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Abstract

We present an efficient interpolation scheme for n-variate k-sparse
polynomials f over a finite field with g elements. The polynomial
time interpolation algorithm uses 2k — | (2k — 1) /q| evaluations and is
efficiently parallelizable (NC) within polynomial number of processors
and squared-logarithmic parallel time.



Introduction

The ring of polynomial functions in n variables over the finite field GF(q) of
prime power order ¢ is isomorphic to GF(g)(Xo,. .., Xna-1], the polynomial
ring in n indeterminates modulo the ideal generated by X3 — X, .., X .-
X,._;. Taking this into account a possible variant of the interpolation prob-
lems of polynomials over finite fields is as follows:

Let f € GF(g)[Xo,...,Xn-1] be a polynomial satisfying degy,(f) < ¢,
for all 1. How many evaluations f(ao,...,@s-1), @& in a suitable finite
extension field of GF(q), are sufficient to reconstruct f? In the sequel we
fix a positive integer k satisfying 2k — |(2k — 1)/q] < ¢". y Taking for
granted that f is k-sparse, i.e. k is an upper bound for the number of non-
zero coefficients of f, we shall show that 2k — [35&'—1_| evaluations of f over
GF(q") enable us to reconstruct f.

This paper continues the work of Grigoriev-Karpinski {GK86] and Ben-
Or-Tiwari [BT87], [T87]. Referring to the work of Grigoriev and Karpinski,
Ben-Or and Tiwari took (pf,...,p'_;),0 < i < 2k, as evaluation points,
to solve the interpolation problem for k-sparse multivariate polynomials
over rings of characteristic zero. Here, po,...,pn-1 are pairwise different
primes and the crucial point is the uniqueness of the prime factorization of
integers.

In our context we combine three tools in order to recover f: generalized
Newton identities, uniqueness of the g-adic representation of the exponents
of non-zero elements in GF(¢") with respect to a primitive element, and
finally, the Frobenius automorphism y — y? of GF(g") which keeps fixed
all elements of GF(q).

1 Results

In this section the following result is proved.

Theorem. Let f € GF(q)[Xo,...,Xn-1] be a k-sparse polynomial satis-
fying degx (f) < g, for all 1, and let w be a primitive element of GF(q").
Then



1. f is the zero-polynomial if and only if f; := f(w"q",wfc" W) =
0, for all 1 satisfying0 <i< k and q /1.

2. in order to construct f it suffices to know the values f; for all ¢
satisfying 0 < i < 2k and ¢ [ 1.

Proof. If f € GF(q)[Xo,...,Xn-1] satisfies degy,(f) < g, for all ¢, then f
is a linear combination over GF(q) of the g™ monomials X* := Xg°-...-

X2ar7', where o ranges over all functions in ™ := {0,...,q — 1}{%n=1};
f= 3. taX"
acql

The mapping (2: q® — GF(q") defined by

., = H05v<n wav‘qu if & 7& 0
N 2 fa=0

is bijective since {1, = w(Z®*) for o # 0, and from the g-adic expansion
of the exponent we can recover a. Let A be any k-subset of q® containing
the support supp(f) := {a:icqa # 0} of f. Then

fi= z cani = E Can:;.

Thus we obtain the following matrix equation

(0% )ocicr,aea - (ca)aeca = (fi)o<ick- (1)

The k-square matrix (2,) is a non-singular Vandermonde matrix since the
(1, are pairwise different. Hence f is the zero-polynomial if and only if
(fi)o<i<k = 0. Finally, by the properties of the Frobenius automorphism

fi-q = (fl')qs

for all 1 < ¢*. Altogether, this proves the first assertion of the theorem.
Our next goal is to derive an efficient interpolation scheme for k-sparse
multivariate polynomials f.



For any subset A of g™ we denote by e;(A) the i-th elementary symmetric
polynomial in |A| indeterminates evaluated at all Q,,« € A. Now substi-
tuting (1., o € A, for X in the polynomial

4]

[1(X —0p) = (1) ep_;(4) - X? € GF(q")[X]

BEA =0
yields the generalized Newton identities [MS72, p. 244]

4| ‘
0=3 (-1)Miep;(A)0%, o€ A
=0

Fixing an ¢ (0 < ¢ < ¢"), multiplying the equation corresponding to «
by ¢.fl}, and summing over all @ € A results in the following system of

equations
4|

0= ()4 epui(A) firsy 0<i<q™
=0
As eg = 1, for an arbitrary superset A of supp(f) the equations for 0 < 1 <
|A| are equivalent to the matrix equation
i
(firi)osii<ial - ()17 €01 (A))os:'-cw =~ (firjaosicia-  (2)
The matrix (fiy;)o<ij<|a| equals (Q,)D4 (%), where Dy = diag((¢a)aea)
is a |A|-square diagonal matrix, see [LN83, 9.48, 9.49]. Hence the cardi-
nality k of supp(f) equals the rank of the k-square matrix (fir;)o<ij<k;
furthermore (fi+;)oc; ;< is non-singular and we can calculate the polyno-
mial [Taequpp(s) (X — (Qa) from (2) for A = supp(f). Finding all the roots
gives {Q,: @ € supp(f)} which enables us to recover supp(f). The solution
of (1) gives the complete polynomial f. This proves our second claim. ©o



2 The Algorithm

In this section we present and analyze the algorithm, which can be derived
from section 1.

Interpolation Algorithm. Let f € GF(q)[Xo,...,Xn-1] be a k-sparse
polynomial satisfying degy,(f) < g, for all ; 2k < ¢™.

INPUT:
step 1.

step 2.

step 3.

step 4.

step 5.

step 6.

step 7.

step 8.

OUTPUT:

Oracle for f.
Take a primitive element w in GF(q").

Ask the oracle for the 2k — [3-";‘-1] values f;, where 0 < ¢ < 2k
and q /1.

For all 0 < {1 < 2k which satisfy i = ¢* - 15, 1 < s, s maximal,
calculate f; = f;,(@").

Determine k, which is the rank of the matrix (fis;)o<ij<k-
Solve the equation (fi+j)oc; j<i * ((—1)"""c;_j(supp(f)]osjd =
"(fi+e)05£<i'

Find all the roots 01, (a € supp(f)) of the polynomial
Tho(~1)*e;_i(supp(f)) - X

Calculate the g-adic expansion of the exponents of the {1, with
respect to w to get supp(f).

Solve the system of linear equations (%) ocich aea * (Ca)aca =
(fidogicis for A := supp(f)-

(cas a)aesupp[ﬂ'

Once a primitive element w is given, we compute the rank of the k-square
matrix (fi;;) within O(k*®) arithmetic processors and O(log?k) parallel
time [M86]. The same bounds are valid for step 5. We use (G84] for
factoring the univariate polynomial of step 6. This costs O(log?k) parallel
time and roughly the same number of processors as above. Steps 7 and 8
are of O(k*®) size and O(log?k) parallel time.
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The algorithm is optimal in case n = 1 and 2k < ¢. To see this let A be
a subset of GF(g) with at most 2k — 1 elements. Then Q := [[,e4(X — @)
is a non-zero polynomial in GF(g)[X] of degree at most 2k — 1 < ¢. Q has
at most 2k monomials and vanishes on A. Now split Q into two different
parts, @ = f — g, each part having at most k monomials. Then f and ¢
are different and k-sparse, but they coincide on A.
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