ON THE PARALLEL COMPLEXITY OF MATCHING
FOR CHORDAL AND PATH GRAPHS

ELIAS DAHLHAUS
AND
MAREK KARPINSKI

DEPT. OF COMPUTER SCIENCE
UNIVERSITY OF BONN

Introduction.

Chordal graphs have become interesting as a generalization of interval graphs (see for
example [LB]) and cover a large field of applications (Go, BMFY]. These are graphs in
which every cycle with a length greater than three has a chord. We know that chordal
graphs have only as many cliques as vertices. Therefore the description of a hypergraph
of cliques is not much larger than that for the given chordal graph. Farber [Fa 1, Fa 2]
introduced the notion of strongly chordal graphs with the additional property that their
clique hypergraphs are B-acyclic (see [BDS]). Such structures have become interesting
in connection with data base schemes [BMFY]. Chordal graphs are also related to
elimination schemes (see for example (Go]). Elimination orderings for strongly chordal
graphs are presented by M. Farber [Fa 1]. Linear time algorithms to test chordality
and to compute an elimination ordering for chordal graphs are known by R. Tarjan and
M. Yannakakis [TY].

On the other hand matching is generally in randomized NC (RNC) (see [KUV] and
[MVV]). But we do not know a general deterministic N C- algorithm for matching.
Our aim is to present some parallel algorithms corresponding to chordal and strongly
chordal graphs. We develop a new fast parallel algorithm for the construction of strong
perfect elimination ordering in strongly chordal graphs. The same idea was used in
[DK 2] to get a parallel algorithm a bit more efficient than those in [NNS] or [DK 1]
for the computation of perfect elimination ordering for chordal graphs (the algorithm
works in O(log? n) parallel time and O(n®) processors). The exact analysis of a number
of processors for a strong perfect elimination and matching algorithm will be given in
a final version of this paper.

Section 1 gives some foundations in the field of chordal graphs. In section 2 we discuss
briefly the parallel complexity of testing chordality and strong chordality. In section
3 we will discuss the parallel complexity of computing a (strong) elimination order for
(strongly) chordal graphs. In section 4 we will show that matching for strongly chordal
graphs is in NC?%. But it is easily seen that matching restricted to chordal graphs is
as difficult as the general bipartite case. A generalization of the parallel algorithm for
strongly chordal graphs can have many applications as, for example, for multi-processor
scheduling problems (for 2-processor scheduling see, e.g., [HM]).

The important feature of our results is its meaning towards the general matching prob-
lem. The results are settling a precise new borderline between what is known to be
efficiently parallelisable and N C-hard for the general matching problem: Perfect match-
ing for chordal and undirected path graphs are ‘N C-hard’ for general bipartite perfect
matching whereas our algorithms are putting matching problems for strongly chordal
and directed path graphs in NC? (within O(log® n) parallel time and O(n®5) proces-
sors).

Section 1: Basic Definitions and Results

1.1. A chordal graph is a graph with no induced cycle greater than three.

1.2. “being chordal” is equivalent to the following statement [Go, Fa 1:
there is a (perfect) elimination order < on the vertices:
(1) If (z,y) € E (= set of edges) and (z,y) € E and z < y and z < 2, then
(y,2) € E.

1.3. Farber [Fa 1] defined strongly chordal graphs to be graphs which have a strong
(perfect) elimination order <: That means that < satisfies (I) and additionally
(I): If z < u and y < v and additionally (z,¥), (z,v), (y,u) € E, then
(u,v) € E.

1.4. Chordal graphs were defined by forbidden subgraphs. Strongly chordal graphs
can also be characterized by forbidden subgraphs: g = (V, E) is strongly chordal
if and only if it has no induced trampoline [Fa 1] or sun [BDS]. A trampoline or
sun consists of an even cycle of length at least 6 alternating between an indepen-
dent set and a complete set.

Figure 1: A trampoline with 2k = 10 vertices

1.5'

Chordal graphs can also be characterized in notion of cliques:

Proposition 1 [Di]: A graph G = (V, E) is chordal iff for each induced sub-
graph of G one can find a simplicial vertex z, that means its neighbourhood
N(z) = {y : y = z or (y,z) € E} is complete. Farber [Fa 1] proved a corre-
sponding result for strongly chordal graphs:

Proposition 2: G is strongly chordal iff each induced subgraph has a simple
vertex z; that means {N(y) : y € N(z)} can be totally ordered by inclusion.

1.6. The number of cliques (nonextendible complete subgraphs) of a chordal
graph is at most as large as the number of vertices. The hypergraph
of cliques of a strongly chordal graph is of interest. We can make the
following statement:

Proposition 3 [BDS]: The hypergraph of cliques of a graph G is (- acyclic if
G is strongly chordal.

We say, a hypergraph H is S-acyclic if there is no “cycle” z1hy, zaha,... hikTrt1,
s.t. z; € hi_y Nh; mod k, and z ¢ h;,j # 1 — 1,7 mod k (compare [BMFY]).

Section 2: Testing Chordality and Strong Chordality is in CoNL

The following statement follows easily from a characterization of chordal
graphs in [TY 2] (Compare also the chordality test of [NNS)):

Proposition 4: Chordality is in CoNL.
To test the strong chordality we state the following

Lemma 5: For a strongly chordal graph we can find for each clique s an edge
appearing only in s.

PROOF. Assume there is a clique C which is not generated by an edge. We
want to construct a trampoline. Consider any vertex v in C. Then there is a
clique C} # C, s.t. v € Cp. Otherwise each [v, w], s.t. v,w € C would generate
C. We may assume that there is no clique C”, s.t. CoNC C C"NC and
C # C" (maximality condition). Consider any vertex w € C \ Cj and a clique
!, s.t. v,w € C]. By the maximality condition we can also find the vertex
u € CHN C\ C}. Find a clique C3 # C,
s.t. u,w € C}; it follows from the acyclic property of the clique hypergraph
that C/NC’ C C, ¢,5 =0,1,2. Now consider arbitrary vertices ¢; € C! \ C for
i = 0,1,2. Then ¢;, c; are not joined by an edge. Otherwise there would be clique
Cij, 8.t. ¢i,c; € Ci; and Cij;, Ci, G} would form a cycle in the cycle hypergraph.

4

But ¢, v, ¢1,w, c2,u form a trampoline, in contradiction to the assumption
that the given graph is strongly chordal.

Therefore every clique of a strongly chordal graph is generated by an edge.
That means: The set of cliques of a strongly chordal graph can be generated
by a uniform sequence of circuits having unbounded fan in, constant depth and
polynomial size. Therefore

Corollary 6: The set of cliques of any strongly chordal graph can be computed
in NC1.
Corollary 7: Strong chordality can be tested in ColN L.

We can say that testing (strong) chordality is in NC2.

In the next section we give a hint to the solution of the construction problem;
that means we construct a (strong) elimination order.

Section 3: Computing (Strong) Elimination Orders
We first note:

An ordering on the vertices is a (strong) elimination ordering iff each vertex v
is simplicial (simple) in the subgraph induced by all vertices w greater or equal
to v.

Theorem 8: A (strong) perfect elimination ordering of a (strongly) chordal
graph can be computed in N C?. For the case of chordal graphs we refer to
[NNS]. By a similar argument we can test S-acyclity in CoN L.

For a strongly chordal graph we call a clique a simple clique iff the intersections
with other cliques can be ordered by inclusion. Clearly z is a simple vertex iff it
is simplicial and its unique clique is simple.

For the case of strongly chordal graphs we shall give an informal desciption of
an NCZ2-algorithm. A detailled version is to be found in [DK].

We shall construct a strongly perfect elimination ordering on the hypergraph of
the cliques. The ordering < we want to construct satisfies the following additional
constraint:

Ifz,y<zand0#2zNz & yNzthen z <y (comparison axiom).x,y,z stand
for hyperedges.

It suffices to construct a partial ordering <, s.t. each intersecting pair of
hypergraphs is comparable. We choose a maximum m and say z < 1.y iff there
is a chain from z to m via y, that means there is a sequence (zo := Z, Z1...Z; =
Y, Tit1...Tk = m) s.t. z;-1 Nz and z; N zi4q are incomparable by inclusion.

it

< ! defines a partial ordering which satisfies the axioms of a strongly perfect
elimination ordering. Set z<,,y iff there is a z 8.t. 2,y <m 2 and 0FzNz &
ynaz.

Let <,, be the transitive closure of <,,U < |,.

Lemma 9 <,, is a partial ordering which satisfies the axioms of a strongly
perfect elimination ordering and the comparison axiom. It can easily be seen
that <,, can be computed in NC2.

Let 2 ~,, y if 2Ny # 0 and z,y are incomparable by <m. A connected
component w.r.t. ~m is called a heap. For a heap H the set D = {z]h <
z and hNz # 0 for all h € H} is called the domination of H. Now NDg = z:NZ3
for some z,,72 € Dy, H = {z : NDy C z}. We have two possibilities for the
structure of heaps:

1) kNN Dyg = haN(Dy for each hy, hy € H. In that case set H = {h=
Dy Nh = Dy Nhy}forany hy € H'

2) It is not the case: then H contains the maximal elements of H w.r.t.
the intersection with any element of Dy of a connected component of H w.r.t.
nonempty intersection after the deletion of all elements of Dy.

Let H' be the set of all () Dy nonempty intersecting = which are in the con-
nected component of H after the deletion of all hyperedges of Dy. Call H " an
extended heap. We observe for z,y € H":

T <, yiff thereisa z€ Dy st. zNz Eyna

Choose any maximal mg of H and let <my be the transitive closure of <mpy
restricted to H and <.

Now we have heaps again, but they have the same properties as above. We can
determine a set of possible extended heaps and their order structure in advance
and fill them out in parallel. That means it is possible to construct a partial
strong elimination ordering in NC%. :

Section 4: Matching on Strongly Chordal Graphs
We begin with a

Remark: Let G be a bipartite graph s.t. its two partitions V; and V3 have the
same power. Let G’ be the chordal graph which is derived from G by making
Vs a clique. Then G has a perfect matching iff G’ has a perfect matching. That
means:

Matching on chordal graphs is as hard as perfect matching on bipartite graphs.
But for strongly chordal graphs we get the following result:

6

Theorem 10: Perfect matching on strongly chordal graphs is in N 4,

Remark: Observe that our Theorem 10 entails the General (Maximum) Match-
ing Problem on strongly chordal graphs to be also in NC?, The reason is that
the Maximum Matching Problem is NC-reducible to Perfect Matching, and the
reduction preserves strong chordality.

SKETCH OF THE PROOF: We use the following

Lemma 11 [RV], [MVV]: For a graph labeled by unary numbers a minimal
perfect matching can be computed in N C?, provided it is unique.

For the case of strongly chordal graphs we label the edges by the square of
distances related to a strong elimination order.

We call a pair of edges (u1,u2),(v1,v2) a defect iff (u1,v1) € E and u; < vz
and v; < uz. Suppose a matching has a defect as above. By the fact that < is
a strong elimination ordering, (ugvy) € E. We can thus remove the defect by
taking (uy,v1) and (uz,vs) into the matching. The key is the following

Lemma 12: Removing a defect diminishes the sum of labels of a matching.

PROOF. Consider any defect. Then we have to consider only the sum of squares
or distances of the edges (u1,uz2), (v1,v2) and the sum of squares of distances of
the edges (uy,v1), (uz,v2)-

We have to consider a couple of subcases:

1st case: u; < va < v; < ug. Then

(ug — v2)? + (vi—w1)? = (uz—v2)? + ((v1—v2)+ (v2-) =
(uz G ’02)2 + ('U1 e ‘U2)2 -+ 2('!)1 = Ug)(vg s ul) -+ (Ug —_ ‘t.t.]_)2 < (‘UI = U2)2 -+
(ug —v2)? + 2(ug —ur)(va —uy) + (va—w1)? = (vi—v2) + (va— uq)?
2nd case: u; < v; < vy < ug. Then

(v —u1)? + (ug —v2)? < (ug— u)? < (ug—uy) + (v2 —v1)?
3rd case: u; < v; < ug < vz. Then

(U] — u1)2 + (‘Ug — u2)2 < (‘U.g — U1)2 - (Ug = ‘01)2

All other possible cases are permutations of these three cases. This completes
the proof of this lemma.

Figure 2: Removing a defect

Lemma 13: There is a unique defect free matching.

PROOF: Assume we have more than one defect free perfect matching, say M
and M’'.

Consider any [z1,71] € M, [z1,%] € M/, [zo,y0] € M, [z2,u1] €
M, [z2,ys) € M. The defect freeness of M forces z; < z2 and yg < y1 or both
vice versa. W.l.o.g., z; < zz. Then the defect-freeness of M " forces y; < ya.
Consider now generally z;,;, s.t.[yi—1,%:] € M’ and [z;, 3] € M. By induction
we can conclude z; < zij1; and y; < yi+1. But the finiteness of the strongly
chordal graph makes such a situation impossible. From these two lemmas the
theorem can be easily proved.

Corollary 14: Perfect matching on chordal bipartite graphs is in NC2.

Section 5: Connections to other graph classes

We have seen that matching restricted to chordal graphs (and also for split
graphs) is as hard as bipartite matching. On the other hand perfect matching
restricted to strongly chordal graphs is in NC?. Therefore perfect matching
restricted to directed path graphs and therefore to interval graphs is in N cA,
The only gap which we have to fill out is the matching problem restricted to
(nondirected) path graphs.

Theorem 15: Perfect matching restricted to path graphs is as hard as perfect
bipartite matching.

SKETCH OF THE PROOF: We reduce the perfect matching problem re-
stricted to split graphs to the perfect matching problem restricted to path graphs.

8

For any split graph G = (V, E) we can construct a corresponding system of sub-
trees of a tree in NC:

The global tree consists of a “central” vertex w and vertices u, for each vertex
v of the independent set I of split graph G. w is connected with each u,. The
subtree coresponding to a vertex V € I is {u,} and the subtree T corresponding
to a vertex z of the clique of the split graph G is {w} U {u,|[v,z] € E}.

Now we construct a path graph G’ in the following way:

If {v € I|v,z] € E}| £ 2 we have nothing to do. Otherwise if
C. := {v € I|[v,z] € E} has a cardinality greater than 2, we add to T
a path (w,%z,1y. %z,c,|—1) and replace T, by a collection of paths Py :=
(g, W, Tz, ey izs [C2| — 1), 8.8 v € cz and one element paths {¢,;}. Exactly
one of the pZ is not married with an 7, ; and can therefore be married with u (or
any other element not being a p§). This path graph G’ has a perfect matching
iff G has a perfect matching.

is transformed to

~

Figure 3: Transformation of a split graph to a path graph

Finally we have to remark that interval graphs are exactly the chordal com-
plements of comparability graphs [GH]. It is known that matching restricted
to complements of comparability graphs is equivalent to 2-processor-scheduling
and that this is again in NC? [HM]. There remains the open problem of find-
ing a meaningful upper class of strongly chordal graphs and of complements of
comparability graphs, s.t.its matching problem is in N (42

10

chordal graphs

/ \Q ----- nl atching is 'hard'
#e matching is in RS S

path graphs

directed path graphs complements of

comparability graphs
- /

l interval graphs

strongly chordal graphs

Figure 4: The inclusion structure of graph classes related to chordal graphs and
the complexity of their matching problem (compare also [Jo])

Acknowledgements:

We are thankful to Avi Wigderson, Joseph Naor, Ernst Mayr and Alejandro
Schaeffer for a number of interesting conversations. We thank Barbara Chapman
for her comments on the final version of the paper.

References

[BFMY)] Beeri, C., Fagin, R., Maier, D., and Yannakakis, M
On the Desirability of Acyclic Data Base Schemes
JACM 30 (1983), pp. 479-513

[BK] Brower, A., and Kolen, A.,
A Super-Balanced Hypergraph has a Nest Point
Mathematisch Centrum, Report ZW 146, Amsterdam (1980)

(Bu] Buneman, A.,
A Characterization of Rigid Circuit Graphs
Discrete Math. 9 (1974), pp. 205-212

11

[BDS]

[Co]

[Di]

[DK 1]

[DK 2]

[Fa 1]

[Fa 2]

(Gal

(GH]

[Go]

[HM]

Brouwer, A., Duchet, P., and Schrijver, A.,
Graphs Whose Neighbourhoods have no Special Cycle
Discrete Math. 47 (1983), pp. 177-182

Cook, S.A., _
A Taxonomy of Problems with Fast Parallel Algorithms
Information and Control 64 (1985), pp. 2-22

Dirac, G.,

On Rigid Circuit Graphs

Abhandlungen Mathematischer Seminare der Universitit Hamburg 25
(1961), pp. 71-76

Dahlhaus, E., and Karpinski, M.,
The Matching Problem for Strongly Chordal Graphs is in NC
Research Report No. 855 - CS, University of Bonn (1986)

Dahlhaus, E., and Karpinski, M.,
Fast Parallel Computation of Perfect and Strongly Perfect Elimination

Orderings
Research Report No. 8513 - CS, University of Bonn (1987)

Farber, M.,
Characterizations of Strongly Chordal Graphs
Discrete Math. 43 (1983), pp. 173-189

Farber, M.,

Applications of L.P-Duality to Problems Involving Independence and
Domination

PH.D. Thesis, Computer Science Department, Rutgers University, New
Brunswick, NJ (1982)

Gavril, F.,
The Intersection Graphs of Subtrees of a Tree are Exactly the Chordal

Graphs
J. Combinatorial Theory Ser. B 16 (1974), pp. 47-56

Gilmore, P., and Hoffman, A.,
A Characterization of Comparability Graphs and of Interval Graphs
Can. J. Math. 16 (1964), pp. 539-548

Golumbic, M.,
Algorithmic Graph Theory and Perfect Graphs
Academic Press, New York (1980)

Hembold, D., and Mayr, E.,

Two Processor Scheduling is in NC, in: VLSI Algorithms and Archi-
tectures (ed. Makedon et. al.

LNCS 227, pp. 12-15

12

[Jo]

[KUW]

[KVV]

(LB]

[MVV]

[NNS]

[Ru]

[RV]

[SV]

[TY 1]

[TY 2]

Johnson, D.S.,
N P-Completeness Column
Journal of Algorithms 6 (1985), pp. 434-451

Karp, R., Upfal, E., and Wigderson, A.,
Finding a Maximum Matching in NC
17th STOC (1985), pp. 22-32

Kozen, D., Vazirani, U., and Vazirani, V.,

NC-Algorithms for Comparability Graphs, Interval Graphs and Test-
ing Unique Perfect Matching

to appear

Lekkerkerker, C., and Boland, D.,
Representation of Finite Graphs by a Set of Intervals on the Real Line
Fund. Math. 51 (1962), pp. 45-64

Mulmuly, K., Vazirani, U., and Vazirani, V.,
A Parallel Algorithm for Matching
to appear

Naor, J., Naor, M., Schaeffer, A.,
Fast Parallel Algorithms for Chordal Graphs
to appear in: 19t STOC (1987)

Ruzzo, W.,
Tree Size Bounded Alternation
JCSS 21 (1980), pp. 218-135

Rabin, M.O., and Vazirani, V.,

Maximum Matchings in General Graphs through Randomization
Report No. TR 15— 84, Center for Research in Computing Technology,
Harvard University, Cambridge (1984)

Shiloach, Y., and Vishkin, K.,
An O(log n) Parallel Connectivity Algorithm
J. Algorithms 3 (1982), pp. 57-67

Tarjan, R., and Yannakakis, M.,

Simple Linear-Time Algorithms to Test Chordality of Graphs, Test
Acyclity of Graphs, Test Acyclity of Hypergraphs, and Selectively Re-
duce Acyclic Hypergraphs

SIAM J. Comput. 13 (1984), pp. 566-579

Tarjan, R., and Yannakakis, M.,

Simple Linear-Time Algorithms to Test Chordality of Graphs, Test
Acyclity of Graphs, Test Acyclity of Hypergraphs, and Selectively Re-
duce Hypergraphs; Addendum

SIAM J. Comput. 14 (1985), pp. 254-255

13

sydei3 feaaur

\
> 1N
sydess Kngereduioo

Jo syuauradwod

sydess yed payoaxp

syde13 repioyd A[3uons

DN Ul st Suyorew sydeis yed

IIIIIIIIIIIIIIIIIIIII -
prey, st WEQQ.—NE \
S—
—

n sydeI3 repIoyd U

