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Abstract.

We construct a deterministic polynomial time (deterministic boclean NC [C 85]) algorithm
for interpolating arbitrary t-sparse rational functions. It is the first deterministic polyno-
mial time algorithm for this problem. Given an arbitrary rational function f (in the most
general setting given by a black boz), such that f = P/Q, P,Q € Zxy,-- ,xp) for P,
() t-sparse, relatively prime, with coefficients bounded in absolute value by 2", and such
that deg,,(P), deg,.(Q) < d, the algorithm works in O(log®(ndt)) boolean parallel time and
O(n* d75 t'7% log n logd logt) boolean processors. (In general, if the cocfficients of P and )
arc bounded in the absolute value by the function S. S : IN — IN, S(n) > n. there exists an
implementation (cf. [BCP 83)) of our algorithm in NC*(log S).)

Having established the above deterministic circuit complexity upper bounds for the Rational
Function Interpolation, the very challenging practical matter arises to improve on the mimber
of boolean processors (or the sequential deterministic time) of our algorithm.
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1. Introduction.

The problem of interpolating rational functions over ficlds of characteristic 0 belongs to
one of the most fundamental questions in computational mathematics. The interpolation
formulas of Lagrange, Newton, and Hermite laid foundations for the whole area of numeric
analysis. The recent algorithmic developments in problems like polynomial factorization and
GCD computations (cf. [G 83], [K 85, [G 86] [IKT 88], [BT 88]) lead to the new general

problem of a black boz aparse interpolation of multivariate polynomials and rational functions.

Very recently, the problem of interpolating polynomials given by determinants over fields of
characteristic 0 was solved in [GIS 87, a general polynomial interpolation in fields of charae-
teristic 0 in [BT 88], and over arbitrary finite fields in [GKS 88].

The first randomized algorithm for the Sparse Rational Interpolation was designed by
Kaltofen and Trager [KT 88]. Their method of solution depends on the Padé approximation
and the Hilbert irreducibility theorem, and is intrinsically probabilistic. For a given ¢ > 0, it
gives a randomized algorithm not failing with probability greater than 1 —¢ and runsing in

time polynomial in log( i ).

In this paper, we give a deterministic solution of the Sparse Rational Interpolation. Given (as
a black box) an arbitrary rational function f = P/Q with P, Q@ € Z[zy,- -+, In] (weassume P,
Q) are relatively prime, and with coefficients bounded in absolute value by 27) and P, { having
at most ¢ nonzero terms and degx, (P), deg,,(Q) < d. there exists o deterministic pc lynemnial
time (deterministic boolean NC) algorithm for computing 2 and Q. Our algoritihun depends
on the new method developed here of solving linear systems of equations with polynomials
as indeterminates containing black boxes as coefficients. This extends in an mteresting vay

techniques of Mulnniley [M 86], and might also be of independent interest.

The algorithm will be formulated and analysed in terms of uniform boolean cireuits to give
better insight into both the sequential and the parallel time and space requirements (¢f. {C 79].
[C 85]). The boolean circuit complexity of this problem could also be of mdepeudent interest,
The Rational Interpolation algorithm works in O(log*(ndt)) deterministic boolean time and

O(n*d7™5 #1753 log n logd log t) boolean processors.

2. Sparse Rational Interpolation Problem

We consider the general problem of interpolating rational functions f defined Ly quoticats
of polynomials with al most ¢ nonzero terms. In the most general setting we arc given u black
box for f capable of producing values of f for its arguments. (The very special cases of inter-

polations are those where the black boxes are given by straight-line programs. determinants,
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formulas, ete. (cf. [IKT 85a]).) In this setting, we are given by a black box a rational function
f = P/Q, information of its sparsity ¢, and degree d. (From now on, we shall assume that the
absolute value of coefficients is bounded by 2".) The Sparse Rational Interpolation Problem

IP(t.d) is the problem of computing all nonzero terms of P and Q from the values of f.

We say that the interpolation problem IP(t, d) is in NC* (cf. [C 85]) if there exists a class of
uniform n®M-size and O(log® n)- depth boolean circnits with oracle nodes S (returning values
of a black box) computing for arbitrary n-vadiate rational function f = P/Q (GDC(P. Q) = 1)
all the nonzero coeflicients and monomial vectors of P and , with the oracle Sy, defined by
Si(@y,oo yxn,y) iff fzy.-o-  2a) =y. It is obvious that if the computation of f(axy.---,ry)
performed by a black box (straight-line program, determinant, formula, ete.) isin NC (in P),
then the interpolation problem IP(t,d) itself lies in NC (in P).

Theorem. The Rational Sparse Interpolation Problemn IP(#.d) is in NC?.  Given any
rational function f, such that f = P/Q, P, Q i-spamse. relatively prime. and surh that
deg,. (P), deg, (Q) < d, there exists a deterministic parallel aigorithm for interpolating f

working in O(n*d 75175 log n log d log ) boolean processors and O(log*(ndt)) parallel time.
ProoF. In Sections 3 and 4.

Let us also note that there exists an obvious implementation ([BCP 83])of our algorithm
in NC?(log S) for the arbitrary upper bounds S, S : IV — IN, on the absolute values of the

cocficients.

3. Rational Interpolation Algorithm.

Input: Given a black box for a t-sparse rational function f, f = P/Q. where I'\Q €
Zry,- - ,a,) and P, Q are both t-sparse, P, Q arc relatively prime and deg,,( P). deg, (Q) <
d.

Output: P, () (all nonzero coefficients, and monomial vectors).

ptgatl

‘T a1 yga—t OCCUIS IN Py,

’ Y (1} . : 3
Assume n = 2", Define S, ; = {I = (i1, " 230-1): J:H?,""‘—H ‘e
(2) z J Joa— :
BB il m(rarie o Joui Vit 8hhunn .._pﬁzzaﬂ‘wi,,,_inccurs in Q}.
Algorithm:

The algorithin by recursion on a calculates SS.I?. 522?3 for.all 0 < B ¢ 2mti-a

Basis a = 1. For each 0 < ky.ky < d and for every variable z;,1 < j < n in parallel,

we substitute instead of x, the pairwise distinet numbers ag, - -+ , @24 in the rational function
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|
T — J. = f, where P, Qi € Z[zy,++ @)1 Tja1y ,Zn]. So the algorithmn considers
0<i<ky " z

the linear system Z(}(,(h &b =1 Eﬂ‘(l(-'-z a}@,,0 < ¢ < 3d, considering P,, Q; as inde-
terminates with cocfficients “containing” black boxes f(zy,--+,Tjo1,08 T4, ,ryn). The
algorithm applies to this linear system a method [M 86] and solves it in the followmg sense,
During performing [M 86] we need to test whether some polynomial in the black boxes men-
tioned vanishes as the polynomial in the variables ry, -+, ¥j—1, Zj41,7 7 Ta We do it with
the aid of zero-test from [T 87), [GK 87] (cf. also [GKS 88]). As a result of solving & system
(provided that it is solvable), we express P;, @), and test for each of them its nonvanishing.
again rclying on zero-test from [T 87). If P, # 0,Qk, # 0 (we check the latter again 19
volving zero-test), then the pair ky, ky fits (so there exists a representation /@ = f with
degy, P = ki, dege, Q@ = k) and at the end we choose among such pairs the minimal pair (e.g.
with the least k). Then we yield Sﬁ” 5“) using zero-test according to nonzero terms just for

this pair &y, ka.

Let us prove the correctness of the algorithm for a = 1. We have to prove
i ge
that %ﬂ% = f. DRepresent f = Z—l“;(—f“““‘_}ﬁ in nonreducible way whoeve
0<iSky LO"I(d L")

POQW € Zlon s aporapnc ozl Then (Togige, PN Tocica @' =

(Euggk? ”-}Qt)(zugl(_r;n},?’,m] =oAL TR e P ,ZTn] for cach 0 < ( < d. H =ee

(Z“‘E'Sh J'EP')(anacd T;QE "= (Zo<i<i., a‘:Q '(Zu<a<d ;r:}Pim ), because the degreesin ¢,

in both sides are less than 2d, therefore zﬂﬁﬂ'—q f. Moreover, as k. ky is chosen as
0gi<ky

(1)

g 5(2} correspond to the nonreducible representation of f.

the least pair, S

o3

Recursion Step.

Assume that we have already produced 5';133,5'(02'; for al 0 < B < 2m~ o+l Now we

produce 5(” S for fixed 0 € B < 2™, For each element from ) and the
a+ a+1.8 o248

clement from 5}r 2p41 Where either » = 1 or x = 2, consider the corresponding prod-
uct 2k = T ey Ii}";"'ﬂ For all such products (observe that the number of them
KV p
zkm-’" km

is at most 22 since |.S'n 23' l 2B+1| < t) we can write f whera

E-m ok QLW
Pk{kaczm € Zlry, Tge.T(g+1)2041:° " 1 &a). So the algorithm takes pairwise differ-
ent primes py,-- -, pze and in parallel for every 0 < { < 243 substitutes instead of x gg~4; the
number pﬁ for 1 < j < 2% Then the algorithm looks over all pairs 0 < ki, k2 < nd and for
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P B e SR 5 e & ek - 2 .
every ky, ky considers a lincar system Zﬂcmlgkl P Pkm 4 Eikmlgkw P ka for
0 < ¢ < 2t* considering P, Qo as indeterminants, where [k"’] is a s of coordinates
of the multi-index . and solves it involving [M 86] similarly as above in the basis step.
This would lead to an cxpressing Pkm,ka (provided that the linear system is solvable)

as black boxes. Involving zero-test [Ti 87, we check whether Pro #0.Qp # 0 for some

k| = ky, [K'P)] = k. Then this pair ky, k2 fits and we take among such pairs the least one

(c.g. with the least k). Then we yield S 6B g zero-test just for this pair ky. k.
y o, It ng

o,

We prove the correctness of the recursive step of the algorithm: We have to
(1) T
O .
1<k A = Represent [ = T in
Elkmlsnz x ka Z'F,, r QF 43

prove that

nonreducible way and denominator and nominator are i-sparse where pzm. Qi'm €
Z| Th P )( "0
Ly T " s il €1 ) - s
1 TR20, T(A+1)27+1 n] (Z1k‘”i5k, ol km) EIFHHM’; km)

fk{n fL(ll 3
(zikmlskz p ka)(zll;mkndp PF”) for D £«
Hence (1)

{

B - - K ~ ob
(EikU!'Skl T Pk{11)(2[;—;t?11<ndf QE(Z)) = (ijr:}lsk? T Qk(ﬂ)(f"!i:{“;.(,;.-f T I)_i.;!_“j

because polynomials in both sides contain at most 1? terms in Tg.ga41. " TB20 427, cach
of them; so we can write the latter identity in the form 3 .rka = 0 where T} €

Z|Ty, Xp2e  T(g41)20 410" ,Ta] and the latter polynomial contains at most 2t terms.

On the other hand, Zprka =0 for 0 € ¢ < 2t* and pk 7 pk for k # E and the lattec

system can be written in the fom UT =0 where U is a Vandermonde matrix and the vector

(1)
. Ek{”u ! nk“'
T = ({Tg}g). therefore T = 0. that proves the identity (1). Thus f = —1=—I%8 P
L]ki?i{g?‘r {"fk*.!‘-

, 1 (2 :
Moreover, as ki, kp were chosen as the least possible, produced st g 5[(,_,)_1 g correspond L6
. ;

a4l
the nonreducible representation of f. 3

4. Analysis of the Algorithm.

We start with the analysis of the identity-to-zero algorithm. For a given t-sparse polynomial
P € Z[zy,- - ,an) given by a black box, the problem of checking identity-to-zcro of P, whether
P =0, can be solved by the following algorithm (see [T 87], [GK 87]).
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Input. Black box for P.

Step 1. Generate n first prime numbers py, -, pn-

Step 2. Compute the numbers a; (values of P at the points (p},+-- ,p}), 1 <i < #:
wp Pl e il 1 €4 5%

Output. Yes (P = 0) iff Vi[a, = 0].

By the Erastosthenes sieve method, Step 1 costs O(n log ) boolean processors {and O(log n)
boolean time). Step 2 costs O(nt logn) processors. Thus, the whole identity-to zero-subrentine

works in O(ntlogn) processors and O(logn) paralle! time.

Taking into account the complexity of the above subroutine and the costs of computing the
rank of matrices [M 86], we get the following processor count of our algorithm. The Basis Step
works in O(n%d®"tlog dlogn) processors and O(log nt + log? d) parallel time. The Recursion
Step works in Q(n*d?*t!7%log nlogt) processors and O(log? t + log nd)time. For every 4. 0
i < 2m= the Recursion Step works in O(log?(ndt)) parallel time and O(n*d* 173 log n logt)
processors. As a consequence, the deterministic Rational Interpolation Algorithm works in

O(n*d"-5t' 75 logn log dlog1) boolean processors and O(log’(ndt)) parallel time. O

5. Conclusions.

Our paper solves an open problem of Ben-Or and Tiwari [BT 88], and gives the first de-
terministic polynomial time (boolean NC') algorithm for the Sparse Multivariate Rational
Interpolation Problem. The Rational Interpolation is connected to the restiicted problein of
determining whether there is a sparse vector in the null space of a given matrix; the uurestricied
problem is known to be NP-complete (cf. [BT 88]. It it also connected in an interesting way
to the seminal problem of Strassen [S 73] of computing the numerator and denumerator of gen-
cral rational functions given by straight-line programs. Recently, I{altofen [IX 83b] was able to
put this problem in random polynomial time, proving the existence of non-uniform polynomia
size circuits for computing numerators and denominators. The algorithm in this paper proves
the existence of deterministic uniform boolean circuits of polynomial size and polylogaritiumnic
depth for computing numerators and denumecrators of sparse rational functions given in the
most general black-box oracle form for their values. The algorithm transforms determinisii-
cally arbitrary sparse rational straight-line programs into equivalent programs where only one
division is allowed at the end of a computation. Having put the status of the above problem
in P and 1n the determunistic boolean NC, an important practical problem arises to iimprove

substantially on the number of processors of the algorithm.
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