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Abstract

We extend the lower bounds on the depth of alge-

braic decision trees to the case of randomized alge-

braic decision trees (with two-sided error) for lan-

guages being �nite unions of hyperplanes and the

intersections of halfspaces, solving a long stand-

ing open problem. As an application, among other

things, we derive, for the �rst time, an 
(n

2

) ran-

domized lower bound for the Knapsack Problem

which was previously only known for determin-

istic algebraic decision trees. It is worth noting

that for the languages being �nite unions of hy-

perplanes our proof method yields also a new ele-

mentary technique for deterministic algebraic de-

cision trees without making use of Milnor's bound

on Betti number of algebraic varieties.
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1 Introduction

Starting with [MT82], [S83], [M85a] and [M85b]

there has been a continued e�ort in the last decade

to understand an intrinsic power of randomiza-

tion in algebraic decision trees (see also [BKL93],

[GK93], [GK94] for some more recent results). Sev-

eral algebraic and topological methods which were

introduced in proving lower bounds for determin-

istic algebraic decision trees (cf. [SY82], [B83],

[BLY92], [GKV95], [Y94]), with the exception of

[BKL93], and [GK93], were not yielding lower

bounds for the case of randomized decision trees. In

[M85a] a lower bound has been stated on the depth

or randomized linear decision trees (randomized al-

gebraic decision trees of degree 1) for the case of

languages being �nte unions of hyperplanes (a gap

in the proof of the Main Lemma of [M85a] for the

generic case was closed in [GK94]). Our paper pro-

vides the �rst lower bounds on the depth of ran-

domized algebraic decision trees in the case of the

languages being �nite unions of hyperplanes as well

as intersections of halfspaces. In this case we pro-

vide a new method for proving lower bounds also

for deterministic algebraic decision trees without

making use of Milnor's bound and Betti numbers

of algebraic varieties. As an application we derive

randomized lower bounds for a number of concrete

problems, among others, Knapsack (
(n

2

) lower

bound), and the Element Distinctness (
(n logn)

lower bound).

The paper is organized as follows. Section 2 in-

troduces the notation of randomized algebraic de-

cision, and computation trees. Section 3 overviews

the known results in the area. Section 4 summa-

rizes our results and applies them for the number

of concrete problems. Section 5 gives an outline of



the lower bound proof, and Sections 6 and 7 gives

the proof of the Main Theorem.

2 Deterministic and Randomized Decision

Trees.

An algebraic decision tree of degree d, a d-DT for

inputs (x

1

; : : : ; x

n

) 2 IR

n

is a rooted ternary tree.

Its root and inner nodes are labelled by polyno-

mials from IR[X

1

; : : : ; X

n

] of degree at most d, its

leaves are accepting or rejecting. The computation

of the d-DT on input (x

1

; : : : ; x

n

) 2 IR

n

consists of

traversing the tree from the root to a leaf, always

choosing the left/middle/right branch of a node

labelled with polynomial g depending on whether

g(x

1

; : : : ; x

n

) is smaller/equal/greater than 0.

The inputs (x

1

; : : : ; x

n

) 2 IR

n

arriving at ac-

cepting leaves form the set S � IR

n

recognized by

the d-DT .

A randomized algebraic decision tree of degree d,

a d-RDT , is a �nite collection of d-DT s T

�

. Such

a d-RDT recognizes S � IR

n

, if, for each x 2 IR

n

,

at least a fraction of 1 �  of the T

�

's classify x

correctly w. r. t. S, for some  2 (0;

1

2

), called the

error probability. We note that the class of sets

S � IR

n

recognized by d-RDT s is closed under the

complement.

The depth of T is the maximum depth of the

T

�

's. In case of d = 1 we talk about determinis-

tic or randomized linear decision trees, LDT s or

RLDT s. In case we do not restrict the degree of

the polynomials but charge for each arithmetic op-

eration needed to compute them we talk about de-

terministic and randomized algebraic computation

trees, CT s and RCT s (for details see [B83]) with

the similar notations for depth (or time).

Note that neither the choice of the error proba-

bility from (0;

1

2

), nor the particular choice of the

complexity measure \maximum depth" are signif-

icant. Choosing any constant error probability

smaller than

1

2

and replacing maximum depth by

maximum over all expected path lengths, maxi-

mum taken over all inputs (\worst case expected

time"), only changes the complexity of a set S by

a constant factor, see e. g. [M85c]. Also, we note

here without a proof that the restriction that an

RDT consists of a �nite collection of DT s can be

weakened: � 2 IN, e. g., works as well.

3 Known Results.

The most important results in connection to this

research are the variants of the component count-

ing lower bound for deterministic computations:

Let L � IR

n

have q connected components. Then

each LDT for L has depth 
(log(q)) [DL78], each

d-DT for L has depth 
(

log(q)

log(d)

� n) (can be de-

duced from [B83], see also [SY82]), each CT for L

has depth 
(log(q)� n) [B83].

The last two results heavily depend on Milnor's

bound on Betti numbers for real algebraic varieties,

thus use deep results from algebraic topology.

In order to apply the component counting lower

bound one has to count the number of connected

components of interesting languages.

Consider, e. g., an Integer Programming Lan-

guage L

n;k

= fx 2 IR

n

; 9a 2 f0; : : : ; kg

n

: xa = 1g

cf. [M85a, M85b]. For each k � 1, the family

fL

n;k

; n 2 INg, restricted to integer inputs, is NP -

complete, for k = 1 this is the famous Knapsack

Problem.

As shown in [DL78] for k = 1 and in [M85b]

for arbitrary k, IR

n

� L

n;k

has (k + 1)


(n

2

)

many

connected components, yielding lower bounds


(n

2

log(k+1)) in the above models. In [M84] it is

shown that all these NP -complete problems have

polynomial depth LDT s, for their n-dimensional

restrictions.

A further important example was the Element

Distinctness Problem [B83], with the connected

components bound n!, and therefore a determin-

istic lower bound 
(n logn).

As far as randomized DT s were concerned much

less was known. In [M85a] it is shown that de-

terministic and randomized LDT s, d-DT s, and

CT s, resp., are polynomially related. A random-

ized lower bound is shown in [M85b] that extends

the lower bounds for e. g. the problems mentioned

above to randomized LDT s. (A gap in that proof

for the generic case was closed in [GK94].)

In [BKL93] it is shown that there are bene-

�ts if the randomization is used in CT s: Consider

the language f(x; y) 2 IR

2n

: y is permutation of

xg � IR

2n

. As this language consists of n! n-

dimensional linear subspaces of IR

2n

, a restriction

to an n-dimensional a�ne subspace in general po-

sition turns it into a set of n! isolated points. Thus



its deterministic complexity is 
(n logn) on the

above deterministic models. On the other hand,

as noted in [BKL93], RCT s need time O(n) only.

4 New Results.

Consider S =

S

m

i=1

H

i

or S

+

=

T

m

i=1

H

+

i

, where

the H

i

's are hyperplanes, and the H

+

i

's are half-

spaces. S is often called a linear arrangement, S

+

is a polyhedron. A k-face L of S is a k-dimensional

subspace de�ned by intersecting n� k of the H

i

's.

If L is k-dimensional on the boundary of S

+

, it is

also a k-face of S

+

.

We prove the following lower bound.

Main Theorem: Let H

1

; : : : ; H

m

be hyper-

planes in IR

n

, S =

S

m

i=1

H

i

; S

+

=

T

m

i=1

H

+

i

for

m � n. If S or S

+

has m


(n�k)

k-faces for some

k 2 f0; : : : ; ng, then each d-RDT for S or S

+

has

depth 
((n� k) log(m)), even if d = m

�

for su�-

ciently small � > 0.

Thus, in order to get lower bounds, we need S

or S

+

to have m


(n)

k-faces for some k. This is

true, e. g., for all problems mentioned in \previous

results", thus all deterministic results mentioned

there can be turned into randomized ones. For

the Element Distinctness Problem it is not di�-

cult to see that for k = n=2 the number of k-faces

is 
(k!). For the languages L

n;k

, the number of ver-

tices (0-faces) can be shown to be in (k + 1)


(n

2

)

.

In particular, we get 
(n

2

) lower bound for the

Knapsack Problem for d-DT s, even if d = 2

n�

for

su�ciently small � > 0. As mentioned above, the

similar bounds are also true for the number of con-

nected components of the complement of L

n;k

. It

turns out that bounding the number of faces is eas-

ier than counting the number of connected compo-

nents.

Our Main Theorem yields directly the following

concrete applications:

Main Corollary: For � > 0 su�ciently small,

the following randomized lower bounds hold.

(a) Lower bound for the depth of any d-RDT

(even if d = 2

�n

) recognizing the Knapsack

Problem is 
(n

2

).

(b) Lower bound for the depth of any d-RDT

(even if d = n

�

) recognizing Element Distinct-

ness Problem is 
(n logn).

We note also an interesting application of our

method towards the set f(x; y) 2 IR

2n

: y is a

permutation of xg � IR

2n

with the deterministic

complexity 
(n logn), and with RCT s complexity

O(n) [BKL93]. Our method applies also for this

set (which is a subarrangement of the linear ar-

rangement) and yields 
(n log n) lower bound for

d-RDT s.

5 Outline of the Lower Bound Proof

Fix a�nely independent hyperplanes H

i

= fx 2

IR

n

; a

i

x = b

i

g for i = 1; : : : ; n: Let v 2 IR

n

be such

that

T

n

i=1

H

i

= fvg.

Let A denote the n � n-matrix whose rows are

a

1

; : : : ; a

n

. For a polynomial f 2 IR[X

1

; : : : ; X

n

]

we consider its expansion with origin v and coordi-

nates a

1

; : : : ; a

n

; f

(v;H

1

;:::;H

n

)

(Y

1

; : : : ; Y

n

) := f(v+

A(Y

1

; : : : ; Y

n

)). Denote for brevity g = f

(v;H

1

;:::;H

n

)

and de�ne the leading term lm(g) as follows: First

take the terms of g with the least degree in Y

n

, then

among them with the least degree in Y

n�1

and so

on, till Y

1

. One could describe lm(g) by means of

in�nitesimals (cf., e. g., [GV88]).

Namely for a real closed �eld F (see e. g. [L65])

we say that an element " transcendental over F is

an in�nitesimal (with respect to F) if 0 < " < a

for any element 0 < a 2 F. This uniquely induces

the order on the �eld F (") of rational functions and

further on the real closure

g

F(") (see [L65]). Now let

"

1

> : : : > "

n

> 0 be the elements such that "

`+1

is in�nitesimal with respect to the real closed �eld

]

IR(") for " = ("

1

; : : : ; "

`

); 0 � ` < n. Then the sign

sgn(g("

1

; : : : ; "

n

)) = sgn(lm(g)("

1

; : : : ; "

n

)) and

this property uniquely determines the term lm(g).

Actually, one could stick in the arguing below with

the real numbers 1 = "

(0)

0

> "

(0)

1

> : : : > "

(0)

n

> 0

instead of "

1

; : : : ; "

n

where "

(0)

`+1

is \considerably

smaller" than "

(0)

`

, 0 � l � n � 1. But then one

should specify, what does it mean \considerably

smaller", and it is more convenient to use in�nites-

imals.



Now �x a family of polynomials f

1

; : : : ; f

s

2

IR[X

1

; : : : ; x

n

]. By Var

(v;H

1

;:::;H

n

)

(f

1

; : : : ; f

s

) we de-

note the number of variables among Y

1

; : : : ; Y

n

ap-

pearing in the leading terms lm(f

(v;H

1

;:::;H

n

)

1

); : : :,

lm(f

(v;H

1

;:::;H

n

)

s

). For a d-DT T , Var

(v;H

1

;:::;H

n

)

(T )

denotes the maximum of all Var

(v;H

1

;:::;H

n

)

(f

1

; : : : ; f

s

), maximum taken over all f

1

; : : : ; f

s

ap-

pearing as testing polynomials on a path in T . We

extend the above de�nition to the case of less hy-

perplanes H

1

; : : : ; H

n�k

for some 1 � k � n � 1.

Then L =

T

n�k

i=1

H

i

is a k-dimensional a�ne sub-

space of IR

n

. For an arbitrary v 2 L we take an

(n � k)-dimensional subspace U orthogonal to L,

with fvg = L \ U . We de�ne Var

(v;H

1

;:::;H

n�k

)

k

(T )

as above, for the polynomials f

1

; : : : ; f

s

restricted

to U . The following two lemmas imply the lower

bound from our Main Theorem. The following

chapters contain their proofs.

Lemma 1 Let T be a d-RDT (or an RCT ) rec-

ognizing L = [

n�k

i=1

H

i

or L

+

= \

n�k

i=1

H

+

i

with error

probability  <

1

2

. Then V ar

(v;H

1

;:::;H

n�k

)

(T

�

) �

(1�2)

2

� (n�k) for a fraction of

1�2

2�2

of all T

�

's.

Let us denote IR

n

+

= f(x

1

; : : : ; x

n

) : x

i

� 0; 1 �

i � ng and IR

n

0

= (IR n f0g)

n

. Lemma 1 entails two

direct corollaries for both RDT s and RCT s, which

give an interesting geometric interpretation of the

depth bounds of Lemma 1.

Corollary 1. Any RCT which recognizes IR

n

+

or IR

n

0

must have the depth greater than or equal

to

1

2

(1� 2)

2

n.

Corollary 2. Any d-RDT which recognizes IR

n

+

or IR

n

0

must have the depth greater or equal to

1

d

(1� 2)

2

n.

Let T

0

be an d-DT , and S = [

m

i=1

H

i

or S =

\

m

i=1

H

+

i

for hyperplanes H

1

; : : : ; H

m

2 IR

n

.

For a k-face L of S let 1 � i

1

< : : : < i

n�k

� m

be the lexicographically smallest sequence of (n�k)

indices such that L = H

i

1

\ : : : \ H

i

n�k

. Let v

L

belong to L but to no lower-dimensional face of S

or S

+

. We abbreviate Var

(v

L

;H

i

1

;:::;H

i

n�k

)

k

(T

0

) by

Var

(v

L

)

(T

0

).

Lemma 2 Assume that, for some c > 0, there

are at least M k-faces L of S with V ar

(v

L

)

k

(T

0

) �

c(n � k). Then the depth t of T

0

ful�ls M � 3

t

�

m

(1�c)(n�k)

� (td)

c(n�k)

.

Using these lemmas it is easy to conclude the

Main Theorem:

Consider d-RDT for S or S

+

with error probability

 <

1

2

. S; S

+

have N many k-faces. Lemma 1 and

elementary counting implies that there is � such

that T

�

ful�ls: Var

fv

L

g

k

(T

�

) � (1� 2)

2

(n� k) for

(

1�2

2�2

) �N many k-faces L.

Thus Lemma 2 implies the desired 
((n �

k) log(m)) lower bound, if N is large as demanded

in the Main Theorem. 2

6 Proof of Lemma 1

First observe that it is su�cient to prove the lemma

for k = 0 and under the assumption that v = 0

and the H

i

's are de�ned by fx 2 IR

n

: x

i

= 0g,

in other words the expansion (y

1

; : : : ; y

n

) ` v +

A(y

1

; : : : ; y

n

) is the identity.

Now let the d-RDT (or the RCT ) recognize

T

n

i=1

H

+

i

with error probability  <

1

2

:

Consider the points E = ("

1

; : : : ; "

n

) and

E

(+)

i

= ("

1

; : : : ; "

i�1

;�"

i

; "

i+1

; : : : ; "

n

); i =

1; : : : ; n. Easy counting yields that there is a frac-

tion of (1�2)=(2�2) of the T

�

's that classify E

and at least (1� 2)

2

n many E

i

's correctly. Take

one such T

�

and some i

o

such that T

�

classi�es E

+

i

o

correctly.

Denote by f

1

; : : : ; f

s

the testing polynomi-

als along the path in T

�

followed by input

E. We claim that X

i

0

occurs in one of the

leading terms lm(f

1

); : : : ; lm(f

s

). Indeed, oth-

erwise sgn(f

`

(E

(+)

i

0

)) = sgn(lm(f

`

(E

(+)

i

0

))) =

sgn(lm(f

`

(E))) = sgn(f

`

(E)); 1 � ` � s, there-

fore E

(+)

i

0

satis�es all the tests along the same path

as E, hence the output for E

(+)

i

0

would be \yes",

which contradicts to the choice of i

0

. This implies

Lemma 1 for

T

n

i=1

H

+

i

.

In case of T recognizing

S

n

i=1

H

i

consider the

points E

(0)

i

= ("

1

; : : : ; "

i�1

; 0; "

i+1

; : : : ; "

n

); 1 �

i � n and argue as above, replacing E

(+)

i

by

E

(0)

i

; 1 � i � n: 2



7 Proof of Lemma 2

To every k-face L de�ned by an intersection

H

i

1

T

: : :

T

H

i

n�k

; i

1

< : : : < i

n�k

, see above, with

Var

(v

L

)

(T

0

) � c(n�k), we correspond a path in T

0

with the testing polynomials f

1

; : : : ; f

s

for which

Var

(v

L

)

(T

0

) = Var

(v

L

)

(f

1

; : : : ; f

s

).

By a ag of L we mean the sequence of embed-

ded planes

H

i

n�k

� H

i

n�k

T

H

i

n�k�1

�

H

i

n�k

T

H

i

n�k�1

T

H

i

n�k�2

� : : : �

T

H

i

n�k

T

: : :

T

H

i

1

where i

1

< : : : < i

n�k

were yielded above. Our

purpose is to label some of these planes in an ap-

propriate way. As a result , a labeled ag would

be attached to L. Morever, for a �xed path in

T

0

with the testing polynomials f

1

; : : : ; f

s

we or-

ganize the labeled ags attached to all k-faces L

which correspond to this path as a regular tree

T = T (f

1

; : : : ; f

s

) with all the paths of the same

length n� k.

We construct the tree T and thereby the la-

beled ags by induction on the level . The base

of induction. Take L which corresponds to the

�xed path (we utilize the introduced above nota-

tions for the coordinates in a neighbourhood of v

L

).

If Y

n�k

(or in other words, hyperplane H

i

n�k

) di-

vides one of f

1

; : : : ; f

s

we construct a vertex, being

a son of the root of the tree T , mark it with the

hyperplane H

i

n�k

and label. If Y

n�k

does not di-

vide any of f

1

; : : : ; f

s

, we do not label this ver-

tex of T . To complete the construction of the

�rst level of T , we represent the polynomial f

j

=

~

f

j

Y

m

j

n�k

L

m

j;1

H

r

1

: : :L

m

j;p

H

r

p

, 1 � j � s as a product for

maximal possible m

j

; m

j;1

; : : : ; m

j;p

where i

n�k

<

r

1

< : : : < r

p

and L

H

r

1

; : : : ;L

H

r

p

are all linear

polynomials determining hyperplanes H

r

1

; : : : ; H

r

p

which divide f

j

with the indices r

1

; : : : ; r

p

greater

than i

n�k

. We assign to the constructed vertex

the polynomials f

(1)

j

(Z

1

; : : : ; Z

k

; Y

1

; : : : ; Y

n�k�1

) =

e

f

j

(Z

1

; : : : ; Z

k

; Y

1

; : : : ; Y

n�k�1

; 0), 1 � j � s. One

could view the polynomial f

(1)

j

as being de�ned on

the hyperplane H

i

n�k

.

Observe that the linear polynomials

L

H

r

1

: : :L

H

r

p

do not vanish on L (due to the

choice of i

n�k

) and therefore these linear polyno-

mials do not vanish at v

L

, hence the expansion in

the coordinates Z

1

; : : : ; Z

k

; Y

1

; : : : ; Y

n�k

of L

H

r

l

,

1 � l � p contains nonzero constant term which is

thereby its leading term, thus lm

(v

L

)

(f

j

) coincides

with lm

(v

L

)

(

e

f

j

Y

m

j

n�k

) up to a constant factor.

Furthermore, lm

(v

L

)

(

e

f

j

Y

m

j

n�k

) = lm

(v

L

)

(

e

f

j

)Y

m

j

n�k

=

lm

(v

L

)

(f

(1)

j

)Y

m

j

n�k

,1 � j � s, and so the leading

term of the new polynomial f

(1)

j

up to a con-

stant factor is obtained from the leading term of

the former polynomial f

j

by dividing on Y

m

j

n�k

,

1 � j � s. We refer to this property as the

maintenance of the leading term. In particular, if

the vertex of T under consideration is not labeled,

the leading term of all the polynomials change

only up to constant factors. If Y

n�k

occurs in one

of lm

(v

L

)

(f

j

), 1 � j � s then the vertex is labeled.

Notice that all the k-faces with the same �rst

hyperplane H

i

n�k

in their ags, correspond to the

constructed vertex ( marked with H

i

n�k

). Remark

that the polynomials f

(1)

j

, 1 � j � s do not depend

on a particular k-face, but still we expand them in

the coordinates which depend on L (so, v

L

).

Now suppose by induction that ` < n levels of

the tree T are already constructed. Consider any

vertex w of T at `-th level. To the vertex w leads to

path (partially labeled), whose vertices are marked

successively by the beginning elements of a ag

H

i

n�k

� H

i

n�k

T

H

i

n�k�1

� : : : �

H

i

n�k

T

: : :

T

H

i

n�k�`+1

.

Finally, the polynomials f

(`)

j

; 1 � j � s are

assigned to the vertex w. One could look at

f

(`)

j

; 1 � j � s as a polynomial restricted on (n�`)-

dimension plane H = H

i

n�k

T

: : :

T

H

i

n�k�`+1

.

If this is the beginning of the ag of a k-face L

(we still consider L to keep the notations), then we

can regard f

(`)

j

(Z

1

; : : : ; Z

k

; Y

1

; : : : ; Y

n�k�`

) ; 1 �

j � s as the polynomials in the �xed coordinates

in the neighbourhood of v

L

. As above we con-

struct a new vertex of T of the level (` + 1), be-

ing a son in T of the vertex under consideration,

and mark it with the (n� `� 1)-dimensional plane

H

i

n�k

T

: : :

T

H

i

n�k�`+1

T

H

i

n�k�`

= H

T

H

i

n�k�`

.

Represent f

(`)

j

=

~

f

(`)

j

Y

q

j

n�k�`

L

q

j;1

H

T

H

t

1

: : :L

q

j;�

H

T

H

t

�

; 1 � j � s

for the maximal possible q

j

; q

j;1

; : : : ; q

j;�

where

i

n�k�`

< t

1

< : : : < t

�

and L

H

T

H

t

1

; : : : ;L

H

T

H

t

�



are all the linear polynomials in the plane H

determining hyperplanes H

T

H

t

1

; : : : ; H

T

H

t

�

(in H) which divide f

(`)

j

with the indices

t

1

; : : : ; t

�

greater than i

n�k�`

. We assign to the

constructed vertex the polynomials f

(`+1)

j

=

~

f

(`)

j

(Z

1

; : : : ; Z

k

; Y

1

; : : : ; Y

n�k�`�1

; 0) ; 1 � j � s.

One could view the polynomial f

(`+1)

j

as being

de�ned on the plane H

T

H

i

n�k�`

.

If q

j

� 1 for at least one 1 � j � s then

we label the constructed vertex. As in the

base of the induction we observe that the

linear polynomials L

H

T

H

t

1

; : : : ;L

H

T

H

t

�

do

not vanish on L (due to the choice of i

n�k�l

)

and therefore these linear polynomials do not

vanish at v

L

, hence the expansion in the coor-

dinates Z

1

; : : : ; Z

k

; Y

1

; : : : ; Y

n�k�l

of L

H

T

H

t

�

,

1 � � � � contains nonzero constant term which

is thereby its leading term (with respect to the

coordinates Z

1

; : : : ; Z

k

; Y

1

; : : : ; Y

n�k�`

). Thus,

lm

(v

L

)

f

(`)

j

coincides with lm

(v

L

)

�

e

f

(l)

j

Y

q

j

n�k�l

�

up to a constant factor. Furthermore,

lm

(v

L

)

�

~

f

(`)

j

Y

q

j

n�k�`

�

= lm

(v

L

)

�

~

f

(`)

j

�

� Y

q

j

n�k�`

=

lm

(v

L

)

�

f

(`+1)

j

�

Y

q

j

n�k�`

; 1 � j � s. So, the lead-

ing term of the new polynomial f

(`+1)

j

up to

a constant factor is obtained from the leading

term of the former polynomial f

(`)

j

by dividing

on Y

q

j

n�k�`

; 1 � j � s. Thus, we have ascertained

the maintenance property of the leading terms

(see the base of induction). Also the vertex is

labeled if and only if Y

n�k�`

occurs in one of

lm

(v

L

)

�

f

(`)

j

�

; 1 � j � s.

This completes the inductive construction of T .

Observe that to each path in T corresponds ex-

actly one k-face represented by a ag marked on

the path. Vice versa, by the construction of T ev-

ery k-face L which corresponds to the �xed path of

d - DT T

0

with the testing polynomials f

1

; : : : ; f

s

,

appears in some leaf of T .

Now let us estimate the number of leaves in

T . By the assumption of the lemma and due to

the property of the maintenance of the leading

terms on each path of T at least c(n � k) ver-

tices are labeled. Observe that in the inductive

step of the described construction of T the con-

structed vertex (being a son of the vertex w of the

level `; we utilize the introduced above notations)

which corresponds to the hyperplane H

T

H

i

n�k�`

(inH) is labeled if and only if the linear polynomial

L

H

T

H

i

n�k�`

divides the product

Q

1�j�s

f

(`)

j

. Let

u

1

< : : : < u

p

be all the indices such that L

H

T

H

u

q

divides the product

Q

1�j�s

f

(`)

j

; 1 � q � p. By

the observed above each labeled son of the ver-

tex w is marked with some H

u

q

0

; 1 � q

0

� p.

Since in the construction of f

(`+1)

j

; 1 � j �

s we divided by L

H

T

H

u

q

for all q > q

0

, we

conclude that the degree deg

�

Q

1�j�s

f

(`+1)

j

�

�

deg

�

Q

1�j�s

f

(`)

j

�

� (p� q

0

+ 1). Notice that the

polynomials f

(`+1)

j

; 1 � j � s depend actually on

the particular son of the vertex w, although we do

not reect this in the notations.

Besides the labeled sons, any vertex in T could

have at most m unlabeled sons (in fact, each un-

labeled son is marked with some H

u

with u <

i

n�k�`+1

, so there are less than m sons in general,

but we stick with a rough bound m which su�ces).

To estimate the number of leaves in T denote by

M(R;Q;D) the maximal possible number of leaves

in a regular tree (actually, we could stick with sub-

trees of T , so they are partially labeled) with the

length of any path equal to R, with at most Q un-

labeled vertices on any path and with a polynomial

of degree less or equal to D assigned to any vertex

(in T we assign the polynomial

Q

1�j�s

f

(`)

j

to the

vertex w, see the construction). Assume w � ` � o � g�

that Q � R (if Q > R then set M(R;Q;D) = 0).

Considering such a tree and its subtrees with the

roots being the sons of the root of the tree we get

the following inductive inequality M(R;Q;D) �

m�M(R�1; Q�1;D)+

P

1�p�D

M(R�1; Q;D�p)

(provided that R > Q, when R = Q we have

M(Q;Q;D) � m �M(Q � 1; Q� 1; D) where the

�rst item in the right side relates the unlabeled

sons of the root and the second item relates the la-

beled sons (see the bound on deg

�

Q

1�j�s

f

(`+1)

j

�

).

From this inequality we get a bound (by induction

on R) :

M(R;Q;D)� m

Q

D

R�Q

(R�Q)!

 

R

Q

!

:



Indeed, the right side of the inequality by induc-

tive hypothesis does not exceed (provided that

R > Q, when R = Q we have M(Q;Q;D) � m

Q

by induction on Q)

m

Q

D

R�Q

(R�Q)!

 

R� 1

Q� 1

!

+

X

0�p�D�1

m

Q

p

R�Q�1

(R�Q� 1)!

 

R� 1

Q

!

� m

Q

 

D

R�Q

(R�Q)!

 

R� 1

Q� 1

!

+

 

R� 1

Q

!

1

(R� Q� 1)!

D

R�Q

R� Q

!

= m

Q

D

R�Q

(R� Q)!

 

R

Q

!

which was to be shown.

Substituting now

R = n� k;Q = (n� k)(1� c);

D = deg(

Y

1�j�s

f

j

) � sd;

we obtain a bound

m

(n�k)(1�c)

(sd)

c(n�k)

(c(n� k))!

2

n�k

� m

(n�k)(1�c)

(sd)

c(n�k)

for the number of leaves in T .

So far, we've considered one path of the d-

decision tree T

0

(with the testing polynomials

f

1

; : : : ; f

s

along this path).

Denote by t the depth of T

0

(thus, T

0

has at

most 3

t

paths). Since each k-face corresponds to a

certain path of T

0

(see the beginning of the proof

of the lemma), we conclude that

M � 3

t

m

(n�k)(1�c)

(td)

c(n�k)

;

which proves Lemma 2:

2

8 Applications

There is a number of applications of our method for

concrete problems (see for examples, e. g., [B83] or

[M85a]). We shall discuss the full list of concrete

problems for which our method applies, and the

corresponding randomized lower bounds, in the �-

nal version of this paper. Here we give in Main

Corollary, Section 4, only the applications for the

Knapsack, and the Element Distinctness Problems

with the randomized bounds 
(n

2

) and 
(n log n),

respectively.

9 Conclusion and Open Problems

We have proven that the known counting lower

bounds for DT s carry over to RDT s for sets be-

ing �nite unions of hyperplanes and intersections of

halfspaces. Two important questions remain open:

� Does our lower bound for RDT s hold also for

sets of other structure, e. g. �nite languages?

Using the method of Example 2 in [BKL93]

on polynomial zero-tests we can construct a

�nite set of n! points (permutations) in IR

n

,

for which an RDT with degree n (cf. also

the restriction on M in Theorem 2) needs

a constant time. For Randomized Computa-

tion Trees (RCT s) the above algorithm needs

depth O(n) and Ben-Or's ([B83]) lower bound


(n logn) holds for deterministic CT s. Our

lower bound does not give nontrivial bounds

for RDT s of degree m for this problem.

� Is there some analog of our Main Theorem also

possible for randomized computation trees

(RCT s) ?
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