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Abstrat

Let k be a �xed integer. We give polynomial time approximation shemes (PTASs)

for the following three problems: metri k-lustering, i.e., partitioning an input set of

n points into k lusters so as to minimize the sum of all intra-luster distanes, for an

arbitrary metri spae; l

2

2

k-lustering, when the points are in R

d

and the \distane"

between two points x; y is measured by kx� yk

2

2

(notie that (R

d

; k � k

2

2

) is not a metri

spae); l

2

2

k-Median, whih di�ers from the l

2

2

k-lustering problem in the de�nition of

the objetive funtion, whih is now to minimize the sum of distanes from points in

a luster to the (best hoie of) luster enter. For the �rst two problems, these are

the �rst PTASs. For the third problem, our running time is a vast improvement over

previous work.

1 Introdution

Problem statement and motivation. The problem of partitioning a data set into a small

number of lusters of related items has a ruial role in many information retrieval and data

analysis appliations, suh as web searh and lassi�ation [5, 7, 24, 11℄, or interpretation

of experimental data in moleular biology [23℄.
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We onsider a set V of n points endowed with a distane funtion Æ. These points have

to be partitioned into a �xed number k of subsets C

1

; C

2

; : : : ; C

k

so as to minimize the ost

of the partition, whih is de�ned to be the sum over all lusters of the sum of pairwise

distanes in a luster. We all this problem k-Clustering. We also deal with the k-Median

and the k-Center problems. In the k-Median problem the ost of a lustering is the sum over

all lusters of the sum of distanes between luster points and the best hoie for a luster

enter. In the k-Center problem, the ost of a lustering is the maximum distane between

a point and its luster enter. In the settings that we onsider, these optimization problems

are NP -hard (by similar arguments as in [9, 8℄

1

) to solve exatly even for k = 2.

Our results. Our algorithms deal with the ase that Æ is an arbitrary metri. We also

handle the non-metri ase of \`

2

2

instanes", i.e. points in R

d

where the distane between

two points x; y is measured by Æ(x; y) = kx� yk

2

2

.

For the metri and for the `

2

2

k-Clustering problem, we present algorithms for every �xed

integer k and for every �xed � > 0 that ompute a partition into k lusters of ost at most

1+ � times the ost of an optimum partition. Although we do not disuss it in this extended

abstrat, our algorithms an be modi�ed to handle variants whih exlude outliers.

The k-Median problem an be solved optimally in polynomial time for �xed k in �nite

metris, beause the number of hoies for enters is polynomial. However, if the points

are loated in a larger spae, suh as R

d

, and the enters an be piked from this larger

spae, the problem may beome hard. For `

2

2

instanes, we give a randomized algorithm

that partitions the input point-set into k lusters of ost at most 1 + � of the optimum ost

in probabilisti time O(g(k; �)n(log n)

k

). Although we do not disuss it in this extended

abstrat, it an easily be modi�ed to derive polynomial time approximation shemes for

other objetive funtions, suh as the k-Center problem.

Related work. The k-Clustering problem was proposed by Sahni and Gonzalez [21℄ in the

setting of arbitrary weighted graphs. Unfortunately, only poor approximation guarantees are

possible [17, 12℄. Guttman-Bek and Hassin [15℄ initiated the study of the problem in metris.

Indyk [16℄ designed a polynomial time approximation sheme for Metri 2-Clustering. Thus

our metri results extend Indyk's result to the ase of arbitrary �xed k.

Shulman [22℄ gave probabilisti algorithms for lustering `

2

2

instanes. His algorithms

�nd a lustering suh that either its ost is within a fator of 1 + � of the optimum ost, or

it an be onverted into an optimum lustering by hanging the assignment of at most an �

fration of the points.

For arbitrary k, the k-Median problem is APX-hard [14℄. This is not the ase in geometri

settings, inluding the `

2

2

ase disussed in this paper. This ase was onsidered by Drineas,

Frieze, Kannan, Vempala, and Vinay [10℄, who gave a 2-approximation algorithm. Ostrovsky

and Rabani [20℄ gave a polynomial time approximation sheme for this ase. B�adoiu, Har-

Peled, and Indyk [4℄ gave a polynomial time approximation sheme for points in Eulidean

spae with muh improved running time. Our results, derived independently of [4℄ but with

a similar algorithm, improve signi�antly the running time for the `

2

2

ase.

1

whih is how the authors of [8℄ got interested in this problem
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Notations. The funtion Æ an be given expliitly or impliitly (for example, if V � R

d

and Æ is derived from a norm on R

d

). Our time bounds ount arithmeti operations and

assume that omputing Æ(x; y) is a single operation. The reader may assume that the input

is rational to avoid having to deal with unrealisti omputational models. Without loss of

generality, we omit the eiling notation from expressions suh as d1=�e.

Let X;Y � V and x 2 V . With a slight abuse of notation, we use Æ(x; Y ) to denote

P

y2Y

Æ(x; y), and we use Æ(X;Y ) to denote

P

x2X

Æ(x; Y ). Notie that Æ(�; �) is a symmetri

bilinear form. We use Æ(X) to denote Æ(X;X).

Let C

1

; C

2

; : : : ; C

k

be a partition of V into k disjoint lusters. We use ost(C

i

) to de-

note the ost of C

i

: for k-Clustering, ost(C

i

) = Æ(C

i

)=2, and for k-Median, ost(C

i

) =

min

x2R

d fÆ(x;C

i

)g. (In the k-Center problem, ost(C

i

) = min

x2R

dmax

y2C

i

fÆ(x; y)g, and

ost(C

1

; C

2

; : : : ; C

k

) = max

i

ost(C

i

).) We use C

�

1

, C

�

2

, : : :, C

�

k

to denote a lustering of V of

minimum ost 

�

.

Instanes of points in R

d

are omputationally hard if d is part of the input.

2

Comments. We view the main ontribution of this paper as the results rather than the

proofs themselves. Can these results be strengthened? Well, it is likely that the metri

k-lustering algorithm ould be ombined with the ideas of the k-median algorithm, to yield

a muh faster algorithm for metri k-lustering. We feel that the results presented here

are robust, in the sense that they ould probably be extended to other related problems.

However, one limit of the results is that they ruially rely on k being �xed. Doing k-

lustering for k large is a ompletely di�erent problem whih requires entirely di�erent tools.

In terms of proof tehniques, everything in this paper is elementary and an be proved

from �rst priniples. What gave us the momentum to go through lengthy alulations and

several erroneous earlier versions of the algorithms? In the metri setting, Lemma 10 was

essential in keeping up our optimism. In the `

2

2

setting, Lemma 18 served the same role.

Thus they an be seen as the entral piee of the onstrution, and perhaps the one thing

to remember from the arguments, for possible future re-use in other settings.

2 A PTAS for Metri Instanes

In this setion we present our algorithm for lustering metri spaes. Before we desribe the

algorithm, we give ruial basi properties and some de�nitions.

Proposition 1. Let X;Y;Z � V . Then jZjÆ(X;Y ) � jXjÆ(Y;Z) + jY jÆ(Z;X):

Corollary 2. Let C � V . For every vertex v 2 C we have Æ(v;C) � Æ(C)=(2jCj):

De�nition 3. Let I

j

= (�

j+1

; �

j

℄. Let n

1

� n

2

� � � � � n

k

be the luster sizes. Let j

0

� k

2

be the minimum j suh that for every i; i

0

, the ratio n

i

=n

i

0

is outside the interval I

j

. Call a

luster index i large if n

i

� �

j

0

n

1

and small if n

i

< �

j

0

+1

n

1

.

2

An exeption to this rule is the ase of Eulidean distane. The hardness of the problems onsidered

here in the Eulidean ase is an open problem.
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In our proofs, the following quantities will ome up frequently as upper or lower bounds

to various luster sizes, so we use some spei� notations for them.

Notation 4.

M = n

1

= maxfn

i

g; m = minfn

i

j i largeg; s = maxfn

i

j i smallg:

The advantage of the above de�nition is that there is a large gap between the sizes of

large and of small lusters, muh larger than between the sizes of any two large lusters.

Fat 5. s=m � �

2

�m=M:

De�nition 6. Let � = �M=m:We say that two large lustersA and B are lose if Æ(A;B) <

�(Æ(A) + Æ(B)); and that they are large otherwise.

Now, the algorithm uses random sampling to have some rough estimate of the position of

the lusters in the metri spae. In fat, we will use just one sample point per luster. For the

algorithm to work, those sample points must be representative. (As usual, we an always

run the algorithm several times to boost up its suess probability). The representatives

satisfy a ouple of handy properties desribed in the lemmas below.

De�nition 7. Let C be a set of points. An element  of C is said to be representative of

C if Æ(; C) � 2Æ(C)=jCj:

Lemma 8. Consider a partition (C

1

; : : : ; C

k

) of V suh that C

i

has size n

i

. For eah large

i, let 

i

be a random uniform element of V . Then, with probability at least (�

j

0

=(2k))

k

, we

have the following: for every large i, point 

i

is a representative element of C

i

.

Lemma 9. Let C

�

i

and C

�

j

be two large lusters, and 

i

; 

j

their representatives. Assume

that C

�

i

and C

�

j

are lose to eah other. Then: Æ(

i

; 

j

) � 2(M=m)OPT=(m

2

�):

Lemma 10. Let  be a representative point of luster C. Then, for any x in V , we have:

jÆ(x;C)� jCjÆ(x; )j � 2Æ(C)=jCj:

Our algorithm uses, as a blak box, an approximation sheme for Metri Max-k-Cut

whih is already known in the litterature. The Metri Max-k-Cut problem takes as input

a set V of n points from an arbitrary metri spae, and outputs a partition of V into

k lusters C

1

; C

2

; : : : ; C

k

so as to maximize the total distane between pairs of points in

di�erent lusters,

P

i

P

j>i

Æ(C

i

; C

j

). For any partition into k lusters, the sum of the Max-

k-Cut value and of the k-Clustering value is onstant and equal to the sum of all distanes,

thus the same partition is optimal for both objetive funtions. Unfortunately, from the

viewpoint of approximation, whih involves ontrolling the relative error, the two problems

are quite di�erent, sine in general the optimal k-lustering value ould be muh smaller

than the optimal Max-k-Cut value. However, the Max-k-Cut approximation algorithm is

still useful when the lusters are lose together.

Theorem 11 ([9℄). Let k be a �xed integer. Then there is a polynomial time approxima-

tion sheme for Metri Max-k-Cut.

3

The running time is O(n

2

+ nk2

O(1=�

3

)

).

3

Theorem 11 is atually an easy extension of the Max Cut approximation sheme of [9℄: The same

redution whih is used there for Max Cut also applies to Max-k-Cut, and the resulting weighted dense

graph is only a variant of dense graphs in the usual sense, so that the Max-k-Cut approximation shemes

for dense graphs (see [13, 3℄) apply.
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2.1 The k-Clustering Algorithm

We are now ready to desribe the k-lustering algorithm. The algorithm presented below

is randomized, but making it deterministi is straightforward. Fix � > 0. Our algorithm

onsists of taking the best of all partitions that are generated as follows.

1. By exhaustive searh, guess the optimal luster sizes n

1

� n

2

� � � � � n

k

. De�ne

large and small as in De�nition 3.

2. De�ne far and lose as in De�nition 6. By exhaustive searh, for eah pair of large

luster indies i and j, guess whether C

�

i

and C

�

j

are lose to eah other.

3. Taking the equivalene relation whih is the transitive losure of the relation \C

�

i

and C

�

j

are lose to eah other", de�ne a partition of large luster indies into groups.

4. For eah large luster C

�

i

, let 

i

be a random uniform element of V . Assign eah

point x 2 V to the group G whih minimizes min

i2G

[n

i

Æ(x; 

i

)℄:

5. By exhaustive searh, for eah group G thus onstruted, guess jG \ Sj, where

S = [

i small

C

�

i

is the union of small lusters. For eah x assigned to group G,

let f(x) = min

i2G

Æ(x; 

i

): Remove from G's assignment the jG \ Sj elements with

largest value f(x).

6. Partition eah group of large lusters into the appropriate number h of lusters using

the PTAS for Max-h-Cut with error parameter �

0

= �

2

�

3j

0

=(3k

3

).

7. Reursively partition the removed elements into the appropriate number of lusters.

Theorem 12. For any �xed positive integer k, the algorithm presented in Setion 2.1

is a PTAS for the Metri k-Clustering problem. The running time of the algorithm is

O(n

3k

f(k; �)), where f(k; �) has a leading fator of exp((1=�)

k

2

).

The running time analysis an be proved by inspetion of the algorithm. We outline the

analysis of the ost of the lustering onstruted. The proof is a rather long and tehnial,

sometimes triky, but not partiularly interesting elementary alulation, involving a areful

management of the various error terms. The interesting fats have already been spelled out

in the beginning of the setion.

We �rst analyze the mistakes made in step 4 of the algorithm. For any two large lusters

i and j whih belong to di�erent groups, let F (i; j) denote the set of points x 2 C

�

i

suh that

min

`

n

`

Æ(x; 

`

) = n

j

Æ(x; 

j

). These points, whih really should be in i's group, are mistakenly

plaed by the algorithm in j's group. Let C

i

= C

�

i

for i small luster, and

C

i

= C

�

i

+ [

j

F (j; i)� [

j

F (i; j) for i large:

Using the bilinearity of Æ(�; �), one an then develop Æ(C

i

), and analyze eah term separately,

to prove that

P

i

Æ(C

i

) �

P

i

Æ(C

�

i

)(1 + 80k

3

�): One ingredient of the alulation involves

showing that F (j; i) has small ardinality. We inlude that argument for the diligent reader,

as an illustrative example of our proofs.
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Lemma 13.

jF (j; i)j �

8

1� 8�

m�:

Proof: Let F = F (j; i) for shorthand, and let x 2 F . By Lemma 10, Æ(x;C

�

i

) � n

i

Æ(x; 

i

)+

Æ(C

�

i

)(2=n

i

): By the hoie of the algorithm, n

i

Æ(x; 

i

) � n

j

Æ(x; 

j

). By Lemma 10 again,

n

j

Æ(x; 

j

) � Æ(x;C

�

j

) + Æ(C

�

j

)(2=n

j

): Thus Æ(x;C

�

i

) � Æ(x;C

�

j

) + (Æ(C

�

i

) + Æ(C

�

j

))(2=m):

Summing over x gives :

Æ(F;C

�

i

)� Æ(F;C

�

j

) �

2

m

(Æ(C

�

i

) + Æ(C

�

j

))jF j: (1)

Now, sine i and j are in di�erent groups, C

�

i

and C

�

j

are far from eah other, so

Æ(C

�

i

[ C

�

j

) > �(Æ(C

�

i

) + Æ(C

�

j

)): (2)

Let x 2 F . By Proposition 1, Æ(C

�

i

[ C

�

j

) � 2Æ(x;C

�

i

[ C

�

j

)jC

�

i

[ C

�

j

j: Summing over x, we

get jF jÆ(C

�

i

[ C

�

j

) � 4M(Æ(F;C

�

i

) + Æ(F;C

�

j

)): We now use Equation 1:

jF jÆ(C

�

i

[ C

�

j

) � 4M(2Æ(F;C

�

j

) +

2

m

(Æ(C

�

i

) + Æ(C

�

j

))jF j):

Sine F � C

�

j

, we have Æ(F;C

�

j

) � Æ(C

�

j

). Combining with Equation 2 and fatoring in jF j

gives

jF j(Æ(C

�

i

) + Æ(C

�

j

))(� �

8M

m

) � 8MÆ(C

�

j

):

Replaing � by its value and solving in jF j yields the Lemma.

To analyze the mistakes made in the next step of the algorithm, let (C

0

i

) denote the

lustering obtained from (C

i

) as follows. Let G denote a group, and for eah luster C

i

of G, let Out(i) denote the elements of C

i

whih are (mistakenly) removed from G by the

algorithm. Let In(G) denote the elements of S whih (mistakenly) get to stay in G. We

have:

jIn(G)j =

X

i luster of G

jOut(i)j:

Thus, we an pair up the verties of [

i

Out(i) in a one-to-one fashion with the verties of

In(G). For i large, let C

0

i

denote the elements of C

i

whih get to stay in G, plus the elements

of In(G) whih are paired up with elements of Out(i). For i small, let C

0

i

denote the elements

of C

i

whih stay outside the groups, plus the elements paired up with elements of C

i

whih

end up in large groups.

By onvention, we will always use (v; v

0

) for elements whih are paired, with v denoting

the element whih goes out of the large luster and v

0

the element whih goes out of the

small luster. One important piee of our alulation involves proving that

X

Æ(v; v

0

) � (2 + 6k�

2

+ 2k

2

�)

OPT

m

:

One we have that, it does not take too muh more work to show that

8i; Æ(C

0

i

) � Æ(C

i

) + 3k(2 + 6k�

2

+ 2k

2

�)�

2

OPT:

6



Finally, we need to analyze the use of Max-h-Cut in step 6 of the algorithm; Consider a

group C

�

1

[C

�

2

[� � �[C

�

h

. Let  = Æ(C

�

1

)+� � �+Æ(C

�

h

) andW = Æ(C

�

1

[� � �[C

�

h

) =

P

i;j

Æ(C

�

i

; C

�

j

).

We an show that: W � 3k

3

=�(1=�

j

0

)

3

: Running the PTAS for Max-h-Cut with error

parameter �

0

= ���

3j

0

=(3k

3

), the error is then at most �

0

W � �. Overall, the algorithm

produes a ut of value at most (1 + O(k

4

� + k

2

�

2

))OPT . Assuming that � < 1=k, this is

OPT (1 +O(k

2

�

2

)).

3 Properties of the Square of Eulidean distane

>From now on, Æ(x; y) = kx � yk

2

2

. We denote by onv(X) the onvex hull of X =

fx

1

; x

2

; : : : ; x

n

g � R

d

. Let y =

P

n

i=1

(q

i

=r)x

i

be a point in onv(X) whih is a rational

onvex ombination of X (so r and q

i

are integers). We assoiate with y a multi-subset Y

of X of size r, obtained by taking q

i

opies of x

i

, for all i. Notie that the enter of mass Y

of Y equals y. The following proposition haraterizes the ost of a luster in terms of the

enter of mass.

Proposition 14. For every �nite X � R

d

, Æ(X) = jXjÆ(X;X).

Proposition 15. Let Y be a multi-subset of R

d

. Then Y minimizes Æ(Y; z) over z. In

other words, Y = arg min

z2R

d fÆ(Y; z)g.

Proposition 16. For every x; y; z 2 R

d

, Æ(x; z) � Æ(x; y) + Æ(y; z) + 2

p

Æ(x; y) � Æ(y; z).

Proposition 17. For every x 2 R

d

, for every multi-subset Y of R

d

, we have: Æ(x; Y ) �

jY jÆ(x; Y ):

The �rst part of the following lemma is attributed to Maurey [6℄. We denote the diameter

of Y by diam(Y ) = max

x;y2Y

Æ(x; y). Sine this is a key lemma, we hoose to inlude its

proof in this extended abstrat.

Lemma 18. Let Y � R

d

and � > 0.

1. (Maurey) For every x 2 onv(Y ), there exists a multi-subset Z of Y ontaining 1=�

points and whose enter of mass is lose to x: Æ(x;Z) � � � diam(Y ):

2. There exists a multi-subset Z of Y ontaining

1

�

points and whose enter of mass is

lose to the enter of mass of Y : Æ(Y ;Z) � �Æ(Y; Y )=jY j:

Proof: We start with the �rst assertion. Let t = 1=� and x =

P

y2Y

�

y

y, where the �

y

's

are non-negative and sum up to 1. We use the probabilisti method. Pik a multiset Z =

fz

1

; z

2

; : : : ; z

t

g at random, where the z

i

-s are i.i.d. random variables with Pr [z

i

= y℄ = �

y

.

Now, it is easy to see that

E

�

Æ(x;Z)

�

= E

"

1

t

2

t

X

i=1

t

X

j=1

�

x� z

i

�

�

�

x� z

j

�

#

=

1

t

2

t

X

i=1

 

E

�

kx� z

i

k

2

2

�

+

X

j 6=i

E

��

x� z

i

�

�

�

x� z

j

��

!

:
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Sine z

i

and z

j

are independent, we haveE [(x� z

i

) � (x� z

j

)℄ =

P

d

l=1

E [(x

l

� z

i

l

)℄E

��

x

l

� z

j

l

��

whih is 0 by our hoie of distribution. Thus,

E(Æ(x;Z)) =

1

t

2

t

X

i=1

E

�

kx� z

i

k

2

2

�

�

1

t

diam(Y ):

Therefore there exists a hoie of Z suh that Æ(x;Z) �

1

t

diam(Y ).

For the seond assertion, we start the proof in the same way, with x = Y , and replae

the last part of the alulation by the following slightly �ner estimate:

1

t

2

X

i

E(Æ(Y ; z

i

)) =

1

t

2

X

i

X

y2Y

1

jY j

Æ(Y ; y) =

Æ(Y ; Y )

tjY j

:

Lemma 18 an be used to derive a high-probability result as follows.

Lemma 19. There exists a onstant � suh that the following holds. Let Y � R

d

and

�; � > 0. Let Z be a random multi-subset of Y generated by taking � �

1

�

2

� log

1

�

i.i.d. points

distributed uniformly in Y . Then, with probability at least 1 � �, we have: Æ(Y ;Z) �

�Æ(Y; Y )=jY j:

4 A PTAS for `

2

2

Instanes of k-Clustering

Our algorithm onsists of taking the best of all partitions that are generated as follows.

1. By exhaustive searh, guess the optimal luster sizes jC

i

j = n

i

. By exhaustive

searh, onsider all possible sequenes A

1

; A

2

; : : : ; A

k

, where the A

i

-s are mutually

disjoint multisets, eah ontaining 16=�

2

points from V .

2. Compute a minimum ost assignment of points of V to lusters C

1

; C

2

; : : : ; C

k

,

subjet to the onditions that exatly n

i

points are assigned to C

i

, when the ost of

assigning a point x to C

i

is

^

Æ(x;C

i

) = n

i

� Æ(x;A

i

), for all i = 1; 2; : : : ; k.

Our algorithm is motivated by the following bound.

Lemma 20. Let Y be a multi-subset of V and 1 � � > 0. Then there exists a multi-subset

Z of Y of size jZj = 16=�

2

suh that Æ(Y;Z) � (1 + �)Æ(Y; Y ).

Theorem 21. The above algorithm is a PTAS for the `

2

2

k-Clustering problem. Its running

time is n

O(k=�

2

)

.

5 A PTAS for `

2

2

Instanes of k-Median

A simple variant of the above algorithm solves the k-Median ase and has similar running

time. Here we give a muh faster randomized polynomial time approximation sheme for

`

2

2

instanes of k-Median: the running time of our algorithm, for �xed k, �, and failure

probability �, is just O(n(log n)

O(1)

). The approximation sheme onsists of taking the best

of all partitions that are generated as follows.

8



1. By exhaustive searh, guess an approximation n

1

� n

2

� � � � � n

k

on the sizes of

the k lusters, where n

i

is the power of (1 + �) larger than and losest to jC

�

i

j.

2. Partition the k lusters into groups in a greedy fashion: 1 goes into the �rst group,

and for i going from 2 to k, i goes into the urrent group if n

i

� (�=16k)

2

n

i�1

, and

into a new group otherwise. Let T be the number of groups and let m

t

denote the

size of the largest luster in the t

th

group. Let m

T+1

= 0.

3. For t going from 1 to T , do the following:

(a) Let U

t

denote the points not yet lustered (initially U

1

= V ).

(b) Let Z denote a random uniform sample of U

t

, with replaement, of onstant

size (size k

2k

=(16�)

2k

� (ln k)=�

6

, where  > 0 is a onstant).

() By exhaustive searh, guess A

i

= Z \ C

�

i

for all i in the t

th

group. De�ne, for

eah suh luster C

i

, the representative point as 

i

= A

i

. (If A

i

= ;, take an

arbitrary point as the representative of C

i

.)

(d) Assign jU

t

j �m

t+1

16k

2

=� points from U

t

to the lusters in groups 1 through t,

where point x is assigned to a luster C

i

that minimizes Æ(x; 

i

).

This ompletes the spei�ation of the algorithm. We now proeed with its analysis.

Consider the iteration of the algorithm where all the guesses are orret. For all t � T ,

let a

t

denote the index of the �rst and largest luster in the t

th

group (so that m

t

= n

a

t

), and

let b

t

denote the index of the last and smallest luster in that group. Consider the situation

when the algorithm starts iteration t. For eah j in group t, let U

jt

= C

�

j

\ U

t

denote the

points whih have not yet been lassi�ed and whih we hope the algorithm will plae in

luster j during iteration t.

De�nition 22. For j 2 [a

t

; b

t

℄, we say that C

�

j

is a well-represented luster if jU

jt

j �

�

3

=16

3

� n

j

. Otherwise C

�

j

is alled poorly represented.

Lemma 23. Fix a luster index j and let t be j's group. For every � > 0 and for every

suÆiently large � > 0, there exists  > 0 suh that with probability at least 1�

�

k

, if j is a

surviving index then we have: jA

j

j � ln k�=�

4

:

The following Lemma motivates the terminology of well-represented lusters.

Lemma 24. For every � > 0 there exist � > 0 and  > 0 suh that with probability at

least 1 � �, we have:

8t;8j surviving index;

�

�

Æ(U

jt

; 

j

)� Æ(U

jt

; U

jt

)

�

�

�

�

8

� Æ(U

jt

; U

jt

): (3)

For x 2 X, denote by j

x

the index of the luster that x gets assigned to by the algorithm,

and denote by j

�

x

the index of the luster that x gets assigned to by the optimal lustering.

Let D

t

denote the set of points whih are assigned during iteration t of the loop in step 3 of

the algorithm. Suh points an be lassi�ed into three ategories:

9



� regular points: x 2 D

t

is regular if its optimal luster j

�

x

has j

�

x

� b

t

and is well-

represented.

� premature points: x 2 D

t

is premature if j

�

x

> b

t

, i.e. the optimal luster of x is too

small to be taken into onsideration yet. Let P

t

denote the premature points in D

t

.

� leftover points: x 2 D

t

is leftover if j

�

x

� b

t

and luster j

�

x

is poorly represented. Let

L

t

denote the premature points of D

t

.

We analyze these ategories separately and harge the ontribution of premature points

to regular points, and of leftover points to the rest. This eventually leads to the following

theorem.

Theorem 25. With onstant probability the above algorithm omputes a solution whose

ost is within a fator of 1 + � of the optimum ost. The running time of the algorithm is

O(g(k; �) � n � (log n)

k

), where g(k; �) = exp

�

1

�

8

� k

3

ln k �

�

ln

1

�

+ ln k

��

.
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