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ABSTRACT. A learning machine (see [9]) consists of a learning protoco!
together with a deduction procedure. Learning protocol specifies the
manner in which information about the concepts is obtained from the
outside. Deduction procedure is the mechanism by which a correct
recognition algorithm for all concepts to be learned is deduced. There
are m concepts to be learned. They are represented as terms in a
probabilistic DNF form. The goal of this paper is to propose an efficient
parallel algorithm on a PRAM (see [2]) for learning these concepts with a
minimal error.  Information about them comes from three types of
queries: equivalence, membership and probabilistic queries. There is a
treshold k describing the maximal number of conjuncts allowed in the
final descriptions of concepts produced by a learning machine. It can
happen that the descriptions known by the teacher contain more
conjuncts per concept than k. The goal of the first step of our deduction
procedure is to learn descriptions of concepts in the form known by the
teacher. We apply here a generalization of a strategy proposed by Angluin
(see [1]). In the second step, we apply the strategy which is similar to
the one proposed by Ras and Zemankova (see [7]). This way we minimize
the number of conjuncts in the descriptions of concepts by taking the
advantage of a growing language. The error learning after these two
steps is equal to zero. The last step is based on merging two closest
conjuncts in one of the terms (in DNF) representing the current outcome
of the deduction procedure. This step is repeated until there is no term
in DNF (describing one of the concepts to be learned) which contains
more conjuncts than the treshold k. The final output of the iearning
machine is a collection of optimized concepts descriptions in terms of a
growing language.

INTRODUCTION. The main goal of a deduction procedure is to infer
descriptions of concepts (decision rules) from a set of data (training
events) gathered through an appropriate learning protocol. There have
been many deduction procedures and learning protocols suggested. D3
system proposed by Quinlan (see [6]) generates a decision tree for each
concept to be learned. Nodes of his decision trees are labeled by
attribute  names and edges by corresponding attribute values. His
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algorithm selects an attribute and partitions the training examples into
disjoint subsets characterized by values of the attribute. The selection
of attributes is guided by the expected entropy function assigned to each
concept. The general idea is to choose an attribute which gives the
maximal reduction of information uncertainty for a concept to be
learned. AQ11 system proposed by Michalski (see [3,4]) generates a set
of disjoint stars from a set of training events and selects from each
star the best complex (conjunct) according to an optimality criterion.
Angluin (see [1]) gives a polynomial algorithm to learn a precise
description of a concept represented as a k-term DNF formula. The above
methods do not say what to do if there are several objects assigned to
one event and only some of them represent a concept to be learned. Such
concepts are probabilistically describable. Ras and Zemankova (see [7.8])
assume that each training event is given with a probabilistic value and
the language used by a learning machine has a probabilistic feature. They
propose an interpretation of functors and concepts which does not
guarantee the distributivity and idempotency laws. These laws are vitai
for the optimization process of decision rules. We suggest in this paper
another interpretation (a probabilistic one) which preserves botn
idempotency and distributivity laws in the form of one-sided
inequalities. The main problem stated in this paper is the following:
there is a teacher who knows nonredundant descriptions of n concepts.
These descriptions are in the form of k-term DNF formulas. There is a
threshold” given for the learning machine which gives the maximal
number of conjuncts allowed in the final descriptions of concepts. The
deduction procedure suggested by us has three main steps. a
generalization of Angluin algorithm (see [1]), a generalization of Ras &
Zemankova algorithm (see [7]) and finally a generalization algorithm
based on the syntactic distance between terms. Our learning prolocoi is
based on three types of queries: equivalence, membership and
probabilistic queries. We assume that the learning machine knows ihe
number of conjuncts in a nonredundant description of each concept.

BASIC DEFINITIONS.

In this section we introduce the noticn of an esvent space {see [4,5]). a
syntactic distance between events and sets of events, a formalized
language L(S,C) which will be used to manipulate rules (terms describing
concepts) in a knowledge base and finally we propose an inlerpretation
of L(S,C) in the algebra of probabilistic functions.

Let us assume that X is a set of objects and ay, as,..., a is a list of
selected attributes used to describe them. By Dom(a;) we mean a finite
set of values of the attribute a;, ie I. By an event space E we mean the
cartesian product Dom(aq) x Dom(ap) x ... x Doem(a,). An information
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system is a pair S = (E, D) , where E is a subset of E called the set of
observed events and D is a function from E into the set of positive
integers. Function D describes the frequency with which the examples of
of each event from E occur in X. More precisely, the equation D(e) = k
means that the number of objects in X described by an event e is equa!
to k. Following the definitions introduced in [2], we assume that
attributes are either unordered, totally-ordered or structured.
Furthermore, structured attributes are either ordered or unordered. They

are ordered (unordered) if leaf values constitute an ordered (unordered)
set.

Example 1. For simplicity reason the attributes are represented in LISP
notation.

totally-ordered attribute

(integer 1234567 8 9)

unordered attribute

(color blue red green black orange yellow)

structured unordered attribute

(shape (polygon (3-sided  triangle) (4-sided reciangle squara
trapezoid)) (oval circle ellipse))

structured ordered attribute

(some (couple 2) (few 23 4 56 7 8) (several 56 7 89 10))

By a syntactic distance between values of an attribute a; we mean a
function d, from Dom(a;) x Dom(a;) into the interval <0,1=. The
definition depends on the type of an attribute a;. It is given below

If aj is an unordered attribute and vy, v, are distinct elements in
Dom(a;), then da(vqy,vp) = 1. lf vy = Vo, then dg(vq,vp) = 0.

It a; is a totally-ordered attribute and (v4, vo, v3,..., vi) is an ordered
sequence of all its values, then da(vi,v;) = |j-i|/(k-1)

If aj is an unordered structured attribute and vy , vo are its different
values, then da(vq,vp) is defined as 1/(2**depth(c(vq,vs))), where
c(vy,vp) is the nearest common ancestor for vq and vy. The depih of the
root of the tree is zero. If vy = vy, then dy(vq4,vs) = C.

The distance between values of an ordered structured attribuie can he
defined either as the distance between values of an ordered attribute o
as a combination of the distance between values of an ordered attribute
and the distance between values of an unordered structured atiribute.

Let eq = (vq,vo,v3,....vn), €2 = (W{,Wp,Wa,...,w,) be any two events. By a
syntactic distance between events we mean a function d from E x £



into the set of positive real numbers defined as follows
n
d(eq,ep) = b dalviw) .

By a syntactic distance between sels E4, Eo of events we mean a

function d from 2E x 2E into the set of positive real numbers defined
as follows d(Eq,Ep) = min{ d(eq.,e0) | ey €Ey , @0 € Eo},

Let E be the set of observed events. By a probabiiistic function on E we
mean any total function from E into the interval <0,1>. Let Fg be the set

of all probablistic functions on E. The algebra A(Fg) = (FE . #.&,-) of
probabilistic functions on E is defined below

For any fq , f2 in Fg

(f1 # fo)(e) = fy(e) + fa(e) - f1(e)*fo(e)

(f1 & f2)(e) = f1(e) * fa(e)

(-f1)(e) = 1 - f4(e)
Fact 1. Let fy, fp, f3, f are elements of Fg and g =f-ff. Then

1) f&fcf, faftf

2) f1 &fp =fp &fy , fq #fp =1fy #1fy

3) (fy &fp) &fg =1y & (fp &f3) ., (fg #1o) #f3 =1y # (fp # fg)
4) -(fq #'fz)z(-fﬂ&(-fz) ) & fp) = (f1) # (-Fn)

S) (h#f=1-g , (Hh&f=g

6) (f&m#f f+fi'g , (F#f) &f=1-g(1f)

7) (F& ) #(f&fp) =& (f #1n) + f1'fp'g

8) (F#f1) & (f#f)="1#(f &) - g*(1- (f4 # fn))

We say that a probabilistic function f on E is crisp if f takes only values
from the set {0,1}. Let FCg ' be the set of all crisp probabilistic

functions on E. The sub-algebra A(FCg) = (FCg #,&-) of the algebra
A(Fg) is a Boolean algebra. This observation follows automatically from
Fact 1 and from the fact that crisp functions satisfy the axiom f = f*f .

Let's define the language L(S,C) of probabilistic DNF formulas . We
assume that S=(E,D) is an information system and C is a set of concepts
to be learned.

The set of atoms is a least set such that

1) A pair ([V4,Vo,V3,...,V,], w) is an atom. We assume that we (0,1]
and either Vj = Dom(a;) or V;& Dom(a; for any 1<i<n . If Vi = Dom(aj),
then V; is replaced by the symbol ™". If w = 1, then (V1,V2,V3,...,Va] W)



is replaced by [V4,Vp,V3,....Vpl.

2) A pair (c, w) is an atom. We assume thatce C and we (0,1]. If w =
1, then (c, w) is replaced by c.

The set of terms is a least set such that
1) all atoms are terms -
2) it t4,tp are terms then (t4+1tp) is a term.

The set of formulas is a least set such that
1) if t4, 1o are terms then (t4=to), (14<tp) are formulas

A

2) if & b are formulas then (av b), (A Bb), -2 are formulas

We say that (ty+tp) is a disjunction of two terms ty and t>. By
kK-term in DNF we mean any disjunction of k atoms,

Let us define the interpretation Jg of the language L(S,C) in the algebra
A(FE) = (Fg . #.,&,-) and two-valued Boolean algebra.

Jg(([V1,V2,V3.....Vu], W)) = f , where fe Fz and f is defined as follows
() (if eeV1xV2xV3x XV then w, else 0)
2) Jgl{c,w)) = g, where geFg and g is defined as follows
g(e) = w'f(e) , where f = Jg(c) and feFg.
3) Jg(+) =#, Jg(=) = (equality for functions), Jg(<) = (ore sided
inequality for functions)

Atoms of L(S,C) correspond to conjuncts. This is why we have only one
functor "+" in L(S,C). The reason of introducing the algebra A(Fg) was to

show another possible interpretation of terms and formulas (built from
concepts and attribute values) on the boundary region (see [7.8]). The
axioms for manipulating terms are strictly dependent on this
interpretation. The interpretation proposed in [8] does not guarantee the
idempotency and distributivity laws. Our interpretation guarantee ooth
laws in the form of one-sided inequalities. The lack of these laws forc:d
Ras and Zemankova (see [7]) to use a growing language in order to reduce
the number of conjuncts in terms (in DNF) describing concepts and at the
same time to keep the semantical meening of all terms the same. !t has
to be realized that our interpretation of formulas does not improve this
optimization problem very much. However it can be said that the axiom
(F&fq) # (f & o) = T & (f4 # 1p)

corresponds to the specification step.

The strategy for learning the optimal DNF's proposed by Michalski in
[3,4,5] is using very often the distributivity iaws. In our case they dc not
hold. This justifies why we want to adopt and slightly generalize the
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learning strategy proposed by Angluin (see [1]) in order to get the
starting terms in DNF describing m concepts to be learned by our
learning machine. Simply her strategy avoids the distributivity laws.

DEDUCTION PROCEDURE

In this section we present an algorithm for learning m concepts in
parallel. The number of processors is equal to the number of attributes
used to describe concepts. Each processor pj, 1<icn has access to three

oracles Oraclel;(), Oracle2;() and Oracle3;{). The algorithm has three

main procedures. The first one is a generalization of Angluin algorithm
(see [1]). The second is a modification of Ras and Zemankova algorithm
(see [4]) and the last procedure is a generalization algorithm based on
the syntactic distance between terms.

Initially, we present our algorithm for two-valued atiributes. The
interpretation Jg will be in the algebra A(FCpg) = (FCg #.3,-) of crisp

probabilistic functions on E. In this case, a processor p;, 1<icn needs an
access only to Oraclelj() and Oracle2;(). Values of an atiribute a; will be
denoted by v;, vi'. We call them literals. We will write v; instead of

(vi')"

Two terms ty, to are equivalent if the statement ty=to is true in the
interpretation Jg. Assume that t is a term in DNF and Jg(t){e)=1 whare
e = [wq,Wo,...,Wj,....wp]. We say that w; is sensitive in e with respact to
Jg(t) if Jg(t)(e')=0 where e'=[wq,wo,..., wi',...wp]. The set of all w;
sensitive in e with respect to Jg(t) is denoted by Si(e). Assume that { =
ty+to+...+t is a k-term in DNF. We say that t is non-redundant if a term
received by droping in t any atom tjis not equivalent to t. It has been
proved in [1] that if t = ty+to+...+tx is non-redundant then there is a
sequence of events (eq,es,...,ex) such that for any i, Jg(tj)(e;)=1 and
JS(tj)(ei)=0 for j # i. Let's call the event e; a generator for tjfor ie i
By L; we mean a set of literals not listed in t; which has a non-empty
intersection with a set of literals listed in Y for any | where j + 1. By
Rj we mean a set of literals listed in e; which satisfy the follewirg
property: if a literal is in Rj then there is t (j # i) in which this literal
is not used. Both sets L; and R; can be obtained easily from the set of
generators. The set L;is called a discriminant set and it is used to find
a generator for t;



The deduction procedure LEARN(). We assume that the value k and the
values of attributes aq, an,..., an are known to the deduction procedure.

The deduction procedure has to learn a nonredundant k-term t' in DNF
equivalent to t. There are n processors p{, po,..., Pn. Each processor p; has

access to two oracles Oracleli(), Oracle2i(). Oraclel;() outputs 1 on an
event e if Jg(t)(e)=1. Otherwise it outputs 0. Oracle2() outputs 1 on a

term t if {' is equivalent to t. Otherwise it returns an event which s a
counterexample for the equation Jg(t) = Jg(t').

Let's start the description of a deduction procedure under the
assumption that each processor p; knows both sets L; and R;. One of the

processors has to ask the second oracle if t' is a null term. Assume that
the answer is "no” and the counterexample e is read by all processors.
Each processor p; will replace in e all values listed in L; by their dual

values (Vj is replaced by Vj' and vj‘ by vj) and then it will ask Oraclei;()
if Jg(t) has value 1 on the new obtained event. !i the answer is “yes”,
then the new obtained event is a generator for t. It can be proved that
minimum one processor (let's say pj) will get a positive answer from the
Oraclei(). It this case, the generater ej for tj is sent by Pj to all other
processors through the global PRAM memory. Each processor p; will
replace the i-coordinate of ej by the dual i-coordinate and wili ask
Oraclelj() if Jg(t) has value 1 on the new event. If answer is 1, then the
i-coordinate of €] is not sensitive. If answer is 0, then the processor p;
sends the message to the processor Pj that the i-coordinate of €] is
sensitive. Processor Pj has to add all sensitive coordinates of €] to the
set Rj. The obtained set gives all the literals which have to be listed in
the new generated term tj'. Processor Pj will ask the Oraclezj() if
Jg(t) = Jg(t). Oracle2j() either outputs "yes" or gives the next

counterexample. This counterexample is used to find a generator of the
next t; , and so on.

The procedure requires that each processor p; knows sets L; and R;. This

assumption in Angluin paper (see [1]) is not necessary since the number
of possible options for these sets is bounded by a polynomial function
with respect to n. Her procedure tries all these options in order to find
the correct one.

The assumption that attributes have only two values is not necessary.
Clearly, we can not replace a many-valued attribute by a set of
two-valued attributes because the number of conjuncts in DNF will
increase considerably (we want to minimize this number). The



generalization of Angluin's algorithm to many-valued attributes can be
done easily. Assume that Dom(a;) is a minimum 3-element set, where a;

Is an attribute. Two cases have to be considered:
1) Dom(a;) is a subset of L,

2) there is v (1 < i< k) in Dom(a;) such that Vi € Lj -
In the first case there are two values vq, vo in Dom(a;) n L; listed in
two conjuncts ty, tp respectively. We can choose vq, vo in a such a way

that the corresponding conjuncts will differentiate on minimum two
attributes. To eliminate these conjuncts we have to swop vy and vo. Let

us assume that t3 is a conjunct in.which vg is listed, where vj3 ¢
Dom(a;). Either t3, t4 or t3, to will differentiate on minimum two
attributes . If t3, ty differentiate, then t3 is replaced by tq.If i3, ts
differentiate, then t3 is replaced by tp. This case requires to add one

more loop in Angluin's algorithm in order to find a proper replacement
for all elements in L;.

In the second case all elements from L;n Dom(a;) are replaced by vg.

Let us assume that Jg is an interpretation in the aigebra A(Fg) of

probabilistic functions on E. We need one more definition to describe the
procedure LEARN(). We say a term t is weakly equivalent to a term t

if the following two conditions hold:
1) Jg(t)(e) = 0 iff Jg(t')(e) =0 for any event e,
2) Jg(ti(e) =1 iff Jg(t)(e) = 1 for any event e.

Three oracles are needed to extend Angluin algorithm to probabilistic
case in a natural way.

Oracle1j() will output 1 on an event e if Jg(t)(e) = O,

Oracle2;() will output 1 on a term t' if t' is weakly equivalent to t,
Oracle3j() will output a probabilistic value p on a term t' (p is the
probability that events described by t' are described by t).

Initially we use only Oracleli() and Oracle2i(). Oracle3j() is needed at
the end of LEARN{() in order to assign probabilistic values to conjuncts
learned by using the previous two oracles.

The procedure LEARN{() will output a k-term t' in DNF equivalent to the

term t. It may happen that the number k is larger than the threshold set
up for the learning machine. The threshold gives the maximal number of
atoms (conjuncts) allowed in the final form of t'. We will take the
adwentage of a growing language to shrink the term t' if k is larger than
the threshold.



Let us assume that sy', s>',.... Sm' Is a sequence of terms in L(S.#)
describing concepts C4, Cp,..., Cyy respectively. This fact is expressed in
L(S{cq.co,..., Cm}) @as a sequence of formulas c; =s{' (1<icm) true in the
interpretation Jg. Each si' is nonredundant. The deduction procedure
LEARN() learns a sequence of terms sq,s5,....5p, equivalent to sy’
So',...,Sm' respectively. The sequence of formulas Ci =5 (1<iem) is
passed as an input to the deduction procedure LEARN (). LEARN5()
outputs a new sequence of formulas ¢; =1 (1<iem) in terms of a
growing language. These new formulas are true in the interpretation Jg.
Saying more precisely LEARNj () has to decide in which order the
concepts ¢q, Cp,..., ci (ix«m) has to be taught in order to use them in a
most efficient way in the process teaching the concept ¢; 4. Procedure
LEARNo() denotes the algorithm proposed by Ras and Zemankova in [4].

The sequence of formulas ¢j = s (1<i<m) is passed as an input to the
deduction procedure LEARNg(). It may happen that the number of atoms
(conjuncts) in some s; (1<i<m) is still higher than the threshold set up
for the learning machine. LEARNg(), which is a generalization procedure

will merge the nearest (with respect to the syntactic distance) atoms
(conjuncts) in s;and will check if the threshold is higher than the

number of atoms in the modified version of s;. If so, then LEARN3(} is
called again. The idea of merging the nearest atoms of the input term s;
is justified by the need of adding to s; a minimal number of new events
(not covered by s;j) to produce a generalized version of s;.
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