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Abstract [BcP 83] proves that both probabilistic acceptors and transducers
working in space S(n) 2 logn can be simulated by deterministic machines in
O(f{n}2) space. The definition of probabilistic computations uses one-way read-only
random tape. [BCP 83] asks: "Is it possible to extend our simulation results to the
case of a two-way read-only oracle head?" In the same vein [FLS 83] suggests that

it could be a difference between two-way and one-way random tape: " ... for space-
bounded probabilistic computations where the space bound is much less than the
length of y, it could matter."(y denoting the random tape inscription). In this
paper we give a full characterization of two-way random space classes that answers
both questions. We prove that there is no polynomial deterministic space simulation
of two-way random space. In fact our result is stronger, saying that the probabilistic
two-way random tape algorithms are precisely exponentially more powerful than the
probabilistic one-way random tape algorithms.
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1. Two-way random,k tape

The model of probabilistic machine [Gi 77] may be viewed as a deterministic

machine with a one-way read-only oracle head. The oracle tape records an unbounded
sequence of outcomes of independent unbiased coin tosses. A random two-way oracle
proposed in [BCP 83] is an unbounded random sequence recorded on a two-way read-only
tape. Please, note that [BG 81) uses random oracle stored in a device resembling
random access store rather than tape (i.e. questions must be written on a query tape

within the space bound).

Definition Let ¢y & ¥ x {0,1}¥ be a binary predicate, where (x,y) is
computed by a deterministic machine M with two two-way read-only input tapes.
If M stops on an initial segment of y, then Y(x,y) is defined. X E 5

is recognized by M if and only if Pr{y(x,y) = true} > én We call M a probabi-
y *
listic machine (over the alphabet I) with two-way random tape. Let LH ck

denote the set recognized by M.
If M is S(lx|) space bounded, then LM belongs to the two-way random-tape

probabilistic space 8(n), LH e'PrzsPACE{S(n)). If in addition M is T(Ix|)

2TISP{T{n),S(n))-

We say that L, belongs to the two-way Las Vegas ([BgM 81]) Space S(n),

Ly € AZSPACE(S(n)). if for all x ¢ E* either Pr{wM(x,y) = true} = 1 or

time bounded, then LM € Pr

Pr{wﬂtx,y) = false} = 1.

Remarks 1. If M reads the second input tape one-way, then this model is
equivalent to the classical model of probabilistic machines [Gi 77]. We denote

1SPACE(S(n)). PrlTISP(T{n},S(n}), etc.

2. If M is time bounded, then y needs not to be infinite and Pr{y(x,y) = true}
(| x]) [FLs 83].

these classes by Pr

can be replaced by l{y : lyl N T(|xl} and Y(x,y) = true}| / 2

3. The random tape y 1is unbounded only to the right, but all simulation results
in this paper can be easily extended to the case of random tapes, that are un-
bounded in both directions. We do not know, however, whether the two models are

equivalent for very small space bounds.

4. Denote by DSPACEg(f{n}) the class of sets recognized by deterministic oracle-
machines with two-way oracle tape A. Then, with probability 1 {(i.e. for almost

all oracles), DSPACEz(f(n)} ? AZSPACE(f(n)) (the inequivalence results from the
fact that the set of positions where A contains 1 is clearly in DSPACE%(O{l})

but, with probability 1, not in A.SPACE{f(n))}.
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2. Main results

It is not obvious that PrZSPaCE and 52

On the other hand 1t was not known whether Pr,SPACE is more powerful than

SPACE define Blum complexity measures.
PrISPACE. Our characterization settles both questions:

Theorem 1 If S(n) 2 logn, then

&ESPACE(S{n}} = PrZSPACE(S(n)) = g PrlsPACE{c

In particular we have aZSPACE(logrﬂ = PSPACE.

S(n) S(n)

) = g DSPACE (c ).

This theorem gives also a negative answer to question of [BCP 83):

Corollary (Impossibility of deterministic poly-space simulation)
For all functions S{n) 2 logn and all k e N

Pr,SPACE (S () DSPACE(S (n) ) .

Theorem 1 is related to the recent result of [DS 84] that 'consistent' NSPACE
(CSPACE) is exponentially more powerful than DSPACE. The similarity becomes
clear, if the reset mechanism in the original definition of CSPACE is replaced
by a two-way tape, on which the initial nondeterministic cholces are recorded.
The proof of our lemma 4 can be applied to this case (replace Pr, by

2

consistent N and Pr1 by N). Our method of the proof of lemma 1| and 4
yields alsc a characterization of CSPACE(Q(1})): NSPACE(n) < CSPACE(0O(1)}))
S NSPACE(n logn) for both definitions of CSPACE. Our results for Prz-classes
can be proved also for reset random tapes instead of two-way random tapes,

but the results for a2 cannot (to our knowledge).

For the simultaneous time and space bounded classes we can reduce the space bound

exponentially using a two-way random tape:

Theorem 2 If f(n) € n then
PrzTISP(poly(f{n)). logf(n)) = PrlTIME(poly(f(n}}}, in particular

Pr_TISP(poly,log) = Pr TIME(poly) = PP.

2 1

3. Probabilistic space

In this section we will prove theorem 1 and give characterizations of the power
of finite automata with two-way random tape, which are summarized in a table

at the end of the section.



cf(n))

Lemma 1 &ZSPACE(f(n)} 2_% DSPACE (n - for all functions £{n}.

f(n)

Proof Suppose M is a deterministic n-*c space bounded single-tape DTM

=%
that halts on every input. Let compM{x) = # q, ¥ $ Cy $ cy $ e ¢ € L
denote the computaticn of M on input X € £, Let h: I~ {O,I}k be a

binary encoding of I (for appropriate k). Then the relation
k, %
)

*
= {(x,y) | x € ¥, v e ({o,1} h(compM(x)){o,l} } is accepted by some

P
M
f(!x|) space bounded machine M', Let M' search on y for h(¢) and then

verify h{qox) using the input x. If the first instantaneous description (ID)

is verified, M' compares it with cl, then c1 with CZ’ etc. The comparisons
are made using the first input tape {(containing x) and the work tape to simulate
a counter of maximal size k-n- cf{n). If a comparison fails, M' will look

{(to the right) for the next substring h[#} and restart the process.
*
Let ¢ £ E x{O,l}m be the following predicate:

true if an initial segment y of y' exists with DM(x,y) and x € LM

vix,y') = false if pM{x,y] for an initial segment y and X k LM

undefined otherwise.

p is computed by a DTM M", which simulates M' until y is found such that
pM{x,y}. Then M" checks whether the final ID in compM(x) is accepting
or rejecting. M" is f(n) space bounded and yields the correct answer, if it
stops. Since Pr{pM(x,y) for some initial segment} = 1, M" will stop with

compy (X)
probability 1. The expected running time is c1 Py 1'

Remark Lemma ! is valid also for transducers: M" will produce
the output after verifying the complete computation.

f(n)

r1sp (2™ °C , £(n)) 2 U NSPACE(n - aF(nl
C

).

Lemma 2 U Pr
AeTe L 4 2

Proof The only difference to the proof of lemma 1 is the definition of Py and
pyo- Define py = ((x,7) | x ¢ ¥, v e {0,1} h{compM(x)){o,l}*}, where M is a
strictly n- cf (n) space bounded NTM which stops on every input x. Since M

is nondeterministic, compy(x) is not unique. Define wM“{x,y'} «<=> ((x,¥y) € Py for
some initial substring y of y' and compM(x} is accepting) or y' starts

with 1. Obviously M" stops after k -lcompm(x)i s Eh'cf{n) steps.

Pr{y,uix,y) = true} = Pr{y starts with 1} + Pr{y starts with 0 and an initial
substring of y is the encoding of an accepting computation on x} > % <=> X E LM.

o
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For the next lemmas we use a variation of probabilistic machines with two-way
random tape. These machines can test whether the head on the random tape scans
the rightmost square of the tape it had visited until this step. The machines
behave like probabilistic auxiliary nonerasing stack automata where probabilistic
choices are allowed during push-steps only. We denote the corresponding complexity

classes by A,SPACE, Pr.SPACE, and Pr,TISP.

> 2
Lemma 3 (1) Kzspzacmou)) D DSPACE(n logn) ,

(2y U Pr. i, logn
C

TISP (c ,0(1))} 2 NSPACE(n logn) .

2
Proof (1) Suppose L € DSPACE(nlogn}). Then L is recognized by some
deterministic nonerasing stack automaton M halting on every input (see (wu 790).
We encode the working alphabet T of M by h: L > {O,I}k. Let compM(x}
denote the final stack inscription which M produces oOn input x with bottom
marker ¢&. Let Py (X)) <>y € {0,1}kcompM{x}{0,1}m and x € L,. ¥, canbe
computed by a deterministic finite automaton which can test, whether it scans the
rightmost square of y visited in a preceding step. As in lemma 1,

Pr{M' stops on x} = 1 and M' will always make the correct decision.

(2) The same construction as in the deterministic case [BU 79] shows that all sets

in NSPACE(n logn) can be recognized by halting nondeterministic nonerasing stack
automata with nondeterminism restricted to push-moves and stack length cnlogrh
Using the techniques of lemma 2 and 3{1) these stack automata are simulated in
Pr,TISP(c" tosa ey

o

Lemmas 1 - 3 yield surprising high lower bounds for the Pr2 and 52 space
classes. The next lemma shows that these lower bounds are {almost) optimal.
SPACE(n log n - cf{n}}

1
— f(n)
(2) aZSPACE(f{n}} cu z_\.lsPACE(n logn- ¢ ).
C

Lemma 4 (1) Fr"zspncmf(n)) cU pr
&

Proof Suppose M is a 5;QSPACE(f(n)}-machine (not necessarily halting). The
simulation is almost the same as the simulation of (deterministic) nonerasing
auxiliary stack automata by space bounded Turing machines. The number of con-
_n,cf(n)
1 2

on the random tape a table Ti with C entries Ti(c). Each Ti{c) gives full

figurations of M 1is bounded by ¢ =: C. We associate with every position

information about the behavior of M for the case that M starts in configuration

on random tape position i and moves left:



Ti{c) = c' <=> if M starts at 1 in configuration c and moves left,
then it will come back to position 1 in configuration c'

Ti{c} = accept <= if M starts at i in configuration c¢ and moves left,
then it will stop and accept before coming back

Ti(c) = reject <=> if M start at i in ¢ to the left, then it will neither

come back nor accept (i.e. either reject or cycle).

fi{n)

A table Ti can be stored in space C-* logC S n-logn:-c for appropriate c.

is trivial and T {and M's table) using

i+l i
random bit. Thus all the left-moves of M on the random tape can be

The table To can be computed from T

the (i+l)st

Kz—machine,

since the probabilities are not affected by

simulated by looking at the actual table. If the simulated machine is a

then the simulating machine is A

1!
the simulation.
o

Eé, Pr Pr.

. 2

Corollary 5 ot are Blum complexity measures. a

Combining lemmas 1 and 4 with the deterministic f{n)z-space simulation of [BCP 83]

we get the following characterization:

Theorem 1 I1f f(n) 2 logn, then
8,SPACE (£ (n)) = Pr,SPACE(f(n)) = E?éspnca(f(n))
- U PrlsPACE(cf{n)) - U pspace (cf ™y,
c <
Proof If f(n) 2 legn, then n-* logn -cf(n) s o{cf{n}). Thus
u DSPACE{cf{n}} < AZSPACE{E(H)} (lemma 1)
o)
S Pr,SPACE (f (n)) c E?zsPACE{f{n)) {obvious)
< U pr SPACE{cf{n)) {(lemma 4)

c 1

€ U DSPACE (c
C

f(n)

)

({gu 817, [Bcp 83))
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Remark Theorem 2 suggests that two-way random tape machines are much more

powerful than even alternating space bounded machines [cks 81]:

£(n), ) £(n), £(n)

U DSPACE (¢ )

ASPACE (f (n)) = U DTIME(c
c Cc

= U ATIME (c
c

ﬁz SPACE(f({n)) for f(n) 2 logn.

If f(n) is o(logn) then they are provably more powerful (lemma 1).

In the case of small space bounds the situation is more complex. The inclusions

NSPACE(n logn) £ P 2SPACE(O{1}) = PrlsPACE(n logn) (lemmas 3,4)

give evidence, that the bounds cannot be improved.

We summarize the situation for constant space in the following diagram

B
(| means A & B):
A

OSPACB{nzloqzn)

Pr 181’!{2‘3 {n logn) DSFACE( nzl
.—""’

& SPM:E{n log n} ?rzsmcz{n Prz'rxsnlz
B SPACE(1) Pr usptzm“’

NN

DSPACE (n logn) ﬂ SPACE(1) NSPACE (n}

S

DSPACE (n)

Uln)‘n

NSPACE(n logn) prlspm:z"(n}

DSPACE{O(1}) = ASPACE(O{1])



4. Probabilistic TISP

In this chapter we show that even for time bounded computation the use of a

two-way random tape can drastically reduce the space bounds.

Let PL2 denote the sets recognized simultaneously in polynomial time and
log space by probabilistic machines with two-way random tape, i.e.

PL, = PrZTISP(poly,logJ = Pr,

polynomial time class, PP = PrlTIME(poly).

TIME (poly). PP [Gi 77] stands for the probabilistic

Lemma 5 If T(n) 2 n and T(n}) 1is computed in DTISP(T(n}B,log'P(n)}, then
Pr,TISP(T(n) 3,logT (m)) =2 PrlTIME(T(n) )i
Proof Denote by M a PTM with one-way random tape recognizing X in T(n) time.
The proof follows the proof of lemma 2 with some minor changes. Let compM(x)
denote the set of computations of M on x encoded by I

B ] z
¢ 5 % $c,o % c, o, $ ... % Cr(n) ¢ where the c,'s are encodings of IDs
padded with blanks to exactly the same length (k- T(n)) and the ai's are the
random choices in the computation (i.e. the first T(n) bits of M's random tape)

such that cii—— X < T(n),

c, ’
M "i+l k
is identically repeated up to the step T(n) (with arbitrary choices of ai's). Let

reading a, on the random tape. A stopping ID ¢

t denote the exact length of an appropriate binary encoding h(compM(x)) as

defined in the proof of lemma 1. Denote by yt the initial segment of length t of
w

any y ¢ {0,1}".

Define the predicate by

pix,y) <= {yt describes an accepting computation of M on x) or

(y° ¢ h(comp, (x)) and the (t+l)st bit of y is 1),

Then ¢ is computed by some DTM M' working in time T(|x|)3 and space
3
log(T(|x|)”) = O(log T{lx|}). M' recognizes X because
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L]

= -1 :
Pr{h 1(yt) € compM(x) and h (yt) accepting}

+ %—Pr{h-l{yt) ¢ compM(x)}

Pr{¢M.(x,y) = true}

= Pr{h—l{yt) € compM(x)} - Pr{M accepts x!

+ %41-Pr{h-1{yt) £ compm{x)})

=.%4.pr{h-1(yt} € compM(x)}- (Pr{M accepts x}-%ﬁ
1
- =

< > < x £ X.

(The careful encoding of compy(x) guarantees the equality

1

-.1 s
Pr{h (yt) e comp,(x) and h (yt) accepting}

= Pr{hal{yt) € compm(x)} - {M accepts x!}.)

Theorem 2 For all functions f(n) which can be computed in
DTISP(poly(f(n}), logf(n)),

Pr2TIsp{poly(f(n)). logfi(n)} = PrlTIME(poly(f(n))) (= Pr

In particular PL2 = PP.

2TIME(poly(f(n)})-

Proof From Lemma 5 we have

Pr, TISP(poly{(f(n)}, logf(n)) 2Pr

5 TIME (poly{f(n))}.

1

Since the space is unbounded, we can store the random sequence. Thus

Pr, TIME (poly(f(n))) 2 P ,TIME(poly(f(n))).

1 2
k : k
We denote by Przsc the two-way random tape analogon of deterministic S8C
classes ([Co 79], [Ru 81]), meaning simultaneous poly-time and 1ogkn space,
i.e. pr.scX = Pr.TISP(poly,logt), Pr.sc = U pr_sc.
2 2 g7 = & 553

Corcllary PrzsC = Przscl.

Proof by theorem 2.
ju

Theorem 3  NTISP(poly,n} & PrzTISP{poly,O(I)} EEPrlTISP(poly, nlogn).

Proof Apply the simulation of lemma 2 to a nondeterministic machine whose all
computations are polynomial time bounded. The second inclusion is by the

construction of lemma 4.
n
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Remark Using the notation of [Ds 84]) and a reset tape y instead of a two-way

tape we get

NTISP (poly,n} & CTISP(poly,0(1)) S NTISP(poly, n logn) .

The theorems above yield the following diagram:

PSPACE

PP = PL, = Pr,TISP(poly,log)

PrlTISP{poly, n leg n)

NP U co-NP PrZTISP{poly,Otl))

< ~

P NTISP(poly,n)
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. Conclusions

[KV 84] proves the impossibility of subexponential deterministic simulation

of a two-way random tape solving the open problem of [BCP 83].

At this point we did not know whether or not PrzsPACE is a Blum complexity
measure. In particular we asked the gquestion on whether

przsPACE{O{l)).E DSPACE(h{n)) for some function h.

This paper gives a tight bound almost meeting our lower bound. The function h
we have got is n210g2n. An interesting gquestion would be whether two-way
random tape Monte Carlo TISP(poly.0(1)) includes nonregular languages.

We know by [GW 84) that this is impossible for the one-way case.

. The results on two-way random tape entail nonexistence of the probabilistic

analogon to polynomial-expanding PNGs ([BM 82), [FLS 83]). For, the existence
of polynomial-expanding PNGs that cannot be distinguished from an ideal
(physical) random number generator-would entail PSPACE = DSPACE(lin) by the
proof of lemma 1, the impossiblility.

The technical realization of a two-way random tape lies near at hand, in what
one records Bernoulli trials in secondary machine storage first and afterwards

runs the algorithm.

. Theorem 1 proofs an exponential (in the space bound) lower bound for the depth of

uniform circuits [BCP 83] simulating the two-way random tape. This contrasts
with Borodin-Cook-Pippenger ch-circuits developed for the simulation of one-

way random tape.

. One can show that UNIQUE SAT [BG 82], [PY 82] is in Pr,TISP(poly,0(1))}.

2

Therefore UNIQUE SAT is in PL2 = PP, Proving that SAT - UNIQUE SAT

(i.e. given two formulas F and G, decide whether F is satisfiable and G 1is

, would yield o’ SeL, = pp [BG 82], [Py 82].

If UNIQUE SAT is complete in DP, then SAT - UNIQUESAT € PL

uniquely satisfiable) 1is in PL

9"

. The simulations of lemmas 3 and 4 are tight unless

NSPACE {n log n) & Pr,SPACE(o(nlogn)) which would improve Savitch's [Sa 7o] well

1
known simulation by the Borodin-Cook-Pippenger [BcP 83] deterministic squared

space simulation.
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