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Abstract. Techniques from differential topology are used to give poly-
nomial bounds for the VC-dimension of sigmoidal neural networks. The
bounds are quadratic in w, the dimension of the space of weights. Simi-
lar results are obtained for a wide class of Pfaffian activation functions.
The obstruction (in differential topology) to improving the bound to an
optimal bound O (wlogw) is discussed, and attention is paid to the role
of other parameters involved in the network architecture.
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1 Introduction

We refer to Macintyre-Sontag [MS93](cf, e.g., also [AB92] and [GJ93]) for all no-
tions required from the theory of neural architectures, and to Hirsch for necessary
notions from differential topology [H76]. There [MS93], some general (but pro-
found) results from logic were used to show that for feedforward neural architec-
tures with activation the standard sigmoid o(y) = 1/1 + e~ the VC-dimension
is finite. The method applies to a huge variety of other activation functions, and
the polynomials involved in computing could be replaced by much more general
functions. The method is, however, inadequate to give interesting bounds.
Taking a hint from Goldberg and Jerrum works [GJ93], and a reference to
Warren’s [W68], we have found a method, not appealing to logic but using
rather more differential topology, for giving very good polynomial bounds when
the activation function satisfies a special kind of Pfaffian differential equation.
The restriction to Pfaffian is because we use a method of Khovanski [K91].

2 Formulation and Main Results

2.1. The method is by no means restricted to neural architectures, and we choose
to present it in greater generality. Fix integers k,! and C'*° (infinitely differen-
tiable) functions 7, ..., 7, from R*** to R. Write 7; as 7;(vi, ..., v, Y1, - -, Ye)
(or 7(7,9)).

Let &(7,9) be a Boolean combination of conditions

or
7(v,9) =0,

where 7 is one of the 7;.

& defines a set in R**¢. For ﬂN in R | let ¢/§ be the set in in R* defined by

P(7, ﬁN) Let Cg be the family of all @5 as B varies through R

We give good bounds of the VC-dimension of Cg , under some assumptions
(some are necessary!) about the 7;. In [KM94] it is shown how the VC-dimension
of a neural architecture with k£ inputs and ! weights is a special case of a VC-

Dim(Cg).
2.2. We maintain the notation of 2.1.

Call a ©-function from R*** to R one of the form 7(&, §) for a 7 in the list, and
some & € R*. An F-function from R’ to some R" (7 < {) is a function

§—(01(9),---,0:(9)) = F(9))

where the @; are O-functions.



By Sard’s Theorem, the p in R such that F~!(p) is either ) or an [ — r
manifold, have measure 1.

Our assumption on 7y, ..., T, is that there is a bound B, independent of the
F-function F' (and r < ¢) such that for p € R F~!(p) has < B connected com-
ponents. This is true, for example, for the © corresponding to sigmoidal neural
networks [KM94]. Our general result, based essentially on Warren’s ideas [W68],
is:

Theorem 1 VC-Dim(Cg) < 2log B 4+ 161 (log s+ 1).

Note: Goldberg and Jerrum [GJ93] have a result of this type when the 7 are
polynomial and apply it to get a bound of order [log! for the VC-dimension of
neural netwoks with semi-algebraic activation functions. B was estimated via a
result of Warren [W68] (or Milnor [M64] can be used) but Warren’s method was
irrelevant in [GJ93]. llog! appears not from log B, but from the [log s, by crude
estimates.

2.1 Application to Neural Nets

In this case (7, 7) is

where 7 is composed out of polynomials and activation functions according to the
structure of the underlying graph. The problem then is to bound log B explicitly.
For sigmoidal activation functions, one can appeal to a method, and results, of
Khovanski [K91].

In order to avoid a clash of notation (cf. [M93]), we now write w for £.
w 1s the dimension of the weight space. The other relevant parameters are:

i) d = a bound for the degrees of all polynomials involved;
ii) m = number of computation nodes.

Then:

Theorem 2 (For the neural network .4 with the standard sigmoid activation
function o).

VC — Dim(A) < (mw)(mw — 1)
+ 6w log w

+ 8mw log(Zmd + 1)

+ 16wlog(2md + 1).

Note: The only troublesome term is (mw)(mw —1) . Its presence is easily traced
to the term 27(¢=1/2 in Khovanskii’s basic estimate [K91], where ¢ is the number
of exponentials involved in a problem.



For w = 1, we can use another method, going back to Hardy [H12],allowing
us to replace mw (mw — 1) (=m(m — 1)) by a term linear in m.
For the proof of Theorem 2, see [KM94].

3 Generalization and Prospects

3.1. Theorem 2, with a quadratic dominant term, does not depend too strongly
on the form of the activation function. To see this, one can appeal to Khovanskii’s
book [K91](p. 91). There an argument is given generalizing that used earlier for
sets defined by conditions

(7, M) e/lq(;l))) =0,
p polynomial, A;’s linear.

One can now replace the e
chain of length < q. So we can extend Theorem 2 to Pfaffian activation functions,

A:(4) by ¢ many functions occurring in a Pfaffian

but now we have to take into account the degrees of the polynomials occurring
in the Pfaffian chain. Let D be a bound for these degrees. The only alteration
in Theorem 2 is the replacement of the terms log(2md + 1) by log(2md + D).
There is a more remarkable further generalization. There is an obvious way to
consider networks with multivariate activation functions. If these are Pfaffian, we
still get a quadratic dominant term. We will elaborate this in a future publication.
3.2. How to remove the quadratic term? One sees easily that it occurs because
Khovanski [K91] removes one exponential at a time in his basic inductive method.
We are hard at work on a method for removing all at once, and we expect to
replace mw(mw — 1) by mw. O
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