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Abstract. Techniques from di�erential topology are used to give poly-

nomial bounds for the VC-dimension of sigmoidal neural networks. The

bounds are quadratic in w, the dimension of the space of weights. Simi-

lar results are obtained for a wide class of Pfa�an activation functions.

The obstruction (in di�erential topology) to improving the bound to an

optimal bound O (w logw) is discussed, and attention is paid to the role

of other parameters involved in the network architecture.
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1 Introduction

We refer to Macintyre-Sontag [MS93](cf, e.g., also [AB92] and [GJ93]) for all no-

tions required from the theory of neural architectures, and to Hirsch for necessary

notions from di�erential topology [H76]. There [MS93], some general (but pro-

found) results from logic were used to show that for feedforward neural architec-

tures with activation the standard sigmoid �(y) = 1=1 + e

�x

the VC-dimension

is �nite. The method applies to a huge variety of other activation functions, and

the polynomials involved in computing could be replaced by much more general

functions. The method is, however, inadequate to give interesting bounds.

Taking a hint from Goldberg and Jerrum works [GJ93], and a reference to

Warren's [W68], we have found a method, not appealing to logic but using

rather more di�erential topology, for giving very good polynomial bounds when

the activation function satis�es a special kind of Pfa�an di�erential equation.

The restriction to Pfa�an is because we use a method of Khovanski [K91].

2 Formulation and Main Results

2.1. The method is by no means restricted to neural architectures, and we choose

to present it in greater generality. Fix integers k; l and C

1

(in�nitely di�eren-

tiable) functions �

1

; : : : ; �

s

from R

k+`

to R. Write �

i

as �

i

(v

i

; : : : ; v

k

; y

1

; : : : ; y

`

)

(or �

i

(�v; ~y)).

Let �(�v; ~y) be a Boolean combination of conditions

�(�v; ~y) > 0

or

�(�v; ~y) = 0;

where � is one of the �

i

.

� de�nes a set in R

k+`

. For

~

� in R

`

, let �

~

�

be the set in in R

k

de�ned by

�(�v;

~

�). Let C

�

be the family of all �

~

�

as

~

� varies through R

`

.

We give good bounds of the VC-dimension of C

�

, under some assumptions

(some are necessary!) about the �

i

. In [KM94] it is shown how the VC-dimension

of a neural architecture with k inputs and l weights is a special case of a VC-

Dim(C

�

).

2.2. We maintain the notation of 2.1.

Call a �-function from R

k+`

to R one of the form �(��; ~y) for a � in the list, and

some �� 2 R

k

. An F -function from R

`

to some R

r

(r � `) is a function

~y 7�! h�

1

(~y); � � � ; �

r

(~y)i = F (~y)i

where the �

i

are �-functions.



By Sard's Theorem, the p in R such that F

�1

(p) is either ; or an l � r

manifold, have measure 1.

Our assumption on �

1

; : : : ; �

s

is that there is a bound B, independent of the

F -function F (and r � `) such that for p 2 R F

�1

(p) has � B connected com-

ponents. This is true, for example, for the � corresponding to sigmoidal neural

networks [KM94]. Our general result, based essentially on Warren's ideas [W68],

is:

Theorem 1 VC-Dim(C

�

) � 2 log B + 16 l (log s+ 1).

Note: Goldberg and Jerrum [GJ93] have a result of this type when the � are

polynomial and apply it to get a bound of order l log l for the VC-dimension of

neural netwoks with semi-algebraic activation functions. B was estimated via a

result of Warren [W68] (or Milnor [M64] can be used) but Warren's method was

irrelevant in [GJ93]. l log l appears not from logB, but from the l log s, by crude

estimates.

2.1 Application to Neural Nets

In this case �(�v; ~y) is

�(�v; ~y) > 0;

where � is composed out of polynomials and activation functions according to the

structure of the underlying graph. The problem then is to bound logB explicitly.

For sigmoidal activation functions, one can appeal to a method, and results, of

Khovanski [K91].

In order to avoid a clash of notation (cf. [M93]), we now write w for `.

w is the dimension of the weight space. The other relevant parameters are:

i) d = a bound for the degrees of all polynomials involved;

ii) m = number of computation nodes.

Then:

Theorem 2 (For the neural network A with the standard sigmoid activation

function �).

V C �Dim(A) � (mw)(mw � 1)

+ 6mw logw

+ 8mw log(2md+ 1)

+ 16w log(2md+ 1):

Note: The only troublesome term is (mw)(mw�1) . Its presence is easily traced

to the term 2

q(q�1)=2

in Khovanskii's basic estimate [K91], where q is the number

of exponentials involved in a problem.



For w = 1, we can use another method, going back to Hardy [H12],allowing

us to replace mw (mw � 1) (= m(m� 1)) by a term linear in m.

For the proof of Theorem 2, see [KM94].

3 Generalization and Prospects

3.1. Theorem 2, with a quadratic dominant term, does not depend too strongly

on the form of the activation function. To see this, one can appeal to Khovanskii's

book [K91](p. 91). There an argument is given generalizing that used earlier for

sets de�ned by conditions

p(~y; e

�

1

(~y)

; � � � ; e

�

q

(~y)

) = 0;

p polynomial, �

i

's linear.

One can now replace the e

�

i

(~y)

by q many functions occurring in a Pfa�an

chain of length � q. So we can extend Theorem 2 to Pfa�an activation functions,

but now we have to take into account the degrees of the polynomials occurring

in the Pfa�an chain. Let D be a bound for these degrees. The only alteration

in Theorem 2 is the replacement of the terms log(2md+ 1) by log(2md+D).

There is a more remarkable further generalization. There is an obvious way to

consider networks with multivariate activation functions. If these are Pfa�an, we

still get a quadratic dominant term.We will elaborate this in a future publication.

3.2. How to remove the quadratic term? One sees easily that it occurs because

Khovanski [K91] removes one exponential at a time in his basic inductive method.

We are hard at work on a method for removing all at once, and we expect to

replace mw(mw � 1) by mw. 2
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