputs of player I (the

set of sequenes that determine the upper half of rows of CM(f) or the set of

10

sequenes that determine the lower half of rows of CM(f)). jB

1

j = 2

l(n)

=2.

Step 2. If �

1

= 1 then selet a \middle" input sequene �

2

between �

1

and

1 else | between 0 and �

1

.

Run P on �

2

t(n) times starting from nodes v

1

; : : : ; v

t(n)

and take the majority

result �

2

2 f0; 1g. Using �

2

, selet a set B

2

� B

1

of potential inputs of player

I. jB

2

j = jB

1

j=2.

After l(n) steps proedure stops by seleting a set B

l(n)

that onsists of unique

input sequene �

0

. Player II outputs the result g(�

0

; !). Clearly we have

C(�) � t(n) log size(P)):

The following ounting arguments show that protool � q-omputes g.

For a string 2 f0; 1g

l(n)

that determines a olumn of matrix CM(f) denote

by Pr() a probability of getting the orret result � by the binary searh proe-

dure above. Then the probability Pr(�

0

= �) of orretly determining an input

of player I is

Pr(�

0

= �) = Pr(�

1

) : : : P r(�

l(n)

):

The probability 1� Pr() of getting error � is no more than (1=(p))

t(n)

for

some onstant (p) > 1 depending on probability p of orret omputation of P

(see, e.g., [14℄). By hoosing a onstant a in a proper way we get

1� Pr() � 1=(bl(n)):

>From the above it follows that

Pr(�

0

= �) � (1� 1=(bl(n)))

l(n)

:

Using the fat that funtion (1�1=x)

x=b

is monotonially inreasing to (1=e)

1=b

for x!1 we get for properly seleted onstant b > 1 and for n large enough

Pr(�

0

= �) � q:

We formulate now the last lemma.

11

Lemma 3 For arbitrary q 2 (1=2; 1) and arbitrary Æ > 0 and for every n large

enough, we have

PC

q

(g) � (l(n)� o(l(n)))(1 � (1 + Æ)H(q)):

where H(q) = �q log q � (1� q) log(1� q) is Shannon entropy.

See [2℄ for the proof of the lower bound of the lemma.

4 Generalization and onluding remarks

Note that in the proof tehnique used in the setion above for ordered read-one

branhing programs we used the following essential fat. The set of variables of

P an be partitioned (aording to the ordering � of P) into two parts L and

W (of approximately equal sizes) suh that for any omputation path of P the

following is true. If a variable from W is tested, then no variable from L an be

tested in the rest of this path. This means that the statement of the theorem 3

is true also for other ommon models of branhing programs we de�ne below.

De�ne a balaned partitioning as any partition of a set X (more preisely the

sequene of sets) into subsets X

1

and X

2

of jX

1

j = �(jX

2

j).

De�nition 1 Call branhing program P a �-balaned-weak-ordered branhing

program if it respets a balaned partition � of its variables X into two parts X

1

and X

2

suh that if an edge leads from an x

i

-node to an x

j

-node, where x

i

2 X

t

and x

j

2 X

m

, then the ondition t � m has to be ful�lled.

Call branhing program P an balaned-weak-ordered if it is �-balaned-weak-

ordered for some partition � of the set of variables of P into two sets.

Our theorem 3 an be generalized as follows.

Theorem 5 Let for p 2 (1=2; 1) the funtion MULT (X;Y) be p-omputed by

randomized balaned-weak-ordered branhing program P . Then

size(P) � 2

(n= logn)

:

12

Open problems

It is an interesting open problem to prove a lower bound for integer multipliation

on randomized branhing programs with 1) limited number of inputs readings,

and 2) without any ondition on ordering of variables. We onjeture that the

orresponding lower bounds are also exponential.

AknowledgmentWe would like to thank Anna G�al, Stephen Ponzio, Sasha

Razborov, Thomas Thierauf and Andy Yao for helpful disussion on the subjet

of the paper.

Referenes

[1℄ F. Ablayev, Lower bounds for one-way probabilisti ommuniation om-

plexity in Proeedings of the ICALP'93, Leture Notes in Computer Siene,

Springer-Verlag, 700, (1993), 241-252.

[2℄ F. Ablayev, Randomization and nondeterminism are inomparable for or-

dered read-one branhing programs, in Proeedings of the ICALP'97, Le-

ture Notes in Computer Siene, Springer-Verlag, 1256, (1997), 195-202.

[3℄ F. Ablayev and M. Karpinski, On the power of randomized branhing pro-

grams, in Proeedings of the ICALP'96, Leture Notes in Computer Siene,

Springer-Verlag, 1099, (1996), 348-356.

[4℄ F. Ablayev and M. Karpinski, On the power of randomized ordered branh-

ing programs, Researh Report 85181-CS, University of Bonn, 1997.

[5℄ A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-k-

times branhing programs, Computational Complexity, 3, (1993), 1-18

[6℄ R. Bryant, Graph-based algorithms for boolean funtion manipulation IEEE

Trans. Comput., C-35, (8), (1986), 677-691.

[7℄ R. Bryant, On the omplexity of VLSI implementations and graph repre-

sentations of boolean funtions with appliations to integer multipliation,

IEEE Trans. Comput., 40 (2), (1991), 205-213.

13

[8℄ R. Bryant, Symboli boolean manipulation with ordered binary deision di-

agrams, ACM Computing Surveys, 24, No. 3, (1992), 293-318.

[9℄ R. Buss, The graph of multipliation is equivalent to ounting, Information

Proessing Letters, 41, (1992), 199-201.

[10℄ R. Gallager, Information theory and reliable ommuniation, Wiley, New

York, 1968.

[11℄ J. Gergov, Time-spae tradeo�s for integer multipliation on various types

of input oblivious sequential mahines, Information Proessing Letters, 51,

(1994), 265-269.

[12℄ S. Jukna, The graph of integer multipliation is hard for read-k-times net-

works, TR 95-10 Mathematik/Informatik University of Trier, 1995.

[13℄ E. Kushilevitz and N. Nisan, Communiation omplexity, Cambridge Uni-

versity Press, 1997.

[14℄ R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univer-

sity Press, 1995.

[15℄ S. Ponzio, A lower bound for integer multipliation with read-one branhing

programs, Proeedings of the 27-th STOC, (1995), 130-139.

[16℄ S. Ponzio, Restrited branhing programs and hardware veri�ation, Teh-

nial Report, MIT/LCS-TR-633, MIT, 1995

[17℄ A. Razborov, Lower bounds for deterministi and nondeterministi branh-

ing programs, in Proeedings of the FCT'91, Leture Notes in Computer

Siene, Springer-Verlag, 529, (1991), 47{60.

[18℄ T. Thierauf, personal ommuniation, 1997.

[19℄ P. Saviky, S. Zak, A large lower bound for 1-branhing programs, Eletroni

Colloquium on Computational Complexity, Revision 01 of TR96-036, (1996),

available at http:==www.e.uni-trier.de=e=

[20℄ M. Sauerho�, personal ommuniation, 1997.

14

[21℄ M. Sauerho�, On nondeterminism versus randomness for read-one branh-

ing programs Eletroni Colloquium on Computational Complexity, TR97-

030, (1997), available at http:==www.e.uni-trier.de=e=

[22℄ I. Wegener, EÆient data struture for Boolean funtions, Disrete Mathe-

matis, 136, (1994), 347-372.

[23℄ A.C. Yao, Some Complexity Questions Related to Distributive Computing,

in Pro. of the 11th Annual ACM Symposium on the Theory of Computing,

(1979), 209-213.

[24℄ A.C. Yao, Lower bounds by probabilisti arguments, in Pro. of the 27th

Annual IEEE Symposium on Foundations of Computer Siene (1983), 420-

428.

15

