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Abstract

We obtain new lower bounds on the number of non zeros of sparse poly-

nomials and give a fully polynomial time (�; �) approximation algorithm for

the number of non-zeros of multivariate sparse polynomials over a �nite �eld

of q elements and degree less than q � 1. This answers partially to an open

problem of D. Grigoriev and M. Karpinski. Also, probabilistic and determin-

istic algorithms for testing identity to zero of a sparse polynomial given by a

"black-box" are given. Finally, we propose an algorithm to estimate the size

of the image of a univariate sparse polynomial.
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Introduction

In the recent paper [3] (improving and generalizing some previous results of [4],

[6], [9]) lower bounds have been obtained for the number of zeros and non-zeros

of a t-sparse multivariate polynomial over a �nite �eld F

q

of q elements. As it was

mentioned in [3] there is no real chance to improve essentially the lower bound for

the number of zeros (as it would imply a randomized subexponential algorithm for

the famous 3-SAT problem) but an analogous question for the number of non zeros

was posed as an open problem.

Here we show that indeed for a very wide class of polynomials a lower bound

of the conjectured in [3] type holds. We show that, roughly speaking, the density

of non-zeros is at least t

�1

rather than t

� log q

as in [3]. Note that for arbitrary

polynomials (i.e. when degrees up to q� 1 are allowed) the mentioned lower bound

t

� log q

cannot be possibly sharpened (see the remark after Theorem 2 of [3]). Of

course the obtained improvement immediately leads to an improved Monte-Carlo

aproximation algorithm for the number of non-zeros of a t-sparse polynomial and

to an RNC-algorithm for testing identity to zero of a sparse polynomials given by

a "black-box". It gives a polynomial time approximation algorithm even in case of

growing q (the previous one needs q to be �xed as contains log q in the exponent).

Then we consider a related question about the zero-testing of t-sparse multivari-

ate polynomials over F

q

in the black-box model of [2], [5], [16]. For the case on a

non-prime �eld we obtain several improvements of previously known results. It is

hoped they can be applied to the more general problem of polynomial interpolation.

Finally we show that in some cases, the image size of a univariate t-sparse poly-

nomials can be estimated quite quicky. For example, for any A > 0 say one can

check if it is less than log

A

q in polynomial time.

1 Counting Non Zeros of Sparse Polynomials

Let f(x

1

; : : : x

m

) 2 F

q

[x

1

; : : : ; x

m

] be a t-sparse polynomial (i.e. a polynomial con-

taining exactly t monomials). Denote by R(f) the number of non-zeros of f over

F

�

q

that is the number of (a

1

; : : : ; a

m

) 2 [F

�

q

]

m

such that f(a

1

; : : : ; a

m

) 6= 0.

Theorem 1 Let f be a t-sparse polynomial in m variables over F

q

with t � 1 and

deg f � q � 2 then R(f) � (q � 1)

m

=t.
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Proof. Let us use induction in m. For m = 1, let us consider a polynomial

f(x) =

t

X

i=1

c

i

x

n

i

;

with c

i

2 F

�

q

; i = 1; : : : t; and 0 � n

1

< : : : < n

t

� q � 2. Let � be a primitive root

of F

q

. Then R(f) is the number of u = 0; : : : ; q � 2 such that f(�

u

) 6= 0. Evidently,

it is enough to show that for any integer h, among the following t elements

f(�

u

); u = h; : : : ; h+ t� 1;

there exists at least one non-zero.

Indeed if all of them equal zero then we get that the following system of linear

equations

t

X

i=1

z

i

�

jn

i

= 0; j = 0; : : : ; t� 1;

has a non-zero solution z

i

= c

i

�

hn

i

; i = 1; : : : ; t. On the other hand the system has

a Vandermonde matrix with di�erent entries �

n

1

; : : : ; �

n

t

(as n

i

6� n

j

(mod q � 1)

for 1 � i < j � q � 1). The obtained contradiction proves the estimate for m = 1.

Now, let us consider the general case. We represent a t-sparse polynomial in the

form

f(x

1

; : : : ; x

m

) =

s

X

i=1

f

i

(x

1

; : : : ; x

m�1

)x

n

i

m

where f

i

(x

1

; : : : ; x

m�1

); i = 1; : : : s; are some non-zero polynomials over F

q

and

0 � n

1

< : : : < n

t

� q � 2. It is evident that at least one of the coe�cient

polynomials is r-sparse with r � t=s. Therefore, from the induction conjecture

we get that there are at least (q � 1)

m�1

=r vectors (a

1

; : : : ; a

m�1

) 2 [F

�

q

]

m�1

such

that f(a

1

; : : : ; a

m�1

; x

m

) is a non-zero polynomial thus it is a k sparse polynomial

with 1 � k � s and therefore has at least (q � 1)=k � (q � 1)=s non-zeros. Thus

R(f) � (q � 1)

m�1

r

�1

(q � 1)k

�1

� (q � 1)

m

t

�1

. 2

Now let us consider the total number of non zeros T (f) of f over F

q

that is the

number of (a

1

; : : : ; a

m

) 2 [F

q

]

m

such that f(a

1

; : : : ; a

m

) 6= 0.

As in [3], [8], denote by G(f) the set of of (a

1

; : : : ; a

m

) 2 [F

q

]

m

for which at

least one of the monomials containing in the representation of f is not equal to zero.

Theorem 2 Let f be a t-sparse polynomial in m variables over F

q

with t > 0 and

deg f � q � 2 then T (f) � jG(f)j=t.
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Proof. For an n-dimensional (0; 1) vector � = (�

1

; : : : ; �

m

) 2 f0; 1g

m

denote by

G

�

(f) the subset of G(f) containing vectors having zero coordinates on the same

positions where � has, that is

G

�

(f) = f(a

1

; : : : ; a

m

) 2 G(f) j a

i

= 0, �

i

= 0; i = 1; : : : ;mg:

If wt(�) denote the Hammingweight of � (i.e. the number of nonzero cordinates)

then either jG

�

(f)j = (q � 1)

wt(�)

or G

�

(f) = ;.

Let us denote by f

�

the polynomial in wt(�) variables obtained from f by spe-

cialization to zero all variables x

i

having the index i; 1 � i � m such that �

i

= 0.

Evidently,

T (f) =

X

�2f0;1g

m

R(f

�

); jG(f)j =

X

�2f0;1g

m

jG

�

(f)j

Now it is enough to prove that R(f

�

) � jG

�

(f)j=t for all � 2 f0; 1g

m

. Indeed,

if G

�

(f) = ; then it is evident, otherwise f

�

is a non-zero s-sparse polynomial with

1 � s � t and thus applying Theorem 1 we get the desired inequality. 2

Theorem 3 Let f be a t-sparse polynomial in m variables over F

q

with deg f � q�2

then for any � > 0 and � > 0 there exists a randomized algorithm using O(m log q)

random bits and O(�

�2

mt log q log(1=�)) arithmetical operations in F

q

and computing

an approximation T to T (f) such that

Pr

n

jT � T (f)j < �T (f)

o

> 1 � �:

Proof. Using the estimate of Theorem 2, and the e�cient construction of the set

G(f) from [8] one gets the pointed out algorithm (see [6]). 2

Also, as in [8], one can get a parallel version of the last algorithm.

Unfortunately, our restriction on the degree deg f � q � 2 does not allow us to

consider a more interesting and important question about the number of zeros of a

polynomial (the standard reduction use an auxiliary polynomial F = f

q�1

� 1, see

[4], [3], [8]). Moreover, as we have mentioned, it was shown in [3] that without

some other restriction on f their estimate cannot be improved. On the other hand

we conjecture that in this special case of polynomial of the shape f

q�1

�1 the result

of [3] is not sharp.
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2 Zero Testing of Sparse Polynomials

A t-sparse polynomial f of degree deg f � d inm variables over F

q

is said to be given

by a "black-box" if in any point over any extension F

q

l ; l = 1; 2; : : : ; we can compute

it in time (lt log d log q)

O(1)

(but we do not know its coe�cients). A typical example

is a polynomial given by the determinant of a matrix with polynomial entries.

From the de�nition above, the question about constructing the corresponding

extensions F

q

l of F

q

naturally arises. We do not consider this question here in

details and in all algorithms below we assume that we are given the corresponding

extension but it is easy reformulate all of them in a form taking into account the

cots of such construction (without loosing the main features of the algorithm).

Indeed, during recent years a very substantial progress in this area has been

achieved (for a survey see Chapter 2 of [14]). Say for the �eld of Theorem 4 below

we may use the probabilistic algorithm from [12] with expected number of

O(l

2

log

2

l log log l+ l log q log l log log l)

arithmetical operations over F

q

, as for Theorem 5 we may apply the deterministic

algorithm from [11] using

l

4

p

1=2

(log l log q)

O(1)

arithmetical operations over F

q

where p is the characteristic of F

q

(thus it is a

polynomial time algorithm for �elds of small characteristic). There are many other

fast algorithms as well.

Moreover, as in fact everywhere, we need only to have an extension of degree l

exceeding some lower bound L

0

(rather than satisfying the following stronger con-

dition l = L

0

) we can use an algorithm of [1] that for any L

0

in polynomial time

(L

0

log q)

O(1)

constructs an extension F

q

l of degree l with

L

0

� l � cL

0

log q

where c > 0 is an e�ectively computable absolute constant.

Theorem 4 Let f be a t-sparse polynomial in m variables over F

q

with 0 � t �

� and deg f � d and given by a "black-box". Then for any � > 0 there is an

algorithm for testing identity to zero of f , using O(m� log q log(1=�)) random bits,

O(� log(1=�)) parallel evaluations of f over F

q

l with any l � dlog(d+ 2)= log qe and

having the probability of the correct answer at least 1� �.
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Proof. Choosing N = b4� log(1=�)c + 1 points from [F

�

q

l

]

m

at random in parallel

and using the estimate of Theorem 1 (as d � q

l

), one gets the desired algorithm (see

[6]). 2

Taking into account the remarks about constructing �nite �elds, in particular,

the estimate (2), we get the following probabilistic polynomial-time test.

Corollary 5 Let f be a t-sparse polynomial in m variables over F

q

with 0 � t � �

and deg f � d and given by a "black-box" then for any � > 0 there is an algorithm

for testing identity to zero of f , using (m� log d log q log(1=�))

O(1)

) arithmetical op-

erations over F

q

and having the probability of the correct answer at least 1 � �.

Note that several deterministic algorithms are known for this problem but for q

growing all of them are exponential with respect to q (see [2], [5], [16]). All these

algorithms are based on evaluations of the polynomial in several points over some

extension F

q

l computed from a primitive root of this �eld. So, in order to get an

e�ective algorithm we should �nd a primitive root �rstly.

All known (probabilistic and deterministic) algorithms to �nd a primitive root

work in two steps:

Step 1. Construct a "small" set M 2 F

q

l containing a primitive root.

Step 2. Find a primitive root testing for primitiveness every element of M .

Unfortunately, the second step needs the factorization of q

l

� 1 that is very time

consuming for large l. It was the reason why in the previous papers the authors

tried to work in slight extensions of F

q

. Here we show that in fact we may drop Step

2 thus some recent results concernig Step 1 enable us to design fast deterministic

tests.

In particular, we show below (see Theorem 5) that in the case when q is a power

of a �xed prime number (say q = 2

r

) Theorem 2.3 of [2] leads to a polynomial time

algorithm and moreover it enables us to improve the results of [5] with respect to

the power of q in the estimate of the number of processors (at for non-prime �elds).

Theorem 6 Let F

q

be of characteristic p. Then for any positive d and � , in time

p(m� log d log q)

O(1)
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one can construct a �eld F

q

k with k = m dlog(d+ 2)= log qe and a test-set U 2 [F

q

k ]

m

of size jU j = p(m log q)

O(1)

such that a t-sparse polynomial f in m variables over F

q

with 0 � t � � and deg f � d is identical to zero if and only if f(u

1

; : : : ; u

m

) = 0

for any (u

1

; : : : ; u

m

) 2 U.

Proof. Firstly let us construct the �eld F

q

k where k = lm; l = dlog(d + 2)= log qe

by using the algorithm of [12], in time

O

�

p

1=2

(m log d log q)

O(1)

�

(see (1)). Then the algorithms of [13] and of [15] (see also Chapter 2 of [14]), in

time p(m log d log q)

O(1)

construct a set M 2 F

q

k of size jMj = p(m log d log q)

O(1)

and containing a primitive root � of F

q

k .

It follows from Theorem 2.3 of [2] that f is identical to zero if and only if

f(0; : : : ; 0) = 0 and f(�

i

; �

iq

l

; : : : ; �

iq

l(m�1)

) = 0; i = 0; : : : ; � � 1. De�ning

U = f(0; : : : ; 0)g [ f(�

i

; �

iq

l

; : : : ; �

iq

l(m�1)

)j� 2M; 0 � i � � � 1g

we get the desired set. 2

Corollary 7 Let F

q

be a �nite �eld of characteristic p and let f be a t-sparse polyno-

mial in m variables over F

q

with 0 � t � � and deg f � d and given by a "black-box"

then there is an algorithm for testing identity to zero of f in time p(m log d log q)

O(1)

).

Let us mention that the results above are new even for "large" p (say when

q = p

2

) and give improvements of the corresponding tests from [2], [5], [16]. Also

they can be implemented in parallel.

It seems that the estimate of [10] leads to the construction of the corresponding

setM (containing a primitive root) of size p

1=2

(m log d log q)

O(1)

in time of the same

order. In this case we would get an improvement of the zero-identity test of [5]

with respect to the number of processors beginning from q = p (p

1=2

rather than p).

3 Image-Size of Sparse Polynomials

Here we consider the following question. Let f be a t-sparse univariate polynomial

over F

q

and let we are given an integer number I > 0. How quickly can we test

whether the image-size

I(f) = jff(x) : x 2 F

q

gj

7



is a least I ?

The "brute force" algorithm takes time q(log q)

O(1)

. Below we show that for

small I (for I < q

1=t

) it can be done faster.

Theorem 8 Let f be a t-sparse univariate polynomial over F

q

with deg f � q � 1

given by a "black-box" and assume that a primitive root � of F

q

is given. Then for

any I > 0 one can test if I(f) � I in time I

t

(log q)

O(1)

.

Proof. Let

f(x) =

t

X

i=1

a

i

x

n

i

where

a

1

; : : : ; a

t

2 F

�

q

; 0 � n

1

< : : : < n

t

� q � 1:

Let us consider the sequence

u(x) =

t

X

i=1

a

i

�

xn

i

; x = 1; 2; : : : ;

where � is a �xed primitive root of F

q

. Let us denote

D = gcd(n

1

; : : : ; n

t

; q � 1); T = (q � 1)=D:

We show that the vectors

U(x) =

�

u(x); : : : ; u(x+ t� 1)

�

; x = 1; : : : ; T;

are pairwise di�erent. Indeed, if U(x) = U(y); 1 � x < y � T , then

t

X

i=1

a

i

(�

yn

i

� �

xn

i

)�

jn

i

= 0; j = 0; : : : t� 1:

Because of (3), it implies

�

yn

i

= �

xn

i

; i = 1; : : : ; t;

thus

n

i

� 0 (mod (q � 1)=d); i = 1; : : : ; t:

where d = gcd(x� y; q � 1). Therefore,

D = gcd(n

1

; : : : ; n

t

; q � 1) � (q � 1)=d > (q � 1)=T = D;

8



the obtained contradiction shows that (4) is impossible. Now as t-dimensional vec-

tors U(x); x = 1; : : : ; T , are pairwise di�erent, their coordinates takes at least T

1=t

di�erent values. Also, it is easy to see that u(x) = u(x+ T ); x = 1; 2; : : :.

Therefore, in order to check if I(f) > I it is enough to compute vectors U(1); : : : ;

U(Q) with Q = I

t

. If there are 1 � x < y � Q such that U(x) = U(y) therefore

T � Q and

I(f) = f(0) [ fu(1); : : : ; u(Q)g;

otherwise T > Q and

jI(f)j � T

1=t

> I:

Taking into account that the size of the set (5) can be computed in timeQ(log q)

O(1)

we get the desired result. 2

Of course using various algorithms to �nd primitive roots (or just "small-sized"

sets containing a primitive root) one can get Theorem 6 in an unconditional form

(in any case it can be done in time q

1=4

(log q)

O(1)

). The natural question is can the

same result be obtained without �nding an auxiliary primitive root.

The considerations above give the bounds

q � 1

D

� jI(f)j � (

q � 1

D

)

1=t

:

Also they show that either jI(f)j can be computed by the "brute force" algorithm

in time qD

�1

(log q)

O(1)

or it is large enough. The question is: in the second case,

can one use a Monte Carlo algorithm to estimate jI(f)j (note that the results of [6]

cannot be applied directly).
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