
Approximation S
hemes for Clustering Problems

(Extended Abstra
t)

�

W. Fernandez de la Vega

y

Marek Karpinski

z

Claire Kenyon

x

Yuval Rabani

{

November 5, 2002

Abstra
t

Let k be a �xed integer. We give polynomial time approximation s
hemes (PTASs)

for the following three problems: metri
 k-
lustering, i.e., partitioning an input set of

n points into k 
lusters so as to minimize the sum of all intra-
luster distan
es, for an

arbitrary metri
 spa
e; l

2

2

k-
lustering, when the points are in R

d

and the \distan
e"

between two points x; y is measured by kx� yk

2

2

(noti
e that (R

d

; k � k

2

2

) is not a metri


spa
e); l

2

2

k-Median, whi
h di�ers from the l

2

2

k-
lustering problem in the de�nition of

the obje
tive fun
tion, whi
h is now to minimize the sum of distan
es from points in

a 
luster to the (best 
hoi
e of) 
luster 
enter. For the �rst two problems, these are

the �rst PTASs. For the third problem, our running time is a vast improvement over

previous work.

1 Introdu
tion

Problem statement and motivation. The problem of partitioning a data set into a small

number of 
lusters of related items has a 
ru
ial role in many information retrieval and data

analysis appli
ations, su
h as web sear
h and 
lassi�
ation [5, 7, 24, 11℄, or interpretation

of experimental data in mole
ular biology [23℄.
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We 
onsider a set V of n points endowed with a distan
e fun
tion Æ. These points have

to be partitioned into a �xed number k of subsets C

1

; C

2

; : : : ; C

k

so as to minimize the 
ost

of the partition, whi
h is de�ned to be the sum over all 
lusters of the sum of pairwise

distan
es in a 
luster. We 
all this problem k-Clustering. We also deal with the k-Median

and the k-Center problems. In the k-Median problem the 
ost of a 
lustering is the sum over

all 
lusters of the sum of distan
es between 
luster points and the best 
hoi
e for a 
luster


enter. In the k-Center problem, the 
ost of a 
lustering is the maximum distan
e between

a point and its 
luster 
enter. In the settings that we 
onsider, these optimization problems

are NP -hard (by similar arguments as in [9, 8℄

1

) to solve exa
tly even for k = 2.

Our results. Our algorithms deal with the 
ase that Æ is an arbitrary metri
. We also

handle the non-metri
 
ase of \`

2

2

instan
es", i.e. points in R

d

where the distan
e between

two points x; y is measured by Æ(x; y) = kx� yk

2

2

.

For the metri
 and for the `

2

2

k-Clustering problem, we present algorithms for every �xed

integer k and for every �xed � > 0 that 
ompute a partition into k 
lusters of 
ost at most

1+ � times the 
ost of an optimum partition. Although we do not dis
uss it in this extended

abstra
t, our algorithms 
an be modi�ed to handle variants whi
h ex
lude outliers.

The k-Median problem 
an be solved optimally in polynomial time for �xed k in �nite

metri
s, be
ause the number of 
hoi
es for 
enters is polynomial. However, if the points

are lo
ated in a larger spa
e, su
h as R

d

, and the 
enters 
an be pi
ked from this larger

spa
e, the problem may be
ome hard. For `

2

2

instan
es, we give a randomized algorithm

that partitions the input point-set into k 
lusters of 
ost at most 1 + � of the optimum 
ost

in probabilisti
 time O(g(k; �)n(log n)

k

). Although we do not dis
uss it in this extended

abstra
t, it 
an easily be modi�ed to derive polynomial time approximation s
hemes for

other obje
tive fun
tions, su
h as the k-Center problem.

Related work. The k-Clustering problem was proposed by Sahni and Gonzalez [21℄ in the

setting of arbitrary weighted graphs. Unfortunately, only poor approximation guarantees are

possible [17, 12℄. Guttman-Be
k and Hassin [15℄ initiated the study of the problem in metri
s.

Indyk [16℄ designed a polynomial time approximation s
heme for Metri
 2-Clustering. Thus

our metri
 results extend Indyk's result to the 
ase of arbitrary �xed k.

S
hulman [22℄ gave probabilisti
 algorithms for 
lustering `

2

2

instan
es. His algorithms

�nd a 
lustering su
h that either its 
ost is within a fa
tor of 1 + � of the optimum 
ost, or

it 
an be 
onverted into an optimum 
lustering by 
hanging the assignment of at most an �

fra
tion of the points.

For arbitrary k, the k-Median problem is APX-hard [14℄. This is not the 
ase in geometri


settings, in
luding the `

2

2


ase dis
ussed in this paper. This 
ase was 
onsidered by Drineas,

Frieze, Kannan, Vempala, and Vinay [10℄, who gave a 2-approximation algorithm. Ostrovsky

and Rabani [20℄ gave a polynomial time approximation s
heme for this 
ase. B�adoiu, Har-

Peled, and Indyk [4℄ gave a polynomial time approximation s
heme for points in Eu
lidean

spa
e with mu
h improved running time. Our results, derived independently of [4℄ but with

a similar algorithm, improve signi�
antly the running time for the `

2

2


ase.

1

whi
h is how the authors of [8℄ got interested in this problem

2



Notations. The fun
tion Æ 
an be given expli
itly or impli
itly (for example, if V � R

d

and Æ is derived from a norm on R

d

). Our time bounds 
ount arithmeti
 operations and

assume that 
omputing Æ(x; y) is a single operation. The reader may assume that the input

is rational to avoid having to deal with unrealisti
 
omputational models. Without loss of

generality, we omit the 
eiling notation from expressions su
h as d1=�e.

Let X;Y � V and x 2 V . With a slight abuse of notation, we use Æ(x; Y ) to denote

P

y2Y

Æ(x; y), and we use Æ(X;Y ) to denote

P

x2X

Æ(x; Y ). Noti
e that Æ(�; �) is a symmetri


bilinear form. We use Æ(X) to denote Æ(X;X).

Let C

1

; C

2

; : : : ; C

k

be a partition of V into k disjoint 
lusters. We use 
ost(C

i

) to de-

note the 
ost of C

i

: for k-Clustering, 
ost(C

i

) = Æ(C

i

)=2, and for k-Median, 
ost(C

i

) =

min

x2R

d fÆ(x;C

i

)g. (In the k-Center problem, 
ost(C

i

) = min

x2R

dmax

y2C

i

fÆ(x; y)g, and


ost(C

1

; C

2

; : : : ; C

k

) = max

i


ost(C

i

).) We use C

�

1

, C

�

2

, : : :, C

�

k

to denote a 
lustering of V of

minimum 
ost 


�

.

Instan
es of points in R

d

are 
omputationally hard if d is part of the input.

2

Comments. We view the main 
ontribution of this paper as the results rather than the

proofs themselves. Can these results be strengthened? Well, it is likely that the metri


k-
lustering algorithm 
ould be 
ombined with the ideas of the k-median algorithm, to yield

a mu
h faster algorithm for metri
 k-
lustering. We feel that the results presented here

are robust, in the sense that they 
ould probably be extended to other related problems.

However, one limit of the results is that they 
ru
ially rely on k being �xed. Doing k-


lustering for k large is a 
ompletely di�erent problem whi
h requires entirely di�erent tools.

In terms of proof te
hniques, everything in this paper is elementary and 
an be proved

from �rst prin
iples. What gave us the momentum to go through lengthy 
al
ulations and

several erroneous earlier versions of the algorithms? In the metri
 setting, Lemma 10 was

essential in keeping up our optimism. In the `

2

2

setting, Lemma 18 served the same role.

Thus they 
an be seen as the 
entral pie
e of the 
onstru
tion, and perhaps the one thing

to remember from the arguments, for possible future re-use in other settings.

2 A PTAS for Metri
 Instan
es

In this se
tion we present our algorithm for 
lustering metri
 spa
es. Before we des
ribe the

algorithm, we give 
ru
ial basi
 properties and some de�nitions.

Proposition 1. Let X;Y;Z � V . Then jZjÆ(X;Y ) � jXjÆ(Y;Z) + jY jÆ(Z;X):

Corollary 2. Let C � V . For every vertex v 2 C we have Æ(v;C) � Æ(C)=(2jCj):

De�nition 3. Let I

j

= (�

j+1

; �

j

℄. Let n

1

� n

2

� � � � � n

k

be the 
luster sizes. Let j

0

� k

2

be the minimum j su
h that for every i; i

0

, the ratio n

i

=n

i

0

is outside the interval I

j

. Call a


luster index i large if n

i

� �

j

0

n

1

and small if n

i

< �

j

0

+1

n

1

.

2

An ex
eption to this rule is the 
ase of Eu
lidean distan
e. The hardness of the problems 
onsidered

here in the Eu
lidean 
ase is an open problem.
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In our proofs, the following quantities will 
ome up frequently as upper or lower bounds

to various 
luster sizes, so we use some spe
i�
 notations for them.

Notation 4.

M = n

1

= maxfn

i

g; m = minfn

i

j i largeg; s = maxfn

i

j i smallg:

The advantage of the above de�nition is that there is a large gap between the sizes of

large and of small 
lusters, mu
h larger than between the sizes of any two large 
lusters.

Fa
t 5. s=m � �

2

�m=M:

De�nition 6. Let � = �M=m:We say that two large 
lustersA and B are 
lose if Æ(A;B) <

�(Æ(A) + Æ(B)); and that they are large otherwise.

Now, the algorithm uses random sampling to have some rough estimate of the position of

the 
lusters in the metri
 spa
e. In fa
t, we will use just one sample point per 
luster. For the

algorithm to work, those sample points must be representative. (As usual, we 
an always

run the algorithm several times to boost up its su

ess probability). The representatives

satisfy a 
ouple of handy properties des
ribed in the lemmas below.

De�nition 7. Let C be a set of points. An element 
 of C is said to be representative of

C if Æ(
; C) � 2Æ(C)=jCj:

Lemma 8. Consider a partition (C

1

; : : : ; C

k

) of V su
h that C

i

has size n

i

. For ea
h large

i, let 


i

be a random uniform element of V . Then, with probability at least (�

j

0

=(2k))

k

, we

have the following: for every large i, point 


i

is a representative element of C

i

.

Lemma 9. Let C

�

i

and C

�

j

be two large 
lusters, and 


i

; 


j

their representatives. Assume

that C

�

i

and C

�

j

are 
lose to ea
h other. Then: Æ(


i

; 


j

) � 2(M=m)OPT=(m

2

�):

Lemma 10. Let 
 be a representative point of 
luster C. Then, for any x in V , we have:

jÆ(x;C)� jCjÆ(x; 
)j � 2Æ(C)=jCj:

Our algorithm uses, as a bla
k box, an approximation s
heme for Metri
 Max-k-Cut

whi
h is already known in the litterature. The Metri
 Max-k-Cut problem takes as input

a set V of n points from an arbitrary metri
 spa
e, and outputs a partition of V into

k 
lusters C

1

; C

2

; : : : ; C

k

so as to maximize the total distan
e between pairs of points in

di�erent 
lusters,

P

i

P

j>i

Æ(C

i

; C

j

). For any partition into k 
lusters, the sum of the Max-

k-Cut value and of the k-Clustering value is 
onstant and equal to the sum of all distan
es,

thus the same partition is optimal for both obje
tive fun
tions. Unfortunately, from the

viewpoint of approximation, whi
h involves 
ontrolling the relative error, the two problems

are quite di�erent, sin
e in general the optimal k-
lustering value 
ould be mu
h smaller

than the optimal Max-k-Cut value. However, the Max-k-Cut approximation algorithm is

still useful when the 
lusters are 
lose together.

Theorem 11 ([9℄). Let k be a �xed integer. Then there is a polynomial time approxima-

tion s
heme for Metri
 Max-k-Cut.

3

The running time is O(n

2

+ nk2

O(1=�

3

)

).

3

Theorem 11 is a
tually an easy extension of the Max Cut approximation s
heme of [9℄: The same

redu
tion whi
h is used there for Max Cut also applies to Max-k-Cut, and the resulting weighted dense

graph is only a variant of dense graphs in the usual sense, so that the Max-k-Cut approximation s
hemes

for dense graphs (see [13, 3℄) apply.
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2.1 The k-Clustering Algorithm

We are now ready to des
ribe the k-
lustering algorithm. The algorithm presented below

is randomized, but making it deterministi
 is straightforward. Fix � > 0. Our algorithm


onsists of taking the best of all partitions that are generated as follows.

1. By exhaustive sear
h, guess the optimal 
luster sizes n

1

� n

2

� � � � � n

k

. De�ne

large and small as in De�nition 3.

2. De�ne far and 
lose as in De�nition 6. By exhaustive sear
h, for ea
h pair of large


luster indi
es i and j, guess whether C

�

i

and C

�

j

are 
lose to ea
h other.

3. Taking the equivalen
e relation whi
h is the transitive 
losure of the relation \C

�

i

and C

�

j

are 
lose to ea
h other", de�ne a partition of large 
luster indi
es into groups.

4. For ea
h large 
luster C

�

i

, let 


i

be a random uniform element of V . Assign ea
h

point x 2 V to the group G whi
h minimizes min

i2G

[n

i

Æ(x; 


i

)℄:

5. By exhaustive sear
h, for ea
h group G thus 
onstru
ted, guess jG \ Sj, where

S = [

i small

C

�

i

is the union of small 
lusters. For ea
h x assigned to group G,

let f(x) = min

i2G

Æ(x; 


i

): Remove from G's assignment the jG \ Sj elements with

largest value f(x).

6. Partition ea
h group of large 
lusters into the appropriate number h of 
lusters using

the PTAS for Max-h-Cut with error parameter �

0

= �

2

�

3j

0

=(3k

3

).

7. Re
ursively partition the removed elements into the appropriate number of 
lusters.

Theorem 12. For any �xed positive integer k, the algorithm presented in Se
tion 2.1

is a PTAS for the Metri
 k-Clustering problem. The running time of the algorithm is

O(n

3k

f(k; �)), where f(k; �) has a leading fa
tor of exp((1=�)

k

2

).

The running time analysis 
an be proved by inspe
tion of the algorithm. We outline the

analysis of the 
ost of the 
lustering 
onstru
ted. The proof is a rather long and te
hni
al,

sometimes tri
ky, but not parti
ularly interesting elementary 
al
ulation, involving a 
areful

management of the various error terms. The interesting fa
ts have already been spelled out

in the beginning of the se
tion.

We �rst analyze the mistakes made in step 4 of the algorithm. For any two large 
lusters

i and j whi
h belong to di�erent groups, let F (i; j) denote the set of points x 2 C

�

i

su
h that

min

`

n

`

Æ(x; 


`

) = n

j

Æ(x; 


j

). These points, whi
h really should be in i's group, are mistakenly

pla
ed by the algorithm in j's group. Let C

i

= C

�

i

for i small 
luster, and

C

i

= C

�

i

+ [

j

F (j; i)� [

j

F (i; j) for i large:

Using the bilinearity of Æ(�; �), one 
an then develop Æ(C

i

), and analyze ea
h term separately,

to prove that

P

i

Æ(C

i

) �

P

i

Æ(C

�

i

)(1 + 80k

3

�): One ingredient of the 
al
ulation involves

showing that F (j; i) has small 
ardinality. We in
lude that argument for the diligent reader,

as an illustrative example of our proofs.

5



Lemma 13.

jF (j; i)j �

8

1� 8�

m�:

Proof: Let F = F (j; i) for shorthand, and let x 2 F . By Lemma 10, Æ(x;C

�

i

) � n

i

Æ(x; 


i

)+

Æ(C

�

i

)(2=n

i

): By the 
hoi
e of the algorithm, n

i

Æ(x; 


i

) � n

j

Æ(x; 


j

). By Lemma 10 again,

n

j

Æ(x; 


j

) � Æ(x;C

�

j

) + Æ(C

�

j

)(2=n

j

): Thus Æ(x;C

�

i

) � Æ(x;C

�

j

) + (Æ(C

�

i

) + Æ(C

�

j

))(2=m):

Summing over x gives :

Æ(F;C

�

i

)� Æ(F;C

�

j

) �

2

m

(Æ(C

�

i

) + Æ(C

�

j

))jF j: (1)

Now, sin
e i and j are in di�erent groups, C

�

i

and C

�

j

are far from ea
h other, so

Æ(C

�

i

[ C

�

j

) > �(Æ(C

�

i

) + Æ(C

�

j

)): (2)

Let x 2 F . By Proposition 1, Æ(C

�

i

[ C

�

j

) � 2Æ(x;C

�

i

[ C

�

j

)jC

�

i

[ C

�

j

j: Summing over x, we

get jF jÆ(C

�

i

[ C

�

j

) � 4M(Æ(F;C

�

i

) + Æ(F;C

�

j

)): We now use Equation 1:

jF jÆ(C

�

i

[ C

�

j

) � 4M(2Æ(F;C

�

j

) +

2

m

(Æ(C

�

i

) + Æ(C

�

j

))jF j):

Sin
e F � C

�

j

, we have Æ(F;C

�

j

) � Æ(C

�

j

). Combining with Equation 2 and fa
toring in jF j

gives

jF j(Æ(C

�

i

) + Æ(C

�

j

))(� �

8M

m

) � 8MÆ(C

�

j

):

Repla
ing � by its value and solving in jF j yields the Lemma.

To analyze the mistakes made in the next step of the algorithm, let (C

0

i

) denote the


lustering obtained from (C

i

) as follows. Let G denote a group, and for ea
h 
luster C

i

of G, let Out(i) denote the elements of C

i

whi
h are (mistakenly) removed from G by the

algorithm. Let In(G) denote the elements of S whi
h (mistakenly) get to stay in G. We

have:

jIn(G)j =

X

i 
luster of G

jOut(i)j:

Thus, we 
an pair up the verti
es of [

i

Out(i) in a one-to-one fashion with the verti
es of

In(G). For i large, let C

0

i

denote the elements of C

i

whi
h get to stay in G, plus the elements

of In(G) whi
h are paired up with elements of Out(i). For i small, let C

0

i

denote the elements

of C

i

whi
h stay outside the groups, plus the elements paired up with elements of C

i

whi
h

end up in large groups.

By 
onvention, we will always use (v; v

0

) for elements whi
h are paired, with v denoting

the element whi
h goes out of the large 
luster and v

0

the element whi
h goes out of the

small 
luster. One important pie
e of our 
al
ulation involves proving that

X

Æ(v; v

0

) � (2 + 6k�

2

+ 2k

2

�)

OPT

m

:

On
e we have that, it does not take too mu
h more work to show that

8i; Æ(C

0

i

) � Æ(C

i

) + 3k(2 + 6k�

2

+ 2k

2

�)�

2

OPT:

6



Finally, we need to analyze the use of Max-h-Cut in step 6 of the algorithm; Consider a

group C

�

1

[C

�

2

[� � �[C

�

h

. Let 
 = Æ(C

�

1

)+� � �+Æ(C

�

h

) andW = Æ(C

�

1

[� � �[C

�

h

) =

P

i;j

Æ(C

�

i

; C

�

j

).

We 
an show that: W � 3k

3

=�(1=�

j

0

)

3


: Running the PTAS for Max-h-Cut with error

parameter �

0

= ���

3j

0

=(3k

3

), the error is then at most �

0

W � �
. Overall, the algorithm

produ
es a 
ut of value at most (1 + O(k

4

� + k

2

�

2

))OPT . Assuming that � < 1=k, this is

OPT (1 +O(k

2

�

2

)).

3 Properties of the Square of Eu
lidean distan
e

>From now on, Æ(x; y) = kx � yk

2

2

. We denote by 
onv(X) the 
onvex hull of X =

fx

1

; x

2

; : : : ; x

n

g � R

d

. Let y =

P

n

i=1

(q

i

=r)x

i

be a point in 
onv(X) whi
h is a rational


onvex 
ombination of X (so r and q

i

are integers). We asso
iate with y a multi-subset Y

of X of size r, obtained by taking q

i


opies of x

i

, for all i. Noti
e that the 
enter of mass Y

of Y equals y. The following proposition 
hara
terizes the 
ost of a 
luster in terms of the


enter of mass.

Proposition 14. For every �nite X � R

d

, Æ(X) = jXjÆ(X;X).

Proposition 15. Let Y be a multi-subset of R

d

. Then Y minimizes Æ(Y; z) over z. In

other words, Y = arg min

z2R

d fÆ(Y; z)g.

Proposition 16. For every x; y; z 2 R

d

, Æ(x; z) � Æ(x; y) + Æ(y; z) + 2

p

Æ(x; y) � Æ(y; z).

Proposition 17. For every x 2 R

d

, for every multi-subset Y of R

d

, we have: Æ(x; Y ) �

jY jÆ(x; Y ):

The �rst part of the following lemma is attributed to Maurey [6℄. We denote the diameter

of Y by diam(Y ) = max

x;y2Y

Æ(x; y). Sin
e this is a key lemma, we 
hoose to in
lude its

proof in this extended abstra
t.

Lemma 18. Let Y � R

d

and � > 0.

1. (Maurey) For every x 2 
onv(Y ), there exists a multi-subset Z of Y 
ontaining 1=�

points and whose 
enter of mass is 
lose to x: Æ(x;Z) � � � diam(Y ):

2. There exists a multi-subset Z of Y 
ontaining

1

�

points and whose 
enter of mass is


lose to the 
enter of mass of Y : Æ(Y ;Z) � �Æ(Y; Y )=jY j:

Proof: We start with the �rst assertion. Let t = 1=� and x =

P

y2Y

�

y

y, where the �

y

's

are non-negative and sum up to 1. We use the probabilisti
 method. Pi
k a multiset Z =

fz

1

; z

2

; : : : ; z

t

g at random, where the z

i

-s are i.i.d. random variables with Pr [z

i

= y℄ = �

y

.

Now, it is easy to see that

E

�

Æ(x;Z)

�

= E

"

1

t

2

t

X

i=1

t

X

j=1

�

x� z

i

�

�

�

x� z

j

�

#

=

1

t

2

t

X

i=1

 

E

�

kx� z

i

k

2

2

�

+

X

j 6=i

E

��

x� z

i

�

�

�

x� z

j

��

!

:

7



Sin
e z

i

and z

j

are independent, we haveE [(x� z

i

) � (x� z

j

)℄ =

P

d

l=1

E [(x

l

� z

i

l

)℄E

��

x

l

� z

j

l

��

whi
h is 0 by our 
hoi
e of distribution. Thus,

E(Æ(x;Z)) =

1

t

2

t

X

i=1

E

�

kx� z

i

k

2

2

�

�

1

t

diam(Y ):

Therefore there exists a 
hoi
e of Z su
h that Æ(x;Z) �

1

t

diam(Y ).

For the se
ond assertion, we start the proof in the same way, with x = Y , and repla
e

the last part of the 
al
ulation by the following slightly �ner estimate:

1

t

2

X

i

E(Æ(Y ; z

i

)) =

1

t

2

X

i

X

y2Y

1

jY j

Æ(Y ; y) =

Æ(Y ; Y )

tjY j

:

Lemma 18 
an be used to derive a high-probability result as follows.

Lemma 19. There exists a 
onstant � su
h that the following holds. Let Y � R

d

and

�; � > 0. Let Z be a random multi-subset of Y generated by taking � �

1

�

2

� log

1

�

i.i.d. points

distributed uniformly in Y . Then, with probability at least 1 � �, we have: Æ(Y ;Z) �

�Æ(Y; Y )=jY j:

4 A PTAS for `

2

2

Instan
es of k-Clustering

Our algorithm 
onsists of taking the best of all partitions that are generated as follows.

1. By exhaustive sear
h, guess the optimal 
luster sizes jC

i

j = n

i

. By exhaustive

sear
h, 
onsider all possible sequen
es A

1

; A

2

; : : : ; A

k

, where the A

i

-s are mutually

disjoint multisets, ea
h 
ontaining 16=�

2

points from V .

2. Compute a minimum 
ost assignment of points of V to 
lusters C

1

; C

2

; : : : ; C

k

,

subje
t to the 
onditions that exa
tly n

i

points are assigned to C

i

, when the 
ost of

assigning a point x to C

i

is

^

Æ(x;C

i

) = n

i

� Æ(x;A

i

), for all i = 1; 2; : : : ; k.

Our algorithm is motivated by the following bound.

Lemma 20. Let Y be a multi-subset of V and 1 � � > 0. Then there exists a multi-subset

Z of Y of size jZj = 16=�

2

su
h that Æ(Y;Z) � (1 + �)Æ(Y; Y ).

Theorem 21. The above algorithm is a PTAS for the `

2

2

k-Clustering problem. Its running

time is n

O(k=�

2

)

.

5 A PTAS for `

2

2

Instan
es of k-Median

A simple variant of the above algorithm solves the k-Median 
ase and has similar running

time. Here we give a mu
h faster randomized polynomial time approximation s
heme for

`

2

2

instan
es of k-Median: the running time of our algorithm, for �xed k, �, and failure

probability �, is just O(n(log n)

O(1)

). The approximation s
heme 
onsists of taking the best

of all partitions that are generated as follows.

8



1. By exhaustive sear
h, guess an approximation n

1

� n

2

� � � � � n

k

on the sizes of

the k 
lusters, where n

i

is the power of (1 + �) larger than and 
losest to jC

�

i

j.

2. Partition the k 
lusters into groups in a greedy fashion: 1 goes into the �rst group,

and for i going from 2 to k, i goes into the 
urrent group if n

i

� (�=16k)

2

n

i�1

, and

into a new group otherwise. Let T be the number of groups and let m

t

denote the

size of the largest 
luster in the t

th

group. Let m

T+1

= 0.

3. For t going from 1 to T , do the following:

(a) Let U

t

denote the points not yet 
lustered (initially U

1

= V ).

(b) Let Z denote a random uniform sample of U

t

, with repla
ement, of 
onstant

size (size k

2k

=(16�)

2k

� (ln k)
=�

6

, where 
 > 0 is a 
onstant).

(
) By exhaustive sear
h, guess A

i

= Z \ C

�

i

for all i in the t

th

group. De�ne, for

ea
h su
h 
luster C

i

, the representative point as 


i

= A

i

. (If A

i

= ;, take an

arbitrary point as the representative of C

i

.)

(d) Assign jU

t

j �m

t+1

16k

2

=� points from U

t

to the 
lusters in groups 1 through t,

where point x is assigned to a 
luster C

i

that minimizes Æ(x; 


i

).

This 
ompletes the spe
i�
ation of the algorithm. We now pro
eed with its analysis.

Consider the iteration of the algorithm where all the guesses are 
orre
t. For all t � T ,

let a

t

denote the index of the �rst and largest 
luster in the t

th

group (so that m

t

= n

a

t

), and

let b

t

denote the index of the last and smallest 
luster in that group. Consider the situation

when the algorithm starts iteration t. For ea
h j in group t, let U

jt

= C

�

j

\ U

t

denote the

points whi
h have not yet been 
lassi�ed and whi
h we hope the algorithm will pla
e in


luster j during iteration t.

De�nition 22. For j 2 [a

t

; b

t

℄, we say that C

�

j

is a well-represented 
luster if jU

jt

j �

�

3

=16

3

� n

j

. Otherwise C

�

j

is 
alled poorly represented.

Lemma 23. Fix a 
luster index j and let t be j's group. For every � > 0 and for every

suÆ
iently large � > 0, there exists 
 > 0 su
h that with probability at least 1�

�

k

, if j is a

surviving index then we have: jA

j

j � ln k�=�

4

:

The following Lemma motivates the terminology of well-represented 
lusters.

Lemma 24. For every � > 0 there exist � > 0 and 
 > 0 su
h that with probability at

least 1 � �, we have:

8t;8j surviving index;

�

�

Æ(U

jt

; 


j

)� Æ(U

jt

; U

jt

)

�

�

�

�

8

� Æ(U

jt

; U

jt

): (3)

For x 2 X, denote by j

x

the index of the 
luster that x gets assigned to by the algorithm,

and denote by j

�

x

the index of the 
luster that x gets assigned to by the optimal 
lustering.

Let D

t

denote the set of points whi
h are assigned during iteration t of the loop in step 3 of

the algorithm. Su
h points 
an be 
lassi�ed into three 
ategories:

9



� regular points: x 2 D

t

is regular if its optimal 
luster j

�

x

has j

�

x

� b

t

and is well-

represented.

� premature points: x 2 D

t

is premature if j

�

x

> b

t

, i.e. the optimal 
luster of x is too

small to be taken into 
onsideration yet. Let P

t

denote the premature points in D

t

.

� leftover points: x 2 D

t

is leftover if j

�

x

� b

t

and 
luster j

�

x

is poorly represented. Let

L

t

denote the premature points of D

t

.

We analyze these 
ategories separately and 
harge the 
ontribution of premature points

to regular points, and of leftover points to the rest. This eventually leads to the following

theorem.

Theorem 25. With 
onstant probability the above algorithm 
omputes a solution whose


ost is within a fa
tor of 1 + � of the optimum 
ost. The running time of the algorithm is

O(g(k; �) � n � (log n)

k

), where g(k; �) = exp

�

1

�

8

� k

3

ln k �

�

ln

1

�

+ ln k

��

.
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