Approximation Schemes for Clustering Problems
(Extended Abstract)”

W. Fernandez de la Vega | Marek Karpinski * Claire Kenyon?
Yuval Rabani’

November 5, 2002

Abstract

Let k be a fixed integer. We give polynomial time approximation schemes (PTASs)
for the following three problems: metric k-clustering, i.e., partitioning an input set of
n points into k clusters so as to minimize the sum of all intra-cluster distances, for an
arbitrary metric space; (3 k-clustering, when the points are in R¢ and the “distance”
between two points z, y is measured by ||z — y||2 (notice that (R%||-]|2) is not a metric
space); {2 k-Median, which differs from the [2 k-clustering problem in the definition of
the objective function, which is now to minimize the sum of distances from points in
a cluster to the (best choice of) cluster center. For the first two problems, these are
the first PTASs. For the third problem, our running time is a vast improvement over
previous work.

1 Introduction

Problem statement and motivation. The problem of partitioning a data set into a small
number of clusters of related items has a crucial role in many information retrieval and data
analysis applications, such as web search and classification [5, 7, 24, 11], or interpretation
of experimental data in molecular biology [23].

*The full version of this paper can be found under the following URL:
http://theory.cs.uni-bonn.de/cs-reports-2002

"Email:1alo@lri.lri.fr LRI, CNRS UMR 8623, Université Paris-Sud, France.

!Email: marek@cs.uni-bonn.de, Dept. of Computer Science, University of Bonn. Research partially
supported by DFG grants, PROCOPE grant 31022, and IST grant 14036 (RAND-APX).

$Email:kenyon@lix.polytechnique.fr. LIX, CNRS UMR 7650, Ecole Polytechnique, France.

T Computer Science Department, Technion — II'T, Haifa 32000, Israel. Work at the Technion supported by
Israel Science Foundation grant number 386/99, by US-Israel Binational Science Foundation grant number
99-00217, by the European Commission Fifth Framework Programme Thematic Networks contract number
IST-2001-32007 (APPOL 1I), and by the Fund for the Promotion of Research at the Technion. Email:

rabani@cs.technion.ac.il

We consider a set V' of n points endowed with a distance function §. These points have
to be partitioned into a fixed number k of subsets Cy,Cy, ..., Ck so as to minimize the cost
of the partition, which is defined to be the sum over all clusters of the sum of pairwise
distances in a cluster. We call this problem k-Clustering. We also deal with the k-Median
and the k-Center problems. In the k-Median problem the cost of a clustering is the sum over
all clusters of the sum of distances between cluster points and the best choice for a cluster
center. In the k-Center problem, the cost of a clustering is the maximum distance between
a point and its cluster center. In the settings that we consider, these optimization problems
are N P-hard (by similar arguments as in [9, 8]') to solve exactly even for k = 2.

Our results. Our algorithms deal with the case that ¢ is an arbitrary metric. We also
handle the non-metric case of “/2 instances”, i.e. points in R? where the distance between
two points z,y is measured by §(z,y) = ||z — y||3.

For the metric and for the (5 k-Clustering problem, we present algorithms for every fixed
integer k and for every fixed € > 0 that compute a partition into k clusters of cost at most
1+ € times the cost of an optimum partition. Although we do not discuss it in this extended
abstract, our algorithms can be modified to handle variants which exclude outliers.

The k-Median problem can be solved optimally in polynomial time for fixed k in finite
metrics, because the number of choices for centers is polynomial. However, if the points
are located in a larger space, such as R? and the centers can be picked from this larger
space, the problem may become hard. For (3 instances, we give a randomized algorithm
that partitions the input point-set into k& clusters of cost at most 1 4 ¢ of the optimum cost
in probabilistic time O(g(k, e)n(logn)¥). Although we do not discuss it in this extended
abstract, it can easily be modified to derive polynomial time approximation schemes for
other objective functions, such as the k-Center problem.

Related work. The k-Clustering problem was proposed by Sahni and Gonzalez [21] in the
setting of arbitrary weighted graphs. Unfortunately, only poor approximation guarantees are
possible [17, 12]. Guttman-Beck and Hassin [15] initiated the study of the problem in metrics.
Indyk [16] designed a polynomial time approximation scheme for Metric 2-Clustering. Thus
our metric results extend Indyk’s result to the case of arbitrary fixed k.

Schulman [22] gave probabilistic algorithms for clustering (3 instances. His algorithms
find a clustering such that either its cost is within a factor of 1 + € of the optimum cost, or
it can be converted into an optimum clustering by changing the assignment of at most an e
fraction of the points.

For arbitrary k, the k-Median problem is APX-hard [14]. This is not the case in geometric
settings, including the (3 case discussed in this paper. This case was considered by Drineas,
Frieze, Kannan, Vempala, and Vinay [10], who gave a 2-approximation algorithm. Ostrovsky
and Rabani [20] gave a polynomial time approximation scheme for this case. Badoiu, Har-
Peled, and Indyk [4] gave a polynomial time approximation scheme for points in Euclidean
space with much improved running time. Our results, derived independently of [4] but with
a similar algorithm, improve significantly the running time for the /3 case.

Lwhich is how the authors of [8] got interested in this problem

Notations. The function § can be given explicitly or implicitly (for example, if V C R?
and § is derived from a norm on R?). Our time bounds count arithmetic operations and
assume that computing d(x,y) is a single operation. The reader may assume that the input
is rational to avoid having to deal with unrealistic computational models. Without loss of
generality, we omit the ceiling notation from expressions such as [1/¢].

Let X,Y C V and # € V. With a slight abuse of notation, we use §(x,Y) to denote
> ey 0(,y), and we use (X, Y') to denote » y d(z,Y). Notice that 6(-,-) is a symmetric
bilinear form. We use 6(.X) to denote §(X, X).

Let C1,Cy,...,C) be a partition of V into k disjoint clusters. We use cost(C;) to de-
note the cost of C;: for k-Clustering, cost(C;) = 6(C;)/2, and for k-Median, cost(C;) =
mingera{d(z,C;)}. (In the k-Center problem, cost(C;) = min,epamaxyec, {0(x,y)}, and
cost(Cy, Cy, ..., Ck) = max; cost(C;).) We use C5, C5, ..., CF to denote a clustering of V' of
minimum cost ¢*.

Instances of points in R? are computationally hard if d is part of the input.?

Comments. We view the main contribution of this paper as the results rather than the
proofs themselves. Can these results be strengthened? Well, it is likely that the metric
k-clustering algorithm could be combined with the ideas of the k-median algorithm, to yield
a much faster algorithm for metric k-clustering. We feel that the results presented here
are robust, in the sense that they could probably be extended to other related problems.
However, one limit of the results is that they crucially rely on k being fixed. Doing k-
clustering for k large is a completely different problem which requires entirely different tools.

In terms of proof techniques, everything in this paper is elementary and can be proved
from first principles. What gave us the momentum to go through lengthy calculations and
several erroneous earlier versions of the algorithms? In the metric setting, Lemma 10 was
essential in keeping up our optimism. In the (3 setting, Lemma 18 served the same role.
Thus they can be seen as the central piece of the construction, and perhaps the one thing
to remember from the arguments, for possible future re-use in other settings.

2 A PTAS for Metric Instances

In this section we present our algorithm for clustering metric spaces. Before we describe the
algorithm, we give crucial basic properties and some definitions.

Proposition 1. Let X,Y,Z C V. Then |Z]6(X,Y) < |X|§(Y,Z) + |Y[é(Z, X).
Corollary 2. Let C C V. For every vertex v € C' we have é(v,C) > §(C)/(2|C|).

Definition 3. Let [; = (¢/*! ¢/]. Let ny > ny > -++ > ny, be the cluster sizes. Let jo < k?
be the minimum j such that for every ¢,¢', the ratio n;/n; is outside the interval [;. Call a
cluster index 7 large if n; > ¢°ny and small if n; < €0t n,.

ZAn exception to this rule is the case of Euclidean distance. The hardness of the problems considered
here in the Euclidean case 1s an open problem.

In our proofs, the following quantities will come up frequently as upper or lower bounds
to various cluster sizes, so we use some specific notations for them.

Notation 4.
M =ny = max{n;}, m =min{n, | ¢ large}, s = max{n; | small}.

The advantage of the above definition is that there is a large gap between the sizes of
large and of small clusters, much larger than between the sizes of any two large clusters.

Fact 5. s/m < ¢e*-m/M.

Definition 6. Let 8 = eM/m. We say that two large clusters A and B are close if §(A, B) <
B(6(A) + 6(B)), and that they are large otherwise.

Now, the algorithm uses random sampling to have some rough estimate of the position of
the clusters in the metric space. In fact, we will use just one sample point per cluster. For the
algorithm to work, those sample points must be representative. (As usual, we can always
run the algorithm several times to boost up its success probability). The representatives
satisfy a couple of handy properties described in the lemmas below.

Definition 7. Let C be a set of points. An element ¢ of ' is said to be representative of

Cif 8(e, C) < 28(C)/|C).

Lemma 8. Consider a partition (C1,...,Cy) of V such that C; has size n,;. For each large
i, let ¢; be a random uniform element of V. Then, with probability at least (¢’ /(2k))*, we
have the following: for every large i, point ¢; is a representative element of C;.

Lemma 9. Let C7 and C7 be two large clusters, and ¢;, ¢; their representatives. Assume

that C} and C7 are close to each other. Then: 6(¢;, ¢;) < 2(M/m)OPT/(m?c).

Lemma 10. Let ¢ be a representative point of cluster C'. Then, for any = in V', we have:

[6(2, C) = [Clo(z, ¢)] < 26(C)/|C].

Our algorithm uses, as a black box, an approximation scheme for Metric Max-k-Cut
which is already known in the litterature. The Metric Max-k-Cut problem takes as input
a set V of n points from an arbitrary metric space, and outputs a partition of V' into
k clusters Cp,Cy, ..., () so as to maximize the total distance between pairs of points in
different clusters, » . 2j>i 4(C;, Cj). For any partition into k clusters, the sum of the Max-
k-Cut value and of the k-Clustering value is constant and equal to the sum of all distances,
thus the same partition is optimal for both objective functions. Unfortunately, from the
viewpoint of approximation, which involves controlling the relative error, the two problems
are quite different, since in general the optimal k-clustering value could be much smaller
than the optimal Max-k-Cut value. However, the Max-k-Cut approximation algorithm is
still useful when the clusters are close together.

Theorem 11 ([9]). Let k& be a fixed integer. Then there is a polynomial time approxima-
tion scheme for Metric Max-k-Cut.®> The running time is O(n2 + nkQO(l/ES)).

3Theorem 11 is actually an easy extension of the Max Cut approximation scheme of [9]: The same
reduction which is used there for Max Cut also applies to Max-k-Cut, and the resulting weighted dense
graph is only a variant of dense graphs in the usual sense, so that the Max-k-Cut approximation schemes
for dense graphs (see [13, 3]) apply.

2.1 The k-Clustering Algorithm

We are now ready to describe the k-clustering algorithm. The algorithm presented below
is randomized, but making it deterministic is straightforward. Fix ¢ > 0. Our algorithm
consists of taking the best of all partitions that are generated as follows.

1. By exhaustive search, guess the optimal cluster sizes ny > ny > --- > ng. Define
large and small as in Definition 3.

2. Define far and close as in Definition 6. By exhaustive search, for each pair of large
cluster indices ¢ and j, guess whether (7 and (7 are close to each other.

3. Taking the equivalence relation which is the transitive closure of the relation “C¥
and (7 are close to each other”, define a partition of large cluster indices into groups.

4. For each large cluster C7, let ¢; be a random uniform element of V. Assign each
point « € V' to the group G which minimizes min;eq[n;0(x, ¢;)].

5. By exhaustive search, for each group G thus constructed, guess |G N S|, where
S = U, gmaC7 is the union of small clusters. For each wz assigned to group G,

let f(x) = mineq 6(x, ¢;). Remove from G’s assignment the |G N S| elements with
largest value f(x).

6. Partition each group of large clusters into the appropriate number h of clusters using
the PTAS for Max-h-Cut with error parameter ¢’ = €230 /(3k3).

7. Recursively partition the removed elements into the appropriate number of clusters.

Theorem 12. For any fixed positive integer k. the algorithm presented in Section 2.1

is a PTAS for the Metric k-Clustering problem. The running time of the algorithm is
O(n®* f(k,¢)), where f(k,c) has a leading factor of e:z;p((l/e)k2).

The running time analysis can be proved by inspection of the algorithm. We outline the
analysis of the cost of the clustering constructed. The proof is a rather long and technical,
sometimes tricky, but not particularly interesting elementary calculation, involving a careful
management of the various error terms. The interesting facts have already been spelled out
in the beginning of the section.

We first analyze the mistakes made in step 4 of the algorithm. For any two large clusters
¢ and j which belong to different groups, let F(z, j) denote the set of points « € C¥ such that
ming ned(x, ¢g) = njé(x, ¢;). These points, which really should be in ¢’s group, are mistakenly
placed by the algorithm in j’s group. Let C; = C* for ¢ small cluster, and

Ci=Cr+U;F(j,1)—U;F(i,j) forilarge.

Using the bilinearity of (-, -), one can then develop 6(C;), and analyze each term separately,
to prove that >..6(C;) < >°.6(Cr)(1 4 80k%¢c). One ingredient of the calculation involves
showing that F'(j,¢) has small cardinality. We include that argument for the diligent reader,
as an illustrative example of our proofs.

Lemma 13.

me.
€

8
F(g,2) <
()] < 7=

Proof: Let F' = F\(j,1) for shorthand, and let « € F.. By Lemma 10, §(z, C}) < n;6(x,¢;) +
(CF)(2/n;). By the choice of the algorlthm n;é(x,¢;) < njé(x,¢j). By Lemma 10 again,
nyd(rie) < o, C3) + 3(C2n5). Thus 8(a,C7) < 6(a,C3) + (3(C7) + 5(C3)(2fm).

Summing over x gives :

(P, C7) = 8(F,C7) < 2 (8(C) + 8(C)| (1

Now, since i and j are in different groups, €7 and (7 are far from each other, so
S(C7UCT) > B(CT) +(CT)). (2)

Let x € F. By Proposition 1, 6(C7 U C¥) < 26(x, Cr U C)|CF U CF|. Summing over x, we
get |[F|0(CTUCT) <AM(S(F,CF) 4 6(F,C7)). We now use Equation 1:

|[F|6(CTUCT) <AM(20(F,C7) + %(5(02»*) +8(C))|F).

Since F' C (%, we have §(F,C7) < §(C7). Combining with Equation 2 and factoring in |F|
gives

I+ 3(C)E — o) < 8M(C),
Replacing 8 by its value and solving in |F'| yields the Lemma. O
To analyze the mistakes made in the next step of the algorithm, let (C!) denote the
clustering obtained from (C;) as follows. Let GG denote a group, and for each cluster C;
of (¢, let Out(¢) denote the elements of C; which are (mistakenly) removed from G by the
algorithm. Let In((G) denote the elements of S which (mistakenly) get to stay in G. We

have:
m@i= 3 jout(]
i cluster of &

Thus, we can pair up the vertices of U;Out(7) in a one-to-one fashion with the vertices of
In(G). For i large, let C! denote the elements of C; which get to stay in (7, plus the elements
of In((G) which are paired up with elements of Out(i). For ¢ small, let C! denote the elements
of C; which stay outside the groups, plus the elements paired up with elements of C; which
end up in large groups.

By convention, we will always use (v,v’) for elements which are paired, with v denoting
the element which goes out of the large cluster and v’ the element which goes out of the
small cluster. One important piece of our calculation involves proving that

OPT

m

Z5vv 2—|—6k6 —|—2k2)
Once we have that, it does not take too much more work to show that

Vi, 8(C1) <8(C;) 4 3k(2 + 6ke® + 2k*e)FOPT.

6

Finally, we need to analyze the use of Max-i-Cut in step 6 of the algorithm; Consider a
group CTUCU---UCT. Let ¢ = §(C7)+---+6(Cy) and W = §(CTU---UCT) = 3, - 6(CF, C7).
We can show that: W < 3k3/¢(1/¢)%c. Running the PTAS for Max-h-Cut with error
parameter ¢ = cec®0/(3k®), the error is then at most ¢W < ec. Overall, the algorithm
produces a cut of value at most (1 + O(k46 + k262))OPT. Assuming that ¢ < 1/k, this is
OPT(1 + O(k*e?)).

3 Properties of the Square of Euclidean distance

;From now on, §(z,y) = ||z — y||5. We denote by conv(X) the convex hull of X =
{al, 22, ..,2"} C R% Let y = Y7 (q:/r)a" be a point in conv(X) which is a rational
convex combination of X (so r and ¢; are integers). We associate with y a multi-subset Y’
of X of size r, obtained by taking ¢; copies of z?, for all 7. Notice that the center of mass Y
of Y equals y. The following proposition characterizes the cost of a cluster in terms of the
center of mass.

Proposition 14. For every finite X C R?, §(X) = | X|§(X, X).

Proposition 15. Let Y be a multi-subset of RY. Then Y minimizes (Y, z) over z. In

other words, Y = arg min,cpa {6(Y, 2)}.

Proposition 16. For every x,y, 2 € R, 8(x, 2) < 8(z,y) + §(y, 2) + 2¢/8(x,y) - §(y, 2).

Proposition 17. For every * € R for every multi-subset Y of R% we have: §(x,Y) >
Y|6(z,Y).

The first part of the following lemma is attributed to Maurey [6]. We denote the diameter
of Y by diam(Y) = max, yey 0(x,y). Since this is a key lemma, we choose to include its
proof in this extended abstract.

Lemma 18. Let Y C R% and ¢ > 0.

1. (Maurey) For every € conv(Y'), there exists a multi-subset Z of Y containing 1/¢
points and whose center of mass is close to x: §(x, Z) < e- diam(Y").

2. There exists a multi-subset Z of ¥ containing 1 points and whose center of mass is

close to the center of mass of Y: §(Y,7Z) < e§(Y,Y)/|Y].

Proof: We start with the first assertion. Let ¢t = 1/¢ and @ = Zer ayy, where the ay’s
are non-negative and sum up to 1. We use the probabilistic method. Pick a multiset 7 =
{21, 2%, ..., 2'} at random, where the 2'-s are i.i.d. random variables with Pr[z' = y] = a.
Now, it is easy to see that

E[§(z,7)] = E

DR NEENEE]

=1 j7=1

S IR IS o e]

J#i

Since z' and 27 are independent, we have E [(z — z) - (z — 29)] = S0, E[(x; —)] E [(z1 — Z{)]
which is 0 by our choice of distribution. Thus,
¢ . 1
B(d(x, 7)) = - Y Efe—23] < Jdiam(Y).
=1

Therefore there exists a choice of Z such that §(z, Z) < tdiam(Y).

For the second assertion, we start the proof in the same way, with z = Y, and replace
the last part of the calculation by the following slightly finer estimate:

}Z BT, = 5 33 d Vo) = 2

t yeyYy

Lemma 18 can be used to derive a high-probability result as follows.

Lemma 19. There exists a constant x such that the following holds. Let Y C R? and
e,p > 0. Let Z be a random multi-subset of Y generated by taking « - }2 . log% i.i.d. points

distributed uniformly in Y. Then, with probability at least 1 — p, we have: S(Y,7Z) <
(YY) /Y.

4 A PTAS for £2 Instances of k-Clustering

Our algorithm consists of taking the best of all partitions that are generated as follows.

1. By exhaustive search, guess the optimal cluster sizes |C;] = n;,. By exhaustive
search, consider all possible sequences Ay, A,, ..., Ay, where the A;-s are mutually
disjoint multisets, each containing 16/¢* points from V.

2. Compute a minimum cost assignment of points of V to clusters Cy,C5, ..., Cy,
subject to the conditions that exactly n; points are assigned to C;, when the cost of
assigning a point = to C; is 6(x,C;) = n; - 6(x, A;), for all e = 1,2,... k.

Our algorithm is motivated by the following bound.

Lemma 20. Let Y be a multi-subset of_/ and 1 > ¢ > 0._Then there exists a multi-subset
Z of Y of size |Z| = 16/¢* such that §(Y, Z) < (14 €)§(Y,Y).

Theorem 21. The above algorithm is a PTAS for the /3 k-Clustering problem. Its running
time is nOk/<),

5 A PTAS for E% Instances of k-Median

A simple variant of the above algorithm solves the k-Median case and has similar running
time. Here we give a much faster randomized polynomial time approximation scheme for
(% instances of k-Median: the running time of our algorithm, for fixed k, ¢, and failure
probability p, is just O(n(log n)°"). The approximation scheme consists of taking the best
of all partitions that are generated as follows.

1. By exhaustive search, guess an approximation n; > ny > --- > n; on the sizes of
the k clusters, where n; is the power of (1 + €) larger than and closest to |CF].

2. Partition the k clusters into groups in a greedy fashion: 1 goes into the first group,
and for ¢ going from 2 to k, i goes into the current group if n; > (¢/16k)*n;_y, and
into a new group otherwise. Let T' be the number of groups and let m; denote the
size of the largest cluster in the ¢! group. Let mr 1, = 0.

3. For t going from 1 to T', do the following:

(a) Let U, denote the points not yet clustered (initially Uy = V).

(b) Let Z denote a random uniform sample of Uy, with replacement, of constant
size (size k2% /(16¢)* - (Ink)vy/€®, where v > 0 is a constant).

(c) By exhaustive search, guess A; = Z N C7 for all 7 in the ¢"* group. Define, for
each such cluster C;, the representative point as ¢; = A;. (If A; = (), take an
arbitrary point as the representative of C;.)

(d) Assign |U;| — myy116k* /€ points from U, to the clusters in groups 1 through ¢,
where point « is assigned to a cluster C; that minimizes d(z, ¢;).

This completes the specification of the algorithm. We now proceed with its analysis.

Consider the iteration of the algorithm where all the guesses are correct. For all t < T',
let a; denote the index of the first and largest cluster in the ¢** group (so that m; = n,,), and
let b; denote the index of the last and smallest cluster in that group. Consider the situation
when the algorithm starts iteration {. For each j in group ¢, let U;; = C7 N U; denote the
points which have not yet been classified and which we hope the algorithm will place in

cluster 7 during iteration .

Definition 22. For j € [as,b;], we say that C7 is a well-represented cluster if |Uj| >
€/16® - n;. Otherwise ('t is called poorly represented.

Lemma 23. Fix a cluster index j and let ¢ be j’s group. For every p > 0 and for every
sufficiently large A > 0, there exists v > 0 such that with probability at least 1 — 2, if j is a
surviving index then we have: |A;| > InkX/e*.

The following Lemma motivates the terminology of well-represented clusters.

Lemma 24. For every p > 0 there exist A > 0 and v > 0 such that with probability at
least 1 — p, we have:

Vi,V surviving index, ‘5(th,cj) — §(Ujs, jt)‘ <

For x € X, denote by j, the index of the cluster that = gets assigned to by the algorithm,
and denote by 7% the index of the cluster that 2 gets assigned to by the optimal clustering.
Let D; denote the set of points which are assigned during iteration ¢ of the loop in step 3 of
the algorithm. Such points can be classified into three categories:

reqular points: « € Dy is regular if its optimal cluster ;7 has 7% < b; and is well-
represented.

premature points: @ € Dy is premature if 57 > b, 1.e. the optimal cluster of z is too
small to be taken into consideration yet. Let P, denote the premature points in D,.

leftover points: « € Dy is leftover if 37 < b, and cluster 57 is poorly represented. Let
L, denote the premature points of D.

We analyze these categories separately and charge the contribution of premature points
to regular points, and of leftover points to the rest. This eventually leads to the following
theorem.

Theorem 25. With constant probability the above algorithm computes a solution whose

cost 1s within a factor of 1 4 € of the optimum cost. The running time of the algorithm is

O(g(k,¢)-n - (logn)¥), where g(k,c) = exp (}8 K3 Ink - <1H% +In k))

Acknowledgements: We thank Piotr Indyk and Ravi Kannan for stimulating discussions
and helpful suggestions.

References

[1]

[2]

N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. In Proc. of the 41th Ann.
IEEFE Symp. on Foundations of Computer Science(FOCS) 2000, 240-250.

N. Alon and B. Sudakov. On two segmentation problems. Journal of Algorithms, 33:173-184,
1999.

S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense
instances of NP-hard problems. J. Comp. System. Sci., 58:193-210, 1999.

M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via Core-Sets. Proc. 34th
ACM STOC (2002), pages 250-257.

A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the Web. In
Proc. of the 6th Int’l World Wide Web Conf.(WWW), 1997, pages 391-404.

B. Carl and 1. Stephani. Fntropy, Compaciness and the Approxzimation of Operators. Cam-
bridge University Press, 1990.

S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. Indexing
by latent semantic analysis. Journal of the Society for Information Science, 41(6):391-407,
1990.

W. Fernandez de la Vega, M. Karpinski, and C. Kenyon. A polynomial time approximation
scheme for metric MIN-BISECTION. FCCC TR02-041, 2002.

W. Fernandez de la Vega and C. Kenyon. A randomized approximation scheme for metric
MAX CUT. In Proc. of the 39th Ann. IFEE Symp. on Foundations of Computer Science
(FOCS), 1998, pages 468-471, also in JCSS 63 (2001). pages 531-541.

10

[10]

[11]

[21]

[22]

[23]

[24]

P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs and
matrices. In Proc. of the 10th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
1999, pages 291-299.

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz.
Efficient and effective querying by image content. Journal of Intelligent Information Systems,
3(3):231-262, 1994.

N. Garg, V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems
and their applications. SIAM Journal on Computing, 25(2):235-251, 1996.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. J. of the ACM, 45:653-750, 1998.

S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. In Proc.
of the 9th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), January 1998, 649-657.

N. Guttmann-Beck and R. Hassin. Approximation algorithms for min-sum p-clustering.
Disc. Applied Math., 89:125-142, 1998.

P. Indyk. A sublinear time approximation scheme for clustering in metric spaces. In Proc.
of the 40th Ann. IEEE Symp. on Foundations of Computer Science (FOCS), 1999, 154-159.

V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the hardness of approximating
Max k-Cut and its dual. In Proc. of the 4th Israeli Symp. on Theory of Computing and
Systems (ISTCS), 1996. Also in Chicago Journal of Theoretical Computer Science, 1997.

J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation problems. In Proc. of the
30th Ann. ACM Symp. on Theory of Computing (STOC), 1998, pages 473-482.

N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering. In Proc. of
the 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), January 2001, pages
439-447.

R. Ostrovsky and Y. Rabani. Polynomial time approximation schemes for geometric clus-
tering problems. J. of the ACM, 49(2):139-156, March 2002.

S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM,
23(3):555-565, 1976.

L.J. Schulman. Clustering for edge-cost minimization. In Proc. of the 32nd Ann. ACM
Symp. on Theory of Computing (STOC), 2000, pages 547-555.

R. Shamir and R. Sharan. Algorithmic approaches to clustering gene expression data. In
T. Jiang, T. Smith, Y. Xu, M.Q. Zhang eds., Current Topics in Computational Biology,
MIT Press, to appear.

M.J. Swain and D.H. Ballard. Color indexing. International Journal of Computer Vision,
7:11-32, 1991.

11

