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Abstract

It is a fundamental problem in the randomized computation how to

separate di�erent randomized time or randomized space classes (c.f.,

e.g., [KV87, KV88]). We have separated randomized space classes be-

low logn in [FK94]. Now we have succeeded to separate small random-

ized time classes for multi-tape 2-way Turing machines. Surprisingly,

these "small" bounds are of type n + f(n) with f(n) not exceeding

linear functions. This new approach to "sublinear" time complexity

is a natural counterpart to sublinear space complexity. The latter

was introduced by considering the input tape and the work tape as

separate devices and distinguishing between the space used for pro-

cessing information and the space used merely to read the input word

from. Likewise, we distinguish between the time used for processing

information and the time used merely to read the input word.

1 Introduction

The advantages of using randomization in the design of algorithms have be-

come increasingly evident in the last couple of years. It appears now that

�
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these algorithms are more e�cient than the purely deterministic in terms

of running time, hardware size, circuits depth, etc. The adventages of ran-

domized Turing machines over determinnistic machines have been studied

early starting with [Fr75] where the sets of palindromes were proved to

be computable by Monte Carlo o�-line Turing machines much faster than

by deterministic machines of the same type. Later similar results were

obtained for space and reversal complexity for various types of machines

[Fr83, Fr85, KF90]. On the other hand, it is universally conjectured that

randomness do not always help. However, these conjectures usually cannot

be supported by proofs since proving lower bounds in always hard, and prov-

ing lower bounds for complexity of randomized machines has turned out to

be much harder than proving lower bounds for complexity of deterministic

and nondeterministic machines.

In [FK94] we proved the �rst nontrivial small lower space bounds for

various types of ranomized machines. In this paper we have proved the �rst

nontrivial small lower time bounds for randomized multitape 2-way Turing

machines.

We distinguish between two types of randomized machines: Monte Carlo

and probabilistic machines.

We say that a Monte Carlo machine M recognizes language L in time

T (n) if there is a positive constant � such that:

1. For arbitrary x 2 L, the probability of event "M accepts x in time not

exceeding T (jxj)" exceeds 1=2 + �,

2. For arbitrary x =2 L, the probability of event "M rejects x in time not

exceeding T (jxj)" exceeds 1=2 + �.

We say that a probabilistic machine M recognizes language L in time

T (n) if:

1. For arbitrary x 2 L, the probability of event "M accepts x in time not

exceeding T (jxj)" exceeds 1=2,

2. For arbitrary x =2 L, the probability of event "M rejects x in time not

exceeding T (jxj)" exceeds 1=2.

In a similar way one de�nes space complexity of Monte Carlo and prob-

abilistic machines. Probabilistic machines are interesting theoretical devices



but they are rather remote from practical needs. Hence much more e�ort

has been spent to study Monte Carlo machines.

There have already been lower time bounds (const�n

2

for Monte Carlo o�-

line Turing machines to recognize palindromes [Fr75, Fr77]). On the other

hand, these lower bounds employ the speci�c restrictions of the machine

model. For multitape 2-way Turing machines, lower time bounds are weak

even in the case of deterministic machines. In the case of Monte Carlo

machines the situation is much worse. We did not even know whether

MCTIME(n) = MCTIME(n

logn

). Nevertheless we prove in Section 2

the �rst nontrivial lower time bounds for recognition of speci�c languages

by muultitape 2-way Turing machines. This allows us to prove separation

theorem for small time complexity classes of Monte Carlo multitape 2-way

Turing machines. The method used in this proof generalizes the methods

used in [FI77, JKS84].

2 Separation Theorem

We consider a language

A = fx2yj(9m)(x 2 f0; 1g

2

m

&y 2 f0; 1g

m

&(9i)(y is the binary notation

for the integer i & the i-th digit of the word x equals 1))g

Theorem 2.1 The language A cannot be recognized by a multitape 2-way

Monte Carlo Turing machine in time n+ o(n).

Proof. Assume from the contrary that A is recognized by multitape

2-way Monte Carlo Turing machine M in time n+ f(n) where f(n) = o(n).

We �x an arbitrarily large integer m and consider the work of M on all

the words

x2y (1)

where y 2 f0; 1g

m

and x 2 f0; 1g

2

m

. We call x2 the head of the word (1),

and y the tail of the word. The length n of the word (1) equals 2

m

+m+ 1.

We consider the �rst moment when the machine M reads the symbol 2

from the input. Let the heads on the work tapes observe the squares b

1

; : : : ; b

r

at this moment. There remains no more time than m+f(n) till the moment

of output. The contents of a square of the worktape can inuence the result



only if this square is reachable from the squares b

1

; : : : ; b

r

in no more than

m + f(n) steps. The absolute addresses b

1

; : : : ; b

r

also do not inuence the

result. Hence all the needed information about the head of the word (1)

is encoded in the con�guration of the reachable part of the worktapes. We

denote the set of all the a priori possible con�gurations of this part of the

worktapes by

fz

1

; z

2

; : : : ; z

u

g (2)

It is easy to see that there is a constant c > 0 such that

u � c

m+f(n)

(3)

Hence all the needed information about the head of the word (1) is en-

coded by the probability distribution in the set (2). The contradiction ob-

tained below shows the cardinality u of the set (2) is too small for this task.

We will use methods of Shannon's Information Theory for this proof. All

the notions and notation not de�ned in this paper see in [Gal68].

Let the words

w

1

; : : : ; w

2

m

denote the lexicographical ordering of all the words in f0; 1g

m

.

We consider a random variable X = (X

1

; : : : ;X

2

m

) each component of

which takes value

(

1 with probability 1/2

0 with probability 1/2

statistically independently from the other components. (In alternative way

to explain the same thing, we consider the head of the word (1) as taken

randomly with X

i

being the i-th digit of the head of the word.)

Then all the 2

2

m

possible values of the random varibale X are equiprob-

able, and each one of these 2

2

m

values corresponds to a certain head of the

word (1). Hence the entropy

H(X) = 2

m

(4)

Now we de�ne a random variable Z taking values z

1

; : : : ; z

u

out of (2).

The probabilities of these values are de�ned by taking the random varibale

X, considering the head of the word (1) corresponding to the particular value

of X, processing it by the machine M and observing the con�gurations of

the reachable part of the worktapes.



We estimate the amounbt of information about X in Z:

I(XjZ) = I(ZjX) � H(Z) � log

2

u

Taking (3) into consideration, we get

I(XjZ) � (m+ f(n)) log

2

c (5)

We introduce new random variables Y

0

i

(i = 1; 2; : : : ; 2

m

) taking the values

1, 0 and "no result". The probabilities of these values are de�ned as the

probabilities for the machineM to output 1, 0 or no de�nite result in n+f(n)

steps, correspondingly, provided the tail of the word (1) is w

i

. Finally, we

introduce random variables Y

i

(i = 1; 2; : : : ; 2

m

) taking the values 1 and 0

only. The probabilities of these values are de�ned as follows.

p(Y

i

= 0) = p(Y

0

i

= 0) +

1

2

p(Y

0

i

= "no result")

p(Y

i

= 1) = p(Y

0

i

= 1) +

1

2

p(Y

0

i

= "no result")

It is easy to see that

p(Y

0

i

= 0) + p(Y

0

i

= 1) + p(Y

0

i

= "no result") = 1

and

p(Y

i

= 0) + p(Y

i

= 1) = 1

These probabilities can be calculated from the probabilities of the various

values of z

j

of the random variable Z and the conditional probabilities of the

results of the machineM starting from a con�guration z

j

and reading w

i

from

the tail of the input word. This calculation shows that the random variables

Y

i

do not depend from X immediately but only through the random variable

Z.

We consider a lower bound for I(XjZ). We have

I(XjZ) = H(X) �H(XjZ)

H(XjZ) =

u

X

j=1

p(z

j

)H(XjZ = z

j

)



H(XjZ = z

j

) = H(X

1

;X

2

; : : : ;X

2

m

jz = z

j

) �

2

m

X

i=1

H(X

i

jZ = z

j

) (6)

Hence

H(XjZ) �

u

X

j=1

p(z

j

)

2

m

X

j=1

H(X

i

jZ = z

j

) =

=

2

m

X

i=1

u

X

j=1

p(z

j

H(X

i

jZ = z

j

) =

2

m

X

i=1

H(X

i

jZ) (7)

We proceed to estimate H(X

i

jZ). We start by trying to prove the intu-

itively valid inequivalence

H(X

i

jZ) � H(X

i

jY

i

) (8)

Indeed,

H(Y

i

jZ) = H(Y

i

jX

i

; Z)

because the distribution of probabilities for Y

i

is determined by the random

variable Z and do not depend on the value of X. Hence we get

H(Z; Y

i

)�H(Z) = H(X

i

; Z; Y

i

)�H(X

i

; Z)

H(X

i

; Z)�H(Z) = H(X

i

; Z; Y

i

)�H(Z; Y

i

)

H(X

i

jZ) = H(X

i

jZ; Y

i

) � H(X

i

jY

i

)

This completes the proof of (8).

It follows from (7) and (8) that

H(XjZ) �

2

m

X

i=1

H(X

i

jY

i

) (9)

We �x an arbitrary i(1 � i � 2

m

) and the values for the random variables

X

1

; : : : ;X

i�1

;X

i+1

; : : : ;X

2

m

. It follows from the de�nition of X that

p(X

i

= 0) = p(X

i

= 1) = 1=2 (10)

The Monte-Carlo machineM recognizes the language A with probability

exceeding 1=2+ �. Hence there are positive real numbers �

0

and �

1

such that

p(Y

i

= 0jX

i

= 0) = 1=2 + � + �

0

(11)



p(Y

i

= 1jX

i

= 1) = 1=2 + � + �

1

It follows from (10) and (11)

p(X

i

= 0jY

i

= 0) =

p(X

i

= 0)p(Y

i

= 0jX

i

= 0)

p(X

i

= 0)p(Y

i

= 0jX

i

= 0) + p(X

i

= 1)p(Y

i

= 0jX

i

= 1)

=

=

1=2(1=2 + � + �

0

)

1=2(1=2 + � + �

0

) + 1=2(1=2 � � � �

1

)

�

1=2 + � + �

0

1 + �

0

� 1=2 + �

Hence

H(X

i

jY

i

= 0) � H(1=2 + �; 1=2 � �)

Similarly one can prove

H(X

i

jY

i

= 1) � H(1=2 + �; 1=2 � �)

It follows that

H(X

i

jY

i

) = p(Y

i

= 0)H(X

i

jY

i

= 0) + p(Y

i

= 1)H(X

i

jY

i

= 1) �

� H(1=2 + �; 1=2 � �)

Combining this inequality and (9), we get

H(XjZ) � 2

m

H(1=2 + �; 1=2 � �)

Taking into account (4) and (6), we get

I(XjZ) � D � 2

m

(12)

where D = 1 �H(1=2 + �; 1=2 � �) > 0.

Comparing (5) and (12), we get

D � 2

m

� (m+ f(n)) � log

2

c

This implies

f(n) � 2

m

� const

f(n) � n � const

Contradiction. 2



Binary notation of integers is natural, and it has nice properties. However,

from our point of view, it has a serious de�ciency. Namely, two consecutive

integers can have binary notations di�ering in very many symbols.

We call a notation sbin(n) of non-negative integers n superbinary if it has

two properties:

1. The length jsbin(n)j for arbitrary non-negative integer n is no more

and no less than const � log n;

2. There is a deterministic real time "clock", i.e. a multitape deterministic

Turing machine maintaining sbin(t) on one of its worktapes at every

moment t (it is allowed to have several symbols of sbin(t) in the same

square of the worktape).

For instance, the following notation of non-negative integers in the alpha-

bet �

1

= f0; 1; 1 ; �; �;

�!

0 ;

 �

0 ;

�!

1 ;

 �

1 g is superbinary:



n s bi n(n)

0 *

1 1 *

2

�!

1 *

3 1 *

4

 �

0 *

5 1 0 *

6

�!

1 0 *

7 1

�!

0 *

8 1 0 *

9 1 1 *

10 1

�!

1 *

11 1 1 *

12 1

 �

0 *

13

 �

0 0 *

14 1 0 0 *

15

�!

1 0 0 *

16 1

�!

0 0 *

17 1 0

�!

0 *

18 1 0 0 *

19 1 0 1 *

20 1 0

�!

1 *

21 1 0 1 *

22 1 0

 �

0 *

23 1 1 0 *

24 1

�!

1 0 *

: : :

We consider language

A

0

= fx2yj(9i)(9j)(x 2 f0; 1g

j

&y 2 �

�

1

&y = sbin(i)&j � i&

&the i-th digit of the word x equals 1g



Theorem 2.2 The language A

0

cannot be recognized by a multitape 2-way

Monte Carlo Turing machine in time n+ o(n).

Proof. Essentially the same as for Theorem 2.1. 2

We go on to consider more complicated languages. Let M be a deter-

ministic multitape 2-way Turing machine, � be the input alphabet of M ,

t

M

(x) be the running time of M on input x, and g(n) be the maximum of

(t

M

(x)� jxj) over all the words x 2 �

�

of length not exceeding n. Let # be

a symbol not in � [ f0; 1; 2g.

B

M

= fx#yjx 2 A

0

and jyj = t

M

(jx#yj)g

Theorem 2.3 For arbitrary deterministic multitape 2-way Turing machine,

the language B

M

cannot be recognized by a multitape 2-way Monte Carlo

Turing machine in time n+ o(g(n)).

Proof. Essentially the same as for Theorem 2.1. 2

Theorem 2.4 For arbitrary deterministic multitape 2-way Turing machine,

the language B

M

can be recognized by a multitape 2-way Monte Carlo Turing

machine in time n+ 2g(n).

Proof. The TM recognizing B

g

performs several actions in parallel:

1. SimulatesM on x#y and stores the value of t

M

(jx#yj) on an additional

worktape (in unary notation). (This is done in time n+ g(n).)

2. Finds out whether jyj = t

M

(jx#yj). (This is done after the action 1 in

no more time than g(n).)

3. Finds out whether y 2 A. (This is done after the action 1 in no more

time than g(n); can be done in parallel with the action 2.)

2

Using Theorem 3.1 (below in Section 3) we can improve this result to get

Theorem 2.5 For arbitrary deterministic multitape 2-way Turing machine,

and for arbitrary � > 0 the language B

M

can be recognized by a multitape

2-way deterministic Turing machine in time n+ �g(n).

This way, n+ const � g(n) is optimal time for recognition of the language

B

M

, and randomization does not help.



3 Reduced Time Complexity

Theorems 2.3 and 2.4 show that the complexity measure t(n) = n + g(n)

is a natural complexity measure, any way, no less natural than sublinear

space complexity introduced in [SHL65] by separating input tape from the

worktapes. Before [SHL65] it was considered that the lowest nontrivial space

complexity class was LINSPACE since reading all the input demands at least

linear space. Separating input tape allowed to consider LOGSPACE and

other important small space complexity classes. For instance, it was proved

in [SHL65] that DLOGLOGSPACE contains nonregular languages but every

language recognizable in o(log log n) space even by nondeterministic Turing

machines is regular. However there are regular languages recognizable by

Monte Carlo 2-way Turing machines in constant space[Fr81], and there are

nontrivial space classes de�ned by log log log n, log � � � log n, log

�

n for Monte

Carlo 2-way Turing machines[KV87].

In this section we prove some results motivating the naturalness of our

approach to sublinear time complexity.

Theorem 3.1 If n+ g(n) is the running time of a deterministic (nondeter-

ministic, Monte Carlo, alternating) multitape 2-way Turing machine recog-

nizing a language L, then the language L can be recognized by a determin-

istic (nondeterministic, Monte Carlo, alternating) multitape 2-way Turing

machine in time n+

1

2

g(n).

Proof. Every worktape of the given machine is simulated by a worktape

with a larger alphabet. Content of four squares from the old tape is stored

in a single square of the new tape. An additional worktape is used to make a

copy of the input tape (again with 4 symbols stored in a single square of the

worktape) thus allowing more sppedy retrieval. If the time interval between

two consequtivemoments of reading a new input symbol by the given machine

is between 2 and 4, the simulating machine reads the corresponding input

symbols with time interval 1. If the time interval exceeds 4, the simulating

machine speeds up. 2

Corollary 3.1 If a language L is recognized by a deterministic (nondeter-

ministic, Monte Carlo, alternating) multitape 2-way Turing machine in time

n + const, then the language L can be recognized by a deterministic (non-

deterministic, Monte Carlo, alternating) multitape 2-way Turing machine in

real time.



It is well-known that even deterministicmultitape 2-way Turing machines

recognize some non-regular languages in real time, e.g. the language

fx2xjx 2 f0; 1g

�

g

For the sake of brevity we introduce a new term for the complexity mea-

sure "running time minus the length of the input word". We will call it

reduced running time.

So far we have shown that the reduced running time can be e�ectively

decreased arbitrary constant number of times (Theorem 3.1). Nonregular

languages can be recognized in reduced time 0. Now we go on to show that

the reduced time complexity can be very slowly growing: log n, log log n,

log log log n, : : :, log

�

n, etc.

Theorem 3.2 For arbitrary integer k � 1, there is a language L

k

such that:

1. For arbitrary � > 0, the language L

k

can be recognized in time n + � �

log log : : : log

| {z }

k times

n by a deterministic 2-way Turing machine;

2. No Monte Carlo 2-way Turing machine can recognize L

k

in time n +

o(log log : : : log

| {z }

k times

n).

Proof. It su�ces to prove the existence of a deterministicTuring machine

with the reduced running time log log � log

| {z }

k times

n, and our theorem will be implied

by Theorems 2.3, 2.4 and 2.5.

For k = 1 we consider a deterministic 2-way Turing machine which rec-

ognizes whether the input word is of type

sbin(0) � sbin(1) � sbin(2) � sbin(3) � : : : � sbin(i)

After the real time recognition whether the input word is of the needed type

the machine additionally reads the last fragment sbin(i) once more. The

running time exceeds the length of the input word by jsbin(i)j = const�log i =

const

0

� log n.

For k > 1 the same idea is used iteratively. Let

m

1

= jsbin(m

2

)j



m

2

= jsbin(m

3

)j

m

3

= jsbin(m

4

)j

: : :

m

k

= jsbin(m

k+1

)j

The input word is supposed to be of type

sbin(0) � sbin(1) � : : : � sbin(m

k+1

) � �sbin(0) � sbin(1) � : : : � sbin(m

k

� � : : :

: : : � �sbin(0) � sbin(1) � : : : � sbin(m

1

)

2

Theorem 3.3 There is a language L

�

such that:

1. For arbitrary � > 0, the language L

k

can be recognized in time n + � �

log

�

n by a deterministic 2-way Turing machine;

2. No Monte Carlo 2-way Turing machine can recognize L

k

in time n +

o(log

�

n).

Like other complexity measures, the reduced time complexity turns out

to be sensitive in choosing the level of determinism (deterministic, nondeter-

ministic, probabilistic, Monte Carlo, alternating) of the machine.

Theorem 3.4 There is a language A

0

such that:

1. A

0

can be recognized in real time by a nondeterministic 1-way Turing

machine,

2.

�

A

0

can be recognized in real time by a nondeterministic 1-way Turing

machine,

3. No deterministic or Monte Carlo 2-way Turing machine can recognize

A

0

in n + o(n) time.

Proof. The language A

0

from Theorem 2.2 has the needed properties. 2



4 Advantages of Randomization

In spite of the huge literature on complexity advantages of randomized ma-

chines over deterministic ones there had not been proved any running time

advantages of Monte Carlo multitape 2-way Turing machines over determin-

stic machines of the same type.

Theorem 4.1 There is a language E such that:

1. For arbitrary � > 0, the language E can be recognized in real time by a

Monte Carlo multitape 2-way machine with probability 1� �,

2. E cannot be recognized in time n + o(n) by a deterministic multitape

2-way Turing machine.

Sketch of proof. The language E consists of all the words in the form

x

1

2x

2

2y

1

2y

2

3u(1)2u(2)2 : : : 2u(i)3v(1)2v(2)2 : : : 2v(i)

such that

(9m)(9j)(x

1

= 1

m

&x

2

= 1

2

m

&y

2

= 1

j

&2

m

� i � j � 8i&

&(8k)(1 � k � i! u(k) 2 f0; 1g

m

� 2 � 1

m

3

)&the string

v(1); v(2); : : : ; v(i) is permutation of u(1); u(2); : : : ; u(i)

1. The pre�x x

1

2x

2

2y

1

2y

2

is designed to allow the randomized machine

time to prepare the random parameters and organize the worktapes.

Let c denote d

2

�

e. A random integer r is chosen (1 � r � c � 2

m

). A

random prime number p execeding c � 2

m

is chosen among the �rst c � j

prime numbers (i.e. among the random integers of size not exceeding

log

2

(c �j � ln j) being prime numbers). The random number theorem im-

plies that on average the length of the pre�x su�ces for the randomized

machine to generate and test such a random prime.

When the blocks u(1); u(2); : : : ; u(i) are read from the input, and u(k) =

bin(z) � 2 � 1

m

3

, the number r

z

(mod p) is added to a counter. When

the blocks v(1); v(2); : : : ; v(i) are read from the input, and v(k) =



bin(z) �2 �1

m

3

, the number r

z

(mod p) is subtracted from the counter.

If the input word is in the language E, at the end the counter is empty.

If the input word is not in E, the properties of Vandermonde determi-

nant show that no more than the fraction

1

c

of all the random numbers

r would make the totals of r

z

(not r

z

(mod p)) for u(1); u(2); : : : ; u(i)

and v(1); v(2); : : : ; v(i) equal.

If

X

u

r

z

6=

X

v

r

z

but the totals are congruent modulo p, then the di�erence is a multiple

of p. If inequal totals are congruent modules p

1

; p

2

; : : : ; p

s

then the

di�erence is a multiple of the product p

1

�p

2

� : : :�p

s

. Since the di�erence

of totals cannot be larger than the maximum value of the total, the

fraction of "defective" prime modulos is small.

Computing of r

z

(mod p) is not real-time but we have added blocks

1

m

3

when constructing the blocks u(1); : : : ; u(i); v(1); : : : ; v(i). This

way, the values

r

0

(mod p)

r

1

(mod p)

r

2

(mod p)

r

4

(mod p)

: : :

r

2

m

(mod p)

are preprocessed, and added to the counter when the block u(k) (con-

taining binary notation of z) is read from the input.

2. Notion of Kolmogorov complexity is used for this part of the proof.

Assume from the contrary that there is such a deterministic machine.

Take a large integer m and a binary string � such that j�j = 2

m

and �

has nearly maximal Kolmogorov complexity.

We denote

� = �

1

�

2

: : : �

2

m



We construct u(1)2u(2)2 : : : 2u(i) taking the strings z in the lexico-

graphical order (00000, 00001, 00010, 00011, : : :). If the current �

b

equals 0, we take one block u(k) corresponding to this z. If the current

�

b

equals 1, we take two blocks u(k) and u(k+1) corresponding to this

z. This way, 2

m

� 2 � 2

m

.

We consider a special graph representing the information transfer in

the multitape Turing machine. The vertices of the graph correspond to

the time moments and positions of the heads on the tapes. If there are

d tapes (including the input tape) then d new vertices correspond to

every time moment (one vertice per head). The vertices are connected

if:

(a) either the time moments are the same or adjacent,

(b) or the same square of the tape is visited again at some di�erent

moment (but there have been no visits to this square of the tape

between these moments).

Since the input word corresponds to � which has a high Kolmogorov

complexity, the number of sqaures on the worktapes is to be at least

linear with respect to j�j. This implies the nearly-linear diameter

of the graph. Hence there are fragments of u(1)2u(2)2 : : : 2u(i) and

v(1)2v(2)2 : : : 2v(i) containing the same linear number of z's such that

the distance in the graph is of linear size. Next, we consider cuts in

this graph separating these fragments. Since the cuts are disjoint sets

of vertices, and the diameter is nearly-linear, there is a cut of about-

logarithmic size. However the cut is supposed to contain all the infor-

mation about �, otherwise the machine can be fooled. But one cannot

compress � into about-logarithmic size. Contradiction.

2
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