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Abstract. Some deterministic and probabilistic methods are presented

for counting and estimating the number of points on curves over �nite

�elds, and on their projections. The classical question of estimating the

size of the image of a univariate polynomial is a special case. For curves

given by sparse polynomials, the counting problem is #P-complete via

probabilistic parsimonious Turing reductions.

1. Introduction

One of the most celebrated results in algebraic geometry is Weil's theorem on

the number of points on algebraic curves over a �nite �eld. In this paper, we

address some computational problems related to this question.

Our main results are:

� A \computational Weil estimate" for projections of curves and images of

polynomials, in Section 3.

� #P-completeness of the exact counting problem for sparse curves, in

Section 4.

We consider a �nite �eld F

q

with q elements, an algebraic closure K of F

q

,

a polynomial f 2 F

q

[x; y] of degree n , the plane curve C = ff = 0g = f(a; b) 2

K

2

: f(a; b) = 0g and genus g � (n�1)(n�2)=2 de�ned over F

q

, and the number

N

k

(C) = #(C \ F

2

q

k

) of rational points on C over F

q

k . We assume that f is

squarefree, so that C is reduced, but C may be reducible or have singular points.

Our focus is on studying the curve C = C \ F

2

q

= f(a; b) 2 F

2

q

: f(a; b) = 0g in

F

2

q

.

The only general information about the numbersN

k

(C) is Weil's fundamen-

tal result that for an absolutely irreducible smooth projective curve C of genus g



2 von zur Gathen, Karpinski & Shparlinski

over F

q

there are algebraic integers #

1

; : : : ; #

g

2 C|the Frobenius roots|with

absolute values j#

i

j = q

1=2

for 1 � i � g such that

N

k

(C) = q

k

+ 1�

X

1�i�g

(#

k

i

+

�

#

k

i

); (1.1)

in particular, this implies the Weil estimate

jN

k

(C)� q

k

� 1j � 2gq

k=2

: (1.2)

Recall that f 2 F

q

[x; y] is absolutely irreducible if it is irreducible in K[x; y].

C = ff = 0g is smooth if there are no solutions to f = @f=@x = @f=@y = 0, and

a projective curve includes points at in�nity. Any text on algebraic geometry,

such as Shafarevich

(

1974

)

or Hartshorne

(

1977

)

, explains these notions, and

Appendix C in the latter text gives a highly readable exposition of Weil's results

and their far-reaching generalizations.

Some improvements on the Weil estimate|exploiting the algebraic nature

of the Frobenius roots|are in Serre

(

1983a, 1983b

)

, and Shparlinski

(

1992a

)

,

Chapter 5. Vladut & Drinfeld

(

1983

)

show N

1

(C) � g(q

1=2

�1)+o(g) for curves

of large genus over a �xed �eld; this is twice better than the Weil estimate.

Fried & Jarden (1986, Theorem 4.9) and Bach (1993) show that some variants of

(1.2) hold for absolutely irreducible projective curves even if they are singular.

Bach shows that (1.2) holds for the arithmetic genus g, which also satis�es

g � (n� 1)(n � 2)=2.

The �rst question addressed in this paper is the curve size problem: Can

we �nd an approximation to N

k

(C) that is better than the Weil estimate? We

deal with an a�ne plane curve C; for problems like curve counting, it is easy

to pass to the projective case, and also to curves given in 3{dimensional space.

The ultimate goal would be a deterministic algorithm that calculates N

k

(C)

exactly and runs in polynomial time (nk log q)

O(1)

; it is not clear at all whether

this goal can be attained. \Time" will usually mean arithmetic operations in

F

q

; the number of bit operations is at most a factor O~(log q) larger, where the

\soft-O" notation s = O~(t) means that s = t � (log t+ 2)

O(1)

.

Pila

(

1990

)

presented an algorithm for calculating N

k

(C) that generalized

Schoof's (1985) method, which applies to elliptic curves. The computing time

of Pila's algorithm is (k log q)

�(n)

, where �(n) is a doubly exponential function

of n. Since the �rst version of the present paper appeared, Huang & Ierardi

(

1993

)

have given a probabilistic algorithm with running time as above, but

with �(n) = n

O(1)

.

For the related problem of counting the number of zeros of a multivariate

sparse polynomial over a \small" �nite �eld some probabilistic approximation
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algorithms are known; see Grigoryev & Karpinski

(

1991

)

and the references

there.

Section 2 introduces a \strip counting" method. It is based on the principle

that the behaviour of a curve over a wide enough \strip" is the same as over

the whole �eld, and uses Bombieri's (1966) bound on exponential sums along

a curve. We use it to count the number of absolutely irreducible components

de�ned over F

q

, and to get a size estimate from Weil's estimate.

The second question of this paper is the projection size problem: determine

the number of points in the image of the projection � : C ! F

q

onto the �rst

coordinate, and in fact the number r

i

of points in F

q

with exactly i preimages

under �. Section 3 presents a \computational Weil estimate" of the form

jr

i

� �

i

qj = O(q

1=2

); (1.3)

with �

i

2 Q, and a \strip counting" method for computing �

i

. This is \com-

putational" in the sense that the classical Weil estimate (1.2)|for a di�erent

problem|sets �

i

= 1, without any computation. Both the computing time

and the constant implied in (1.3) depend exponentially on n, and q has to be

prime for \strip counting".

We apply this result to the important problem of counting the number

of points with a �xed number of preimages under a univariate polynomial or

rational function. Apparently no \Weil estimate" has been previously known

for this problem; however, a special case of our resulting formula, namely for

the total image size of a polynomial, is essentially in Birch & Swinnerton-Dyer

(

1959

)

.

In Section 4, we show that curve counting is #P-complete via probabilistic

Turing reductions if the de�ning polynomial f 2 F

q

[x; y] is given in sparse

representation. This is based on e�cient methods, due to McCurley and Alford,

Granville & Pomerance, for �nding primes in certain arithmetic progressions.

The basic tool is a reduction from certain gcd problems for sparse polynomials

over Zfor which Plaisted

(

1977

)

proved NP-hardness and Quick

(

1986

)

#P-

hardness. In those papers, membership in NP or #P was left as an open

question. This is answered a�rmatively for the curve counting problem, and

as a consequence we also solve this open question for the special variant of the

gcd problem that we consider.

In Section 5, we reduce the general curve counting problem to that of abso-

lutely irreducible curves|that is the case to which the Weil estimate applies.

In Section 6, we show how to compute N

k

(C) quickly in the case of \small" n

and q and \large" k; in all other sections we restrict to the case k = 1. Section

7 gives an approximation scheme. This provides estimates also for \large" n,
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where the Weil estimate gives no information. In Section 8, we introduce a de-

terministic method to estimate the image size of special polynomial mappings

F

m

q

k

! F

q

; this method is particularly useful when k is large.

Throughout the paper, we use M(k) to denote an upper bound on the

cost of multiplication, so that polynomials in R[x] of degree at most k can

be multiplied with O(M(k)) operations in R, for any ring R. We may use

M(k) = k

2

for \classical arithmetic", and M(k) = k log k loglog k for \fast

arithmetic". If R � R[y]=(f) = S is an extension of degree m, then one can

multiply in S[x] with O(M(mn)) operations in R (see von zur Gathen & Shoup

1992, Lemma 2.2). All logarithms in this paper are natural.

2. Estimating the size of a curve over a prime �eld

We propose a deterministic \strip counting" algorithm to estimate the size

of curves over a prime �eld F

q

. It relies on the general principle that the

\behaviour" of a curve or an algebraic variety over a wide enough \strip" is

the same as over the whole �eld; Shparlinski

(

1992b

)

gives another example of

using this principle.

We will use the following notation: K is an algebraic closure of F

q

, C �

K

m+1

is a curve of degree n, C = C \F

m+1

q

are the rational points of C over F

q

.

Often we concentrate on plane curves C = f(a; b) 2 K

2

: f(a; b) = 0g given by

f 2 F

q

[x; y] of total degree n.

Since we are interested in counting the size of curves, we assume that they

are reduced, i.e., without multiple components; for a plane curve C = ff = 0g,

this means that f is squarefree.

For an absolutely irreducible a�ne curve C � F

m

q

, (1.2) implies that

j#C � qj � n

2

q

1=2

; (2.1)

since

j#C � qj � 2

(n � 1)(n� 2)

2

q

1=2

+ n+ 1 � n

2

q

1=2

:

The last inequality holds for n � 2, but (2.1) is obviously true also for n = 1.

For a set S � F

m

q

and A � F

q

, we write

S(A) = S \ (A� F

m�1

q

) (2.2)

for the set of points in S over A. The crucial ingredient for our \strip-counting"

is the following consequence of Bombieri's (1966) bound on exponential sums

along a curve.
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Lemma 2.1. Let p be a prime, and C � F

m+1

p

a curve of degree n < p over F

p

none of whose absolutely irreducible components de�ned over F

p

is contained

in a hyperplane fag � F

m

p

with a 2 F

p

. Furthermore, let 0 < h � p and

A = f0; : : : ; h � 1g � F

p

. Then the number #C(A) of points on C over A

satis�es

j#C(A)� h#C=pj � ((n

2

� n)p

1=2

+ n

2

) log p;

and if n � p

1=2

, then

j#C(A)� h#C=pj � n

2

p

1=2

log p:

Proof. We have

#C(A) =

1

p

X

(a

1

;:::;a

m

)2C

X

0�u<p

X

0�v<h

exp(2�iu(a

1

� v)=p):

Rearranging the sum and separating the term h#C=p corresponding to u = 0,

we get

#C(A)� h#C=p =

1

p

X

1�u<p

X

(a

1

;:::;a

m

)2C

exp(2�iua

1

=p)

X

0�v<h

exp(�2�iuv=p):

The bound of Bombieri

(

1966

)

, Theorem 6, on exponential sums along a curve

implies for 1 � u < p that

�

�

�

X

(a

1

;:::;a

m

)2C

exp(2�iua

1

=p)

�

�

�

� (n

2

� n)p

1=2

+ n

2

:

Using this bound and the well-known inequality

X

1�u<p

�

�

�

X

0�v<h

exp(2�iuv=p)

�

�

�

< p log p

(see e.g., Vinogradov 1981, Exercise 11.c for chapter 3, p. 52), we get

j#C(A)� h#C=pj < ((n

2

� n)p

1=2

+ n

2

) log p:

2

We say that a curve in F

m+1

q

is without vertical components (over F

q

) if

and only if it has no absolutely irreducible components de�ned over F

q

in a

hyperplane fag � F

m

q

for any a 2 F

q

, and say without vertical lines if m = 1.

This condition is necessary for the estimate of Lemma 2.1 to be valid. In

general, it is not clear to us how to check e�ciently for it. However, for a plane
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curve C given by f 2 F

q

[x; y], we can compute the content c = cont

y

(f) 2 F

q

[x],

and then C

0

= ff=c = 0g has no vertical lines. The vertical lines in C are

precisely the lines fag � F

q

, where a 2 F

q

is a root of c. Given the number of

absolutely irreducible components or (an estimate for) the number of points on

C

0

, it is easy to compute the corresponding quantity for C. In the sequel, we

will often assume that C is without vertical lines.

Lemma 2.2. Let C � F

m+1

q

be a reduced curve of degree n without vertical

components, C

1

; : : : ; C

�

the absolutely irreducible components of C that are

de�ned over F

q

, and A � F

q

. Then

j#C(A)�

X

1�i��

#C

i

(A)j � n

2

=2:

Proof. We decompose C into its irreducible components over F

q

:

C = C

1

[ � � � [ C

�

[ C

�+1

[ � � � [ C

�

;

where C

�+1

; : : : ; C

�

are not absolutely irreducible, and let n

i

= deg C

i

for i � � ,

so that n =

P

1�i��

n

i

. >From B�ezout's Theorem one sees that

#(C

i

(A) \ C

j

(A)) � n

i

n

j

; 1 � i < j � �;

and

#C

i

(A) � n

2

i

=4; � < i � �:

For example, see the proof of Lemma 5.2 whose estimates of the number of

rational points (not the complexity) are based on B�ezout's Theorem only and

can be applied to non-plane curves as well.

Thus we have,

X

1�i��

#C

i

(A)�#C(A) �

X

1�i<j��

#(C

i

(A) \ C

j

(A))

�

X

1�i<j��

n

i

n

j

� n

2

=2;

#C(A)�

X

1�i��

#C

i

(A) �

X

�<i��

#C

i

(A)

�

X

�<i��

n

2

i

=4 � n

2

=4: 2
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Theorem 2.3. Let p be a prime, C � F

m+1

p

a curve of degree n � p

1=2

with ex-

actly � absolutely irreducible components that are de�ned over F

p

and without

vertical components, 0 < h � p, and A = f0; : : : ; h� 1g � F

p

. Then

(i) j#C(A)� h#C=pj � n

2

+ n

2

p

1=2

log p < 2:03n

2

p

1=2

log p;

(ii) j#C(A)� �hj � n

2

(1=2 + p

1=2

+ p

1=2

log p) < 3n

2

p

1=2

log p:

Proof. (i) Let C

1

; : : : ; C

�

� F

m+1

p

be the absolutely irreducible components

of C that are de�ned of F

p

, and n

i

= deg C

i

for i � �, so that

P

1�i��

n

i

� n.

Using Lemmas 2.1 and 2.2, we have

j#C(A)� h#C=pj

� j#C(A)�

X

1�i��

#C

i

(A)j+

X

1�i��

j#C

i

(A)� h=p �#C

i

j

+ h=p � j

X

1�i��

#C

i

�#Cj

� n

2

=2 +

X

1�i��

n

2

i

p

1=2

log p+ h=p � n

2

=2

� n

2

+ n

2

p

1=2

log p < 2:03n

2

p

1=2

log p;

since 1 < 1:03 p

1=2

log p for p � 2. For (ii), we have from Lemmas 2.2 and 2.1,

and (2.1), applied to the absolutely irreducible curves C

1

; : : : ; C

�

, that

j#C(A)� �hj � j#C(A)�

X

1�i��

#C

i

(A)j

+

X

1�i��

j#C

i

(A)� h=p �#C

i

j+ h=p �

X

1�i��

j#C

i

� pj

� n

2

=2 + p

1=2

log p

X

1�i��

n

2

i

+ h=p � n

2

p

1=2

� n

2

(1=2 + p

1=2

+ p

1=2

log p) < 3n

2

p

1=2

log p: 2

We will repeatedly use a \brute force" method for computing #C(A), where

C = ff = 0g � F

2

q

k

, namely, by calculating

deg gcd(f(a; y); y

q

k

� y) = #C(fag) (2.3)

for all a 2 A, and summing up. To estimate the time for this, we let MM(n)

denote the cost of n � n-matrix multiplication, so that MM(n) = O(n

2:376

)

(Coppersmith & Winograd 1990).
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Lemma 2.4. Let n;m; k � 1, f 2 F

q

[x; y] have degree n, C = ff = 0g � F

2

q

k

,

and A � F

q

m

� F

q

k
. Then we can compute #C(A) with

O

�

#A �M(m)(1 + logm) � (M(n) log(nq) + n

1=2

log k[M(n) +MM(n

1=2

)])

�

or O~(#A �m � (n log q + n

1:7

log k))

operations in F

q

, and when k = m = 1, with only

O(#A �M(n) log(nq))

operations.

Proof. For each a 2 A, we can compute y

q

k

mod f(a; y) with

O(M(n) log q + n

1=2

log k[M(n) +MM(n

1=2

)])

operations in F

q

m

(von zur Gathen & Shoup 1992, Lemma 5.3), and the gcd in

(2.3) with O(M(n) log n) operations.

2

Actually, this method even computes the set C(A).

In particular, the \brute force" method of calculating N

k

(C), with A = F

q

k ,

can be executed with O~(nq

k

) operations in F

q

.

Corollary 2.5. Let p be a prime, C � F

2

p

have degree n, � > 0, and set

r = p

1=2

=(2:03 log p).

(i) We can compute an approximation  to #C satisfying

j#C � j � �p

with O~(�

�1

n

3

p

1=2

) operations in F

p

if n

2

� �r, and O~(np) operations

otherwise.

(ii) If n

2

� r=5, then we can compute the number of absolutely irreducible

components of C de�ned over F

p

with O~(n

3

p

1=2

) operations in F

p

.

Proof. We may assume that C has no vertical lines. For (i), we set h =

2:03 �

�1

n

2

p

1=2

log p. If n

2

> �r, so that h > p, we apply Lemma 2.4 with p = q,

m = k = 1 and A = F

p

to compute #C exactly, with O(pM(n) log(np))

operations in F

p

. Otherwise, we set A = f0; : : : ; h � 1g � F

p

, compute

#C(A) by Lemma 2.4 with O(hM(n) log(np)) operations in F

p

, and return

 = p#C(A)=h. The claim follows from Theorem 2.3 (i).
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(ii) Let � be the number of these components, let � = 1=3, and h =

9n

2

p

1=2

log p. Since h � p, we have from Theorem 2.3 (ii)

j#C(A)=h� �j � 1=3;

so that it is easy to determine the integer �.

2

In Theorem 5.3 below we give a di�erent (probabilistic) algorithm which is

faster than the one of Corollary 2.5 if n is small and p is large.

3. Estimating the size of a projection

In this section, we present an algorithm to estimate the size of the projection

of a plane curve, and the size of the image of a univariate polynomial.

Let C = ff = 0g � F

2

q

be a curve without vertical lines, given by f 2 F

q

[x; y]

of degree n, and let

� : C ! F

q

(3.1)

be the �rst projection, with �((a; b)) = a. Furthermore, let A � F

q

, i 2 N, and

de�ne

R

i

(A) = fa 2 A : #�

�1

(fag) = ig; r

i

(A) = #R

i

(A): (3.2)

We are interested in the two cases where A = F

q

, or where q is a prime and

A = f0; : : : ; h�1g for some h near q

1=2

. Since A is �xed for most of this section,

we usually write R

i

and r

i

.

For our task, it is su�cient to determine the more informative r

1

; : : : ; r

n

,

since the size of the projection satis�es

#�(C) =

X

1�i�n

r

i

: (3.3)

The idea is to reduce the determination of r

i

to the size of certain associated

curves S

1

; : : : ; S

n

. Then an estimate of #S

k

�a la Weil, with an error term

O(q

1=2

), will lead to an estimate of the r

i

's with error O(q

1=2

); we call this a

\computational Weil estimate". The constants implied in the Big-Oh depend

exponentially on n.

We may assume that the de�ning polynomial f is squarefree, since repeti-

tions of factors do not change C, and we can easily compute the squarefree part

of an arbitrary f . Furthermore, we may assume that C contains no vertical

lines fx = ag. Thus R

i

= � for i > n.
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For 1 � k � n, let

S

k

= f(a

0

; a

1

; : : : ; a

k

) 2 F

k+1

q

: f(a

0

; a

1

) = � � � = f(a

0

; a

k

) = 0;

a

i

6= a

j

for 1 � i < j � kg;

s

k

= #S

k

:

The geometry of S

2

is discussed in von zur Gathen & Shparlinski

(

1995

)

. Here

we need the following statement which probably is of independent interest.

Lemma 3.1. If the curve C does not containd a vertical line then no absolutely

irreducible component of S

k

, 1 � k � n is vertical.

Proof. Assume that an absolutely irreducible component D of S

k

is con-

tained in fag�F

k+1

p

for some a 2 F

p

. Then there is a projection �

i

:F

k+2

p

! F

2

p

with

�

i

(a

0

; a

1

; : : : ; a

k

; b) = (a

0

; a

i

)

for some i � k such that �

i

(D) is a curve; but then its closure is a vertical

component of C, contradicting our assumption.

2

Under the surjective map S

k

!

S

k�i�n

R

i

with (a

0

; : : : ; a

k

) 7! a

0

, each

a 2 R

i

has exactly i

(k)

images, where i

(k)

= i � (i � 1) � � � � � (i � k + 1) is the

Pochhammer symbol. Thus

s

k

=

X

k�i�n

i

(k)

r

i

for 1 � k � n: (3.4)

We now show how to determine the r

i

's explicitly from the s

k

's, using (3.4),

then how to obtain approximations for the r

i

's from approximations to the s

k

's,

and �nally how to obtain approximations to the s

k

's.

Lemma 3.2. (3.4) is equivalent to

r

i

=

1

i!

X

i�k�n

(�1)

i+k

s

k

(k � i)!

for 1 � i � n:

Proof. We consider (3.4) as a system of linear equations in Q(s

1

; : : : ; s

n

),

with indeterminates s

1

; : : : ; s

n

. Since it is triangular with nonzero entries k

(k)

=

k! on the diagonal, it has a unique solution. Thus it is su�cient to show that

the quantities stated satisfy (3.4), i.e., that s

k

equals

X

k�i�n

i

(k)

�

1

i!

X

i�j�n

(�1)

i+j

s

j

(j � i)!

=

X

k�j�n

s

j

X

k�i�j

(�1)

i+j

i!

(i� k)!i!(j � i)!

:
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Consider some j with k � j � n. The coe�cient of s

j

in the last expression

equals

X

k�i�j

(�1)

i+j

(i� k)!(j � i)!

=

X

0�l�j�k

(�1)

l+k+j

l!(j � k � l)!

=

(�1)

k+j

(j � k)!

X

0�l�j�k

(�1)

l

�

j � k

l

�

= �

jk

: 2

Corollary 3.3. In the above notation, we have

#�(C) =

X

1�k�n

(�1)

k+1

s

k

k!

:

Proof. By (3.3), we have

#�(C) =

X

1�i�n

X

i�k�n

(�1)

i+k

s

k

i!(k � i)!

=

X

1�k�n

X

1�i�k

(�1)

i

�

k

i

�

�

(�1)

k

s

k

k!

=

X

1�k�n

(�1)

k+1

s

k

k!

: 2

A formula essentially equivalent to Corollary 3.3 in the particular case of

f = g(y)� x with g 2 F

q

[x] is in Birch & Swinnerton-Dyer

(

1959

)

.

Suppose that we have an approximation �

k

to s

k

for 1 � k � n, so that

�

k

= s

k

� �

k

is small in absolute value. If we set

�

i

=

1

i!

X

i�k�n

(�1)

i+k

�

k

(k � i)!

(3.5)

for 1 � i � n, then �

i

is an approximation to r

i

, since

r

i

� �

i

=

1

i!

X

i�k�n

(�1)

i+k

�

k

(k � i)!

: (3.6)

If q = p is a prime and not too large relative to n, we can apply our \strip

counting" method from Section 2 to the present problem.
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Algorithm 3.4. Projection size estimation.

Input: A prime p, f 2 F

p

[x; y] of degree n and with cont

y

f = 1, and h with

1 � h < p=2.

Output: An estimate �

i

of r

i

= r

i

(F

p

), as in (3.2), for 1 � i � n.

1. For each a 2 A = f0; : : : ; h� 1g, determine

#�

�1

(fag) = deg gcd(f(a; y); y

p

� y):

2. For 1 � i � n, return

�

i

= #fa 2 A : #�

�1

(fag) = ig:

Theorem 3.5. Let p; f; n; h be an input to the above algorithm and n � 4.

The algorithm is deterministic and can be performed with O(hM(n) log pn)

operations in F

p

, and the output satis�es for all i � n

jr

i

� �

i

j � n

2n

h

�1

p

3=2

log p:

Proof. Since one gcd calculation can be done with O(M(n) log p+M(n) log n)

operations, the whole algorithm takes

O(hM(n) log(pn)) or O(hn log n loglog n log pn)

operations in F

p

.

For 1 � k � n, we consider the curve S

k

� F

k+2

p

given by the k + 1

polynomials

f(x

0

; x

1

); f(x

0

; x

2

); : : : ; f(x

0

; x

k

);

y �

Y

1�i<j�k

(x

j

� x

i

)� 1 2 F

p

[x

0

; : : : ; x

k

; y];

(3.7)

and the number

t

k

= #S

k

(A)

of points on S

k

over A, so that

t

k

=

X

k�i�n

i

(k)

�

i

:

The curve S

k

is isomorphic to the curve given by the �rst k equations in (3.7)

minus the diagonals, and thus the Zariski closure of the set in F

k+2

p

correspond-

ing to S

k

, and its degree is at most n

k

by B�ezout's Theorem.
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Let �

k

= pt

k

=h. Taking into account LemmaLemma 3.1, by Theorem 2.3(i),

we have

js

k

� �

k

j = p=h � jh#S

k

=p �#S

k

(A)j � p=h � 2:03n

2k

p

1=2

log p:

In step 2, �

i

satis�es (3.5), and we �nd from (3.6)

jr

i

� �

i

j �

1

i!

X

i�k�n

2:03n

2k

h

�1

p

3=2

log p

(k � i)!

� n

2n

h

�1

p

3=2

log p: 2

For n � 3, we �nd jr

i

� �

i

j � 3n

2n

h

�1

p

3=2

log p. As an example, suppose

that n

2n+1

� p

1=8

, and set h = p

3=4

. Then we obtain with O~(p

3=4

) operations

in F

p

an approximation of the r

i

's with error O~(p

7=8

).

Of course, we can also estimate #�(C) via the resultant

r = res

y

(f(x; y); y

q

� y) 2 F

q

[x];

whose set of roots in F

q

equals �(C). Unfortunately this does not help much as

the degree of r is too large.

We apply our technique to estimate the size of the image of a mapping

F

p

! F

p

given by a univariate rational function.

Corollary 3.6. Let p be a prime, n � 4, f = g

1

=g

2

2 F

p

(x) with g

1

; g

2

2

F

p

[x] relatively prime and of degree less than n, 0 < h < p, and

u

i

= #fa 2 F

p

: #f

�1

(fag) = ig

be the number of points in F

p

with exactly i preimages under the associated

partial mapping f : F

p

! F

p

, and

V (f) =

X

1�i�n

u

i

the number of images of f . We can compute with O(hM(n) log n) operations

in F

p

approximations �

i

and � such that for all i � n

ju

i

� �

i

j; n

�1

jV (f)� �j � n

2n

h

�1

p

3=2

log p:

Proof. We apply Theorem 3.5 to the curve C = fg

1

(y) = xg

2

(y)g.

2

The results of this and the previous section can be extended to counting

complete intersections over �nite prime �elds, by using the results of Shparlinski

& Skorobogatov

(

1990

)

on the distribution of points on such varieties instead

of Lemma 2.1.



14 von zur Gathen, Karpinski & Shparlinski

4. #P-completeness of sparse curve counting

In this section, we show that the counting problem for sparsely represented

curves over �nite �elds is #P-complete, via probabilistic Turing reductions.

We rely on hardness results proved by Quick

(

1986

)

, which in turn are

based on Plaisted's (1977, 1984) work. A bonus of our approach is that we

have upper bounds matching the previously known lower bounds, so that now

some variants of Plaisted's and Quick's problems are shown to be complete for

NP and #P, respectively.

Plaisted (1984), Theorem 5.1, associates to a given Boolean formula F in 3-

conjunctive normal form polynomials f

1

; : : : ; f

n

2Z[x] such that F is satis�able

if and only if gcd(f

1

; : : : ; f

n

) 6= 1. This shows that the latter problem is NP-

hard. Quick gives a clever parsimonious variation of this reduction, i.e., such

that the number of satisfying assignments of F can be e�ciently computed

from deg gcd(f

1

; : : : ; f

n

) for several instances of such polynomials. This shows

that the latter problem is #P-hard.

Here are the formal de�nitions|in the style of Garey & Johnson

(

1979

)

|of

our counting problems. All input numbers are represented in binary, and for

the elements of Z

p

, we use the representatives f0; 1; : : : ; p � 1g. The sparse

representation of a uni- or bivariate polynomial is a list of pairs (coe�cient,

exponent), and the dense representation lists all coe�cients up to the degree.

A �nite �eld F

q

with q = p

m

elements, where p is prime, is represented by

(p;  ), where  2 Z

p

[x] is monic irreducible of degree m. An element u of

F

q

is represented by the usual coe�cient vector (u

0

; : : : ; u

m�1

) 2 Z

m

p

, with

u �

P

0�i<m

u

i

x

i

mod  .

Problem 4.1. CyclotomicGcd.

Instance: n 2 N, pairwise distinct primes p

1

; : : : ; p

n

� n

2

, N = p

1

� � � p

n

, and

the sparse representations of f

1

; : : : ; f

n

2Z[x], where f

i

divides x

N

� 1 in Z[x]

for 1 � i � n.

Output: deg gcd(f

1

; : : : ; f

n

).

The bound p

i

� n

2

is rather arbitrary.

Problem 4.2. SpecialCyclotomicGcd.

Instance: n; p

1

; : : : ; p

n

; N; f

1

; : : : ; f

n

as in CyclotomicGcd, and a prime q

such that q � 1 mod N .

Output: deg gcd(f

1

; : : : ; f

n

).
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Problem 4.3. CommonRootsMany.

Instance: A �nite �eld F

q

, and the sparse representations of f

1

; : : : ; f

n

2 F

q

[x].

Output: The number deg gcd(f

1

; : : : ; f

n

; x

q

� x) of distinct common roots of

f

1

; : : : ; f

n

in F

q

.

Problem 4.4. CommonRoots.

Instance: A �nite �eld F

q

, and the sparse representations of f; g 2 F

q

[x].

Output: The number deg gcd(f; g; x

q

� x) of distinct common roots of f and g

in F

q

.

Problem 4.5. SparseCurves.

Instance: A �nite �eld F

q

, and the sparse representation of a polynomial f 2

F

q

[x; y].

Output: The number of points on the curve C = f(a; b) 2 F

2

q

: f(a; b) = 0g.

Furthermore, we let #3Sat be the #P-complete problem of counting the

number of satisfying truth assignments for a propositional formula in 3-CNF

form. The following result can be obtained from Quick's (1986) work and is

the basis for our completeness proofs.

Fact 4.6. #3Sat � CyclotomicGcd, via a deterministic parsimonious Tu-

ring reduction, and CyclotomicGcd is #P-hard.

The proof that SparseCurves is #P-complete proceeds in three stages:

�rst we exhibit probabilistic polynomial-time parsimonious Turing reductions

SpecialCyclotomicGcd � CommonRootsMany

� CommonRoots � SparseCurves;

(4.1)

and then show how to �nd certain prime numbers e�ciently, so that Quick's

reduction actually implies that #3Sat� SpecialCyclotomicGcd. Finally,

it is easy to see that SparseCurves 2 #P.

For the �rst reduction, let (n; p

1

; : : : ; p

n

, N; f

1

; : : : ; f

n

; q) be an instance of

SpecialCyclotomicGcd. By assumption, all f

i

and g = gcd(f

1

; : : : ; f

n

) 2

Z[x] are monic. For any u 2 Z[x], we denote by u 2 F

q

[x] the polynomial

obtained by taking each coe�cient modulo q. The reduction maps the given

instance to (F

q

; f

1

; : : : ; f

n

). We have

x

N

� 1 =

Y

jjN

�

j

2Z[x];
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where �

j

2Z[x] is the jth cyclotomic polynomial. Thus

x

N

� 1 =

Y

jjN

�

j

in F

q

[x], and since x

N

� 1 2 F

q

[x] is squarefree, it follows that the �

j

's are

pairwise relatively prime. For 1 � i � n, letA

i

� N be such that f

i

=

Q

j2A

i

�

j

:

Then

f

i

=

Y

j2A

i

�

j

; g =

Y

j2A

�

j

;

where A = A

1

\ � � � \ A

n

. Since x

N

� 1 splits into linear factors in F

q

[x] (see

Lidl & Niederreiter

(

1983

)

, Theorem 2.47), we have

g = gcd(f

1

; : : : ; f

n

) = gcd(f

1

; : : : ; f

n

; x

q

� x) =

Y

j2A

�

j

;

and deg g = deg g.

For the second reduction in (4.1), we need a lemma; see Theorem 6.2 and

\Note Added in Proof" of Di�az & Kaltofen

(

1995

)

for multivariate polynomials.

Lemma 4.7. Let F be a �eld, f

1

; : : : ; f

n

2 F [x] of degree at most n, h =

gcd(f

1

; : : : ; f

n

), A � F �nite, a

3

; : : : ; a

n

2 A uniformly chosen random ele-

ments, and g = f

2

+

P

3�i�n

a

i

f

i

2 F [x]. Then h divides gcd(f

1

; g), and

probfh = gcd(f

1

; g)g � 1 � n=#A:

Proof. After dividing each f

i

by h, we may assume that h = 1, and also that

f

1

6= 0. Let A

3

; : : : ; A

n

be new indeterminates over F (x), R = F [A

3

; : : : ; A

n

],

G = f

2

+

P

3�i�n

A

i

f

i

2 R[x], r = res

x

(f

1

; G) 2 R. Then r is a polynomial in

A

3

; : : : ; A

n

of degree at most n, and if r(a

3

; : : : ; a

n

) 6= 0, then gcd(f

1

; g) = 1.

Any factor u of gcd(f

1

; G) in R[x] is in fact in F [x], and therefore u divides

f

1

; : : : ; f

n

. It follows that u 2 F , gcd(f

1

; G) = 1, and r 6= 0. Now Schwartz's

(1980) Lemma implies the claim.

2

For the second reduction, let (F

q

; f

1

; : : : ; f

n

) be an instance of Common-

RootsMany, and n the maximal degree of f

1

; : : : ; f

n

. If q � 2n, we choose

a

3

; : : : ; a

n

2 F

q

at random and set

g = f

2

+

X

3�i�n

a

i

f

i

2 F

q

[x]:
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By Lemma 4.7, the reduction to the instance (F

q

; f

1

; g) of CommonRoots

works correctly. If q < 2n, we �rst construct a �eld extension of F

q

of degree

dlog

q

ne and make our random choices from this new �eld. This does not change

the gcd to be computed. All of this can be done in random polynomial time.

The third reduction in (4.1) is given by

(F

q

; f; g) 7! (F

q

; h)

where f; g 2 F

q

[x] and h = f � gy 2 F

q

[x; y]. We let c = #C be the size of the

curve C = f(a; b) 2 F

2

q

: h(a; b) = 0g described by h; this number c is returned

by the oracle for SparseCurves. The reduction returns

n = dc=qe � 1

if q - c or g(0) 6= 0, and

n = c=q

if q j c and g(0) = 0. Let

n

�

= deg gcd(f; g; x

q

� x)

be the output required by CommonRoots. We prove n

�

= n; since g(0) can

easily be computed and c � q

2

, this will show that we have a (deterministic)

polynomial-time reduction.

Let k = deg gcd(g; x

q

� x) be the number of distinct roots of g in F

q

; then

0 � k � q. For (a; b) 2 F

2

q

, we have

(a; b) 2 C () h(a; b) = 0

() (g(a) 6= 0 and b = f(a)=g(a))

or f(a) = g(a) = 0:

Thus

c = (q � k) + qd

�

; n

�

=

c+ k

q

� 1:

Since k � q, this equals dc=qe�1 if q - c. If q j c, it equals c=q�1 if k = 0 (and

then g(0) 6= 0), and c=q if k � 1 (and then k = q and g(0) = 0). This shows

n

�

= n, and �nishes the reductions in (4.1).

The following is Quick's (1986) reduction from #3Sat to Cyclotomic-

Gcd. He uses certain polynomials Poly(F

j

; Q

i

) 2Z[x] introduced by Plaisted.

Algorithm 4.8. Quick's reduction.

Input: A Boolean formula F = F

1

^ � � � ^ F

k

on n variables in 3-CNF form.

Output: The number s of truth assignments that satisfy F .
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1. Let r

1

; : : : ; r

n

be the n smallest prime numbers satisfying r

i

=(log r

i

)

2

�

1500n. For 1 � i � n, let P

i

= (p

i1

; : : : ; p

in

) be the vector of the n

smallest prime numbers in the arithmetic progression f2 + r

i

a : a 2 Ng.

2. For i = 1; : : : ; n do the following steps.

i. For j = 1; : : : ; k compute the sparse representation of

f

ij

= Poly(F

j

; P

i

) 2Z[x]:

[Then each f

ij

divides x

N

i

� 1, where N

i

= p

i1

� � � p

in

.]

ii. Call CyclotomicGcd to compute s

i

= deg gcd(f

i1

; : : : ; f

ik

).

3. Compute s 2 N such that s < r

1

� � � r

n

and s � s

i

mod r

1

� � � r

n

for

1 � i � n.

The missing link in our reductions is to prove that #3Sat� Special-

CyclotomicGcd, similar to Fact 4.6. For this, we have to be able to �nd

e�ciently for all i; j � n the primes r

i

; p

ij

of step 1., and furthermore primes

q

i

such that

q

i

� 1 mod

Y

1�j�n

p

ij

; (4.2)

as in SpecialCyclotomicGcd. The generally valid estimates for the number

of primes in arithmetic progressions are not good enough for this task. Fortu-

nately, there are better estimates that are valid for all but a few \exceptional"

moduli; see Davenport

(

1980

)

, McCurley

(

1984

)

. Our argument is based on

the following special case of Theorem 2.1 from Alford et al.

(

1994

)

, where we

have set A = 49=20, � = 1=2, and � = 2=245 in that Theorem. We denote, as is

usual, by �(y;n; a) the number of primes up to y in the arithmetic progression

a+ nN, so that �(y) = �(y; 1; 1).

Fact 4.9. (Alford, Granville & Pomerance 1994) There exist positive x

0

, � 2

R and t 2 N such that for all x; y 2 R with y � x � x

0

there exists E � N

with #E < t and e � log x for all e 2 E, and such that

�(y;n; a) �

�(y)

2�(n)

whenever gcd(a; n) = 1, 1 � n � minfx

2=5

; yx

�3=5

g, and n is not divisible by

any e 2 E. Furthermore, there exists e

0

such that e � x

�

for all e 2 E with

e 6= e

0

.
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We now consider the following algorithm, which takes as inputs n and c � 1.

It also uses x

0

, �, and t as above.

1. Set B = 3cn log

2

n and determine the �rst n + 1 primes r

0

; : : : ; r

n

that

are at least B=2.

2. For i = 0; : : : ; n, determine the �rst nt primes p

i;1

; : : : ; p

i;nt

in the arith-

metic progression 2 + r

i

N, by consecutively testing its members for pri-

mality. If a member greater than x = maxfB

1=�

; x

0

g has to be tested,

mark i as \exceptional" and abandon that i. [At most one number i

will be so marked.] Renumber the r

i

's so that r

1

; : : : ; r

n

are not marked

\exceptional".

3. Set y = x

5n=2

and m = d5n log x � log(2=)e. For i = 1; : : : ; n, do the

following.

i. For 1 � k � t, set n

ik

=

Q

(k�1)n<j�kn

p

ij

.

ii. For 1 � k � t, choose m integers t

ik`

in f1; : : : ; by=n

ik

cg uniformly

at random, for 1 � ` � m.

iii. For 1 � k � t and ` = 1; : : : ;m, test 1 + t

ik`

� n

ik

for primality. If

some prime q

i

is found, then include this prime in the output, else

return \failure".

For the primality test in the last step, we may use any of the usual prob-

abilistic tests with an additional input  > 0: it takes time polynomial in the

input size and log 

�1

, returns the correct answer if the input is prime, and

for a composite input, it returns the correct answer with probability at least

1� =2tn

2

. In Fact 4.9, we may assume that � � 2=7. We set

N = maxf2 � 10

34

; 2=5�; 100t

2

; c

10

g:

Theorem 4.10. The above algorithm uses (n log 

�1

)

O(1)

bit operations and,

if n � N , it returns with probability at least 1 �  values which have the

following properties for 1 � i � n:

(i) a prime r

i

such that cn log

2

r

i

� B=2 � r

i

� B and r

j

6= r

i

for all j 6= i,

(ii) distinct primes p

i1

; : : : ; p

in

such that p

ij

� maxfB

1=�

; x

0

g and p

ij

�

2 mod r

i

for all j,

(iii) a prime q

i

satisfying (4.2).
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Proof. The time bound is clear. We will show that (i) and (ii) always hold,

and that (iii) is probably true.

For (i), we have by Rosser & Schoenfeld (1962, 3.8) that

�(B)� �(B=2) �

3B

10 log(B=2)

=

9n log

2

n

10

�

c

log c+ log(

3

2

n log

2

n)

:

Since c � 1 and n � 11, for any A � 1 we have

log(

3

2

n log

2

n) � 1;

c

log c+A

�

1

A

;

9

10

n(log n)

1=4

� n+ 1; (log n)

7=4

� log(

3

2

n log

2

n):

This implies that

�(B)� �(B=2) �

9n log

2

n

10

�

1

log(

3

2

n log

2

n)

� n+ 1;

so that r

n

� B. The assumption that n � N implies that

n

1=10

� c;

n

p

3=2�11=10

� 3 log

2

n;

n

p

3=2�1

� 3c log

2

n;

3

2

log

2

n � log

2

(3cn log

2

n) = log

2

B;

and for all i � n

r

i

� r

0

� B=2 =

3

2

cn log

2

n � cn log

2

B � cn log

2

r

n

� cn log

2

r

i

:

For (ii), we �rst note that r

i

� x

�

for each i � n. The assumptions that

� � 2=7 and n � N imply that

(2� 5�)=2� � 1;

�B

(2�5�)=2�

� �n

(2�5�)=2�

�

2

5

;

�B

1=�

�

2

5

B

5=2

:
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Since �(x) � x= log x, Fact 4.9 says that for all i with at most one exception

(namely, when possibly r

i

= e

0

) we have

�(x; r

i

; 2) �

�(x)

2�(r

i

)

�

B

1=�

2 log(B

1=�

)B

=

�B

1=��1

2 logB

�

2

5

B

3=2

2 logB

=

(3cn log

2

n)

3=2

5 log(cn log

2

n)

:

We have c

3=2

� log c, n � log

2

n, and

3

3=2

n

1=2

log

2

n > n

1=2

� 10t;

so that

(3cn log

2

n)

3=2

5 log(cn log

2

n)

�

3

3=2

c

3=2

n

3=2

log

3

n

5(log c+ log(n

2

))

�

3

3=2

c

3=2

n

3=2

log

3

n

5 log c � log(n

2

)

� tn �

3

3=2

n

1=2

log

3

n

10t log n

> tn:

This shows that for all but at most one i we will �nd tn primes p

ij

� x,

and that indeed at most one i will be marked \exceptional" in step 2.

For (iii), �x some i with 1 � i � n. Since n

i1

; : : : ; n

it

are pairwise relatively

prime, each e 2 E divides at most one of them, and some n

ij

is not a multiple

of any e 2 E; denote this value of j by j

0

, and n = n

ij

0

. We show that step

3.iii for j = j

0

is likely to return a prime satisfying (iii). We have

�(y;n; 1) �

�(y)

2�(n)

�

y

2 log y � n

:

Therefore, for q = 1 + td with t 2 f1; : : : ; by=ncg random, we have

prob(q prime) �

�(y;n; 1)

by=nc

�

y

2 log y � d � y=n

=

1

2 log y

=

1

5n log x

:

Therefore, the probability that none of the random choices gives a prime

number is at most

�

1�

1

5n log x

�

m

�

�

1�

1

5n log x

�

5n log x�log(2=)

� e

� log(2=)

=



2

:
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Furthermore, the probability that all primality tests answer correctly is at least

�

1�



2tn

2

�

tn

2

� 1�



2

;

so that step 3.iii returns a prime number q

i

with probability at least (1�



2

)

2

�

1� .

2

We can now prove the main result of this Section.

Theorem 4.11. The problems SpecialCyclotomicGcd, CommonRoots,

CommonRootsMany, and SparseCurves are #P-complete under proba-

bilistic polynomial-time parsimonious Turing reductions.

Proof. Using Theorem 4.10, we can implement Quick's reduction so that it

actually yields #3Sat � SpecialCyclotomicGcd. By the #P-complete-

ness of #3Sat and (4.1), it is su�cient to see that SparseCurves 2 #P. We

consider a non-deterministic Turing machine which on input (F

q

; f) generates

all pairs (a; b) 2 F

2

q

and checks for each whether (a; b) 2 C = ff = 0g. If so, it

accepts, and otherwise it rejects. Thus the number of accepting computations

is #C. Each check can be done in polynomial time.

2

5. Reduction to absolutely irreducible curves

In this section, we show that the computation of the curve size can be reduced

in random polynomial time to the same question about absolutely irreducible

curves. This is the case to which Weil's Theorem applies.

So now we are given f 2 F

q

[x; y] of degree n, and want to compute #C for

C = ff = 0g � F

2

p

. We factor f as

f = f

1

� � � f

�

;

with f

1

; : : : ; f

�

2 F

q

[x; y] irreducible.

There are several algorithms in the literature for this factorization: Chistov

& Grigoryev

(

1982

)

, Lenstra

(

1985

)

, and von zur Gathen & Kaltofen

(

1985

)

.

The latter paper givesO~(n

7

(n

5

+log q) log

2

q) bit operations. These algorithms

are probabilistic of the Las Vegas type, i.e., they never return an incorrect

answer, but they may fail, with controllably small probability. Shparlinski

(

1992a

)

, Theorem 1.7, gives a deterministic method whose cost is O(n

3:7

log q)

for almost all input polynomials.
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We will assume from now on, without loss of generality, that f is squarefree.

Next we determine for each f

i

whether it is absolutely irreducible, i.e., irre-

ducible over an algebraic closure of F

q

. Kaltofen's (1985) algorithm O~(n

8

+

n

2

log q) operations in F

q

.

We order the irreducible factors of f so that f

1

; : : : ; f

�

are absolutely ir-

reducible and f

�+1

; : : : ; f

�

are not, for some � � � . For 1 � i; j � � , we

set

U

i

= ff

i

= 0g � F

2

q

; u

i

= #U

i

;

V

ij

= ff

i

= f

j

= 0g � F

2

q

; v

i

= #

S

k 6=i

V

ik

:

Since C =

S

1�i��

U

i

, we have

#C =

X

1�i��

(u

i

� v

i

) + #

[

1�i<j��

V

ij

:

We now show how to compute all these quantities quickly, except for the u

i

with i � �.

Lemma 5.1. Let F be a �eld, and f; g 2 F [x; y] have total degree at most n.

Then the resultant

r = res

y

(f; g) 2 F [x]

can be computed with O(M(n

3

) log n) operations in F .

Proof. It is well-known that r can be calculated by a fast continued-

fraction algorithm in F (x)[y] and using the subresultant description of r with

O(M(n) log n) operations in F (x); see, e.g., von zur Gathen

(

1991

)

, steps 4, 5, 6

of the algorithm in Section 2. By the subresultant theory, the degree in x of each

intermediate result is at most n

2

, so that the total cost is O(M(n)(n

2

) log n)

operations in F . In fact, using Lemma 2.2 from von zur Gathen & Shoup

(

1992

)

, this can be done with O(M(n

3

) log n) operations.

2

Lemma 5.2. Let f; g 2 F

q

[x; y] have total degree m;n, respectively, and as-

sume that m � n.

(i) If gcd(f; g) = 1, then

V = f(a; b) 2 F

2

q

: f(a; b) = g(a; b) = 0g

can be computed probabilistically with O((n

4

+ n

2

log q) � log

2

n loglog n)

operations in F

q

, and

#V � mn:
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(ii) If f is irreducible and not absolutely irreducible, then

U = f(a; b) 2 F

2

q

: f(a; b) = 0g

can be computed probabilistically with O~(n

11

(n

4

+ log q) log

2

q) opera-

tions in F

q

, and

#U � n

2

=4:

Proof. (i) The classical method for �nding V is to compute the resultant

r = res

y

(f; g) 2 F

q

[x];

�nd all roots a

1

; : : : ; a

k

2 F

q

of r, and then all roots b

ij

in F

q

of

h

i

= gcd(f(a

i

; y); g(a

i

; y); y

q

� y) 2 F

q

[y];

for 1 � i � k. Then V is the set of all these (a

i

; b

ij

).

By Lemma 5.1, r can be computed with O(M(n

3

) log n) operations in F

q

.

Since deg r � n

2

, we can compute a

1

; : : : ; a

k

(probabilistically) with O((n

4

+

n

2

log q)�log

2

n loglog n) operations in F

q

(von zur Gathen & Shoup 1992). Now

�x some i � k. Then y

q

mod f(a

i

; y) can be calculated with O(M(n) log(dq))

operations in F

q

, and then h

i

withO~(n) operations. All roots of h

i

can be found

with O~(n

2

i

+ n

i

log q) operations in F

q

, where n

i

= deg h

i

. Since

P

1�i�k

n

i

�

mn � n

2

by B�ezout's Theorem, the total time is O~(n

4

+ n

2

log q), and also

#V � mn.

(ii) The assumption implies that for some e � n, f has a nontrivial factor-

ization f

1

� � � f

r

with f

1

; : : : ; f

r

2 F

q

e

[x; y] irreducible and r � 2. We �rst �nd

an irreducible polynomial h 2 F

q

[x] of degree e, so that F

q

e

= F

q

[x]=(h), and

then factor f into two factors f = h

1

h

2

over F

q

e

, with

O~(n

7

(n

5

+ log q

e

) log

2

(q

e

))

operations in F

q

e

, or

O~(n

11

(n

4

+ log q) log

2

q)

operations in F

q

. Then we apply (i) to h

1

and h

2

, which yields

V = f(a; b) 2 F

2

q

e

: h

1

(a; b) = h

2

(a; b) = 0g:

Then U = V \ F

2

q

, since the Galois group of F

q

e

over F

q

operates transitively

on ff

1

; : : : ; f

r

g, and

#U � #V � deg h

1

� deg h

2

� n

2

=4;

by B�ezout's Theorem.

2
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Theorem 5.3. Let f 2 F

q

[x; y] have degree n, and C = ff = 0g.

(i) We can compute probabilistically the number of irreducible (over F

q

)

components and the number of absolutely irreducible components of C

with O~(n

11

(n

4

+ log q) log

2

q) operations in F

q

.

(ii) Suppose that we know #fg = 0g for each absolutely irreducible factor

g 2 F

q

[x; y] of f . Then we can determine#ff = 0g probabilistically with

the same number of operations.

Proof. (i) has been proven above. For (ii), we use Lemma 5.2 to calculate

all U

i

and u

i

with i > �, and all V

ij

and v

i

as above.

2

6. The number of points in extensions

The following result shows how to compute N

k

(C) quickly for curves given by

an equation of \small" degree over a \small" �eld.

The basic undelying idea is rather simple and probably have been know as

folklore for many years. However here we show that it can be implemented in

a really e�cient way.

Theorem 6.1. Let C be a smooth projective absolutely irreducible plane curve

over F

q

of degree n. Then N

k

(C) can be calculated with O~(q

n

2

) operations in

F

q

, plus O~(dk log q) bit operations.

Proof. Let g � n

2

=2 be the genus of C. Each Frobenius root # in (1.1)

satis�es a polynomial equation

a =

X

0�j�d

2

a

j

x

j

2 Q[x] with a(#) = 0:

Since j#j = q

1=2

, we have

ja

j

j �

�

d

2

j

�

q

j=2

for all j. The integers

u

k

= N

k

(C)� q

k

� 1 =

X

1�i�g

(#

k

i

+ #

k

i

)
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satisfy the linear recurrence relation

X

0�j�2g

a

j

u

k+j

= 0

for all k � 0. We �rst calculate v

1

= (u

1

; : : : ; u

d

2
) by the brute force method

(including the points \at in�nity") with O~(

P

1�j�2g

nq

j

) or O~(q

d

2

) operations

in F

q

. If k � d

2

, we are done. Otherwise, we calculate the recurrence coe�-

cients a

1

; : : : ; a

d

2
withO(M(d

2

) log d) operations inQ (von zur Gathen & Shoup

(

1992

)

, Lemma 10.1). Using the reapted squaring we compute the residue

b(X) � X

k�1

(mod a(X)); deg b(X) = d

2

� 1

(adding several zero coe�cients if necessary) with O~(n log k) operations in Q.

Thus

#

k

=

X

1�j�d

2

b

j�1

#

j

where

b(X) =

X

0�j�d

2

�1

b

j

X

j

:

Finally, we compute

u

k

=

X

1�j�d

2

b

j�1

u

j

Since u

j

� q

2j

for all j, all rational numbers occurring in this computation have

binary length O(k log q), and the last part of the algorithm can be done with

O~(dk log q) bit operations.

2

This method is better than the \brute force" method whenever n

2

� k. If

n

2

� log

q

k, it is running in quasi-linear time O~(k log q).

Open Question 6.2. Can we extract some nontrivial information about N

k

(C)

from the �rst ` < 2g values N

j

(C) for 1 � j � `?

Open Question 6.3. Is it possible to generalize Theorem 6.1 to the case

where n and q are small but the curve is given by an equation over F

q

k rather

than over F

q

?
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7. Probabilistic approximation of the size of a curve

Ma & von zur Gathen

(

1995

)

have previously given a probabilistic algorithm

to estimate the size of the image of a rational function. We now give a similar

algorithm for the more general problem of estimating the number #C of points

on a curve C = ff = 0g, where f 2 F

q

[x; y] of degree n is given.

Algorithm 7.1. Approximation Scheme.

Input: f 2 F

q

[x; y] and t 2 N.

Output: An estimate E of #ff = 0g.

(i) Choose t random independent uniformly distributed elements a

1

; : : : ; a

t

2 F

q

.

(ii) For j = 1; : : : ; t, compute the number m

j

= deg gcd(f(x; a

j

); x

q

� x) of

u 2 F

q

with f(u; a

j

) = 0.

(iii) Return E = q(m

1

+ : : :+m

t

)=t.

Theorem 7.2. Let C be a plane curve given by f 2 F

q

[x; y] of degree n without

vertical lines. Then Algorithm Approximation Scheme uses O(tM(n) log(nq))

or O~(tn log q) operations in F

q

, and for any � > 0 we have

Pr

n

j#C � Ej �

�

2n(n + 1) log(2n=�)qt

�1

#C

�

1=2

o

� 1 � �:

Proof. Using r

i

and R

i

from (3.2), we have

E =

q

t

X

1�i�n

i

X

a

j

2R

i

1:

Then writing

c = (4 log(2n=�)qt

�1

)

1=2

and �

i

= cr

�1=2

i

for 1 � i � n;

we get from the general result in Karp et al.

(

1989

)

Pr

n

jr

i

�

q

t

X

a

j

2R

i

1�j�t

1j � �

i

r

i

o

� �=n for 1 � i � n:

This inequality and #C =

P

1�i�n

ir

i

imply that

Prfj#C �Ej �

X

1�i�n

i�

i

r

i

g � �:
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Furthermore, we have

X

1�i�n

i�

i

r

i

= c

X

1�i�n

i

p

r

i

� c

�

X

1�i�n

i

�

1=2

�

X

1�i�n

ir

i

�

1=2

= c(n(n+ 1)=2)

1=2

#C

1=2

;

which implies our claim.

2

Using the trivial bound #C � nq, we can rewrite Theorem 7.2 in the fol-

lowing form.

Corollary 7.3. Let C be a plane curve given by an equation of degree n over

F

q

and without vertical lines. Then the algorithm runs in time O~(tn log q),

and for any � > 0 we have

Prfj#C � Ej � nq[2(n+ 1) log(2n=�)t

�1

]

1=2

g � 1� �:

For �xed � > 0, the error term is O~(n

3=2

qt

�1=2

).

We have three methods for deriving estimates for #C: the Weil estimate

(1.2), which requires the number of absolutely irreducible components of C,

the brute force method of Lemma 2.4 (with m = k = 1; A = F

q

), and the

probabilistic method of Corollary 7.3. The following are the parameters for

these three algorithms, for any � > 0:

Weil Lemma 2.4 probabilistic

error n

2

q

1=2

0 q

�

time 0 nq n

4

q

2�2�

all in the O~ sense.

Our probabilistic method is competitive when n is at least a constant power

of q. The novelty in the method is that we allow a trade-o� between accuracy

and computing e�ort. As a concrete example, let us consider the case when C

is absolutely irreducible and n is close to q

1=4

. Then we have

probabilistic

Weil Lemma 2.4 general � = 15=16

error q 0 q

�

q

15=16

time 0 q

5=4

q

3�2�

q

9=8
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again in the O~ sense. Thus the last algorithm gives a better result for approx-

imations with error between q

7=8

and q.

For general plane curves of large degree n, when the required factorization

procedure may preclude the application of Weil's estimate in practice, our

probabilistic estimate is better than the brute force method whenever one can

tolerate an error q

�

with q

2��1

su�ciently greater than n

3

.

For absolutely irreducible curves, the Weil bound 1.2 provides the following

improvement of Corollary 7.3.

Corollary 7.4. Let C be an absolutely irreducible plane curve given by an

equation of degree n over F

q

and without vertical lines. Then the algorithm

runs in time O~(tn log q), and for any � > 0 we have

Prfj#C �Ej � [2(n+ 1) log(2n=�)q(q + n

2

q

1=2

)t

�1

]

1=2

g � 1 � �:

Now we give a similar algorithm to count the size of the projection.

Algorithm 7.5. Projection Approximation.

Input: f 2 F

q

[x; y] and t 2 N.

Output: An estimate E of #�ff = 0g.

(i) Choose t random independent uniformly distributed elements a

1

; : : : ; a

t

2 F

q

.

(ii) For j = 1; : : : ; t, set m

j

= minf1;deg gcd(f(x; a

j

); x

q

� x)g

(iii) Return E = q(m

1

+ : : :+m

t

)=t.

Theorem 7.6. Let C be a plane curve given by f 2 F

q

[x; y] of degree n

and without vertical lines. Then Algorithm Projection Approximation uses

O(tM(n) log(nq)) or O~(tn log q) operations in F

q

, and for any � > 0 we have

Pr

n

j#�(C)� Ej � 2

�

log(2=�)qt

�1

#�(C)

�

1=2

o

� 1� �:

Proof. This follows from the general result in Karp et al.

(

1989

)

.

2

Our algorithms are in the spirit of the (�; �)-approximation schemes of Karp

et al.

(

1989

)

, Grigoryev & Karpinski

(

1991

)

, Karpinski & Luby

(

1993

)

. How-

ever, they are not uniform in terms of � and �, because the curve size occurs

as #C

1=2

in the estimate on the right hand side rather than linearly.
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Open Question 7.7. Obtain uniform (�; �)-approximation algorithms for the

problems considered in this section.

In a subsequent paper

(

von zur Gathen & Shparlinski 1994

)

, we just take

a 2 F

q

at random, set a

i

= a+ i for 1 � i � t, In a subsequent paper

(

von zur

Gathen & Shparlinski 1994

)

, we just take a 2 F

q

at random, set a

i

= a+ i for

1 � i � t, and show that these dependent random variables yield a reasonable

approximation of #C.

8. Sparse Artin-Schreier hypersurfaces

In this section, we present a method to determine the projection size in

a very special but we believe quite interesting case of Artin-Schreier curves

with sparse polynomials. We consider a polynomial f 2 F

q

k [x

1

; : : : ; x

m

] that

is the sum of at most t monomials, i.e. f is t-sparse, and the corresponding

Artin-Schreier hypersurface

f(x

1

; : : : ; x

m

) = y

q

� y: (8.1)

Let

T(x) =

X

0�i<k

x

q

i

2 F

q

n

[x]

denote the trace polynomial over F

q

. We write q = p

r

, with p prime, and �rst

present a deterministic algorithm to determine the set

f(T � f)(u) : u 2 F

m

q

k

g � F

q

of values which the trace of f takes.

Our algorithm runs in time (kt + 1)

O(mpr

) instead of the naive O~(tq

km

).

Thus, for �elds of �xed characteristic the running time can be estimated as

(q)

O(m logkt)

. A trivial lower bound for any such algorithm is the size of the

output, which may be about q.

For f 2 F

q

[x

1

; : : : ; x

m

] and V � F

m

q

, we write f(V ) = ff(v) : v 2 V g for

the set of values of f on V .

Lemma 8.1. Let � be a primitive root of F

q

, and

U = f0g [ f�

e

2 F

q

: 0 � e < sg � F

q

: (8.2)

Then for any s-sparse f 2 F

q

[x

1

; : : : ; x

m

] we have

f(F

m

q

) = f0g () f(U

m

) = f0g:
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Proof. It is su�cient to prove \(=" by induction on m, starting with

m = 1. We write f =

P

1�i�s

a

i

x

e

i

, with all a

i

2 F

q

and e

i

2 N. For d; e 2 N

with d; e � 1, we have

(8a 2 F

q

a

d

= a

e

) () d � e mod q � 1:

By replacing each e

i

> 0 by its representative d

i

modulo q� 1 with 1 � d

i

< q

and adding coe�cients of equal exponents, we obtain g =

P

1�i�t

b

i

x

d

i

2 F

q

[x],

with t � s, b

1

; : : : ; b

t

2 F

q

, 0 � d

1

< � � � < d

t

< q, and f(a) = g(a) for all

a 2 F

q

. By assumption, we have

g(u) = 0 for all u 2 U: (8.3)

In particular, the constant coe�cient of g is zero. Since deg g < q, the elements

�

d

i

for 1 � i � t are pairwise distinct, and (8.3) corresponds to a Vandermonde

system of linear equations. It follows that b

i

= 0 for all i, and hence f(a) = 0

for all a 2 F

q

.

The induction step is left to the reader.

2

Theorem 8.2. Letm;k; t � 1, q = p

r

, f 2 F

q

k [x

1

; : : : ; x

m

] be t-sparse, � 2 F

q

k

primitive, s = (kt+ 1)

(p�1)r

+ 1, and U � F

q

k as in (8.2). Then

(T � f)(F

m

q

k

) = (T � f)(U

m

):

Proof. For any a 2 F

q

, there exists u 2 F

m

q

k

with (T � f)(u) = a if and only

if the polynomial

g

a

= (T � f � a)

q�1

� 1 2 F

q

k [x

1

; : : : ; x

m

]

assumes a nonzero value on F

m

q

k

.

In general, the eth power of an i-sparse polynomial is i

e

-sparse, and if e is a

power of the �eld characteristic p, then this eth power is i-sparse. Furthermore,

the product of an i-sparse and a j-sparse polynomial is ij-sparse. It follows

that (T � f) � a is (kt+ 1)-sparse. Taking into account that q � 1 = (p � 1)�

(p

r�1

+� � �+p+1), we �nd that the polynomial g

a

is s-sparse. Using Lemma 8.1,

we �nd for any a 2 F

q

that

a 2 (T � f)(F

m

q

k

) () g

a

(F

m

q

k

) 6= f0g

() g

a

(U

m

) 6= f0g () a 2 (T � f)(U

m

):

2
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Corollary 8.3. Let m;k; t � 1, q = p

r

, f 2 F

q

k [x

1

; : : : ; x

m

] be t-sparse.

Then the image of T � f : F

m

q

k

! F

q

can be calculated with (kt + 1)

O(mpr)

evaluations of T � f .

Proof. Using the algorithms of Shoup

(

1992

)

or Shparlinski

(

1990

)

(see

also Shparlinski 1992a), we can construct in time (pkr)

O(1)

a setM � F

q

k with

cardinality (pkr)

O(1)

containing a primitive root of F

q

k . Setting

U

�

= f0g [ f�

e

2 F

q

k : 0 � e < sg � F

q

k

for � 2M , we have from Theorem 8.2 that

(T � f)(F

m

q

k

) =

[

�2M

(T � f)(U

m

�

):

2

In particular, with (kt+ 1)

O(mpr)

evaluations of T � f one can decide if the

Artin-Schreier hypersurface (8.1) contains an F

q

k -rational point. Indeed, it is

easy to see that the last property is equivalent to 0 2 (T � f)(F

m

q

k

).

The simple estimate presented here of the sparsity of a power of a polyno-

mial may allow to improve some results of Grigoryev & Karpinski

(

1991

)

in the

case of \large" �elds of \small" characteristic. If q = p

r

, the \density" of zeros

of a t-sparse polynomial in t variables over F

q

can be estimated from below

as (t + 1)

�(p�1)r

2

logp

, and that is t

O(� log

2

q)

for a �xed p, say when p = 2. It

improves their bound (t+1)

�(q�1) log q

, and gives a corresponding improvement

of their algorithm.

Open Question 8.4. Can the methods of Clausen et al.

(

1991

)

, Grigoryev et

al.

(

1990

)

help us to improve Theorem 8.2?
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