A Parallel Algorithm for
Maximum Matching
in Planar Graphs

Elias Dahlhaus’, Marek Karpinski?, Andrzej Lingas®

April, 1989

Abstract

We present a new parallel algorithm for finding 2 maximum (cardinality) matching in
a planar bipartite graph G. Our algorithm is processor-time product efficient if the size lofa
maximum matching of G is large. It runs in time O ((n/2-]+ \/n)log7n) on a CRCW PRAM
with O(nl‘s log3n) processors.

1Department of Computer Science, University of Boan.

2International Computer Science Institute, Berkeley, California, on leave from the University of Bonn, resecarch
partially supported by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/2-1, and
by the SERC Grant GR-E 68297. '

3Department of Computer Science, Linkoping University.

1. Introduction

Let G = (V, E) be an undirected graph. A matching M C E is a set of edges no
two of which have a common endpoint. A maximum (cardinality) matching is a
matching that has the largest possible number of edges. The problem of finding a
maximum matching in G can be solved in time O(y/nm), where n is the number of
vertices and m is the number of edges in G [PL}. It is an outstanding open question
in the complexity theory whether the maximum matching problem or its decision
version are in the class NC, i.e. whether they admit parallel algorithms running
in poly-log time and using polynomial number of processors. A perfect matching
of G is a matching which for every vertex v of G includes an edge incident to v.
It is known that the problem of finding a perfect matching in a bipartite graph is
in the random class NC [KUW)|. Since the problem of finding a maximum match-
ing is trivially NC reducible to that of finding a perfect matching, the former
problem is also in random NC. The fastest kacwn, deterministic parallel algo-
rithm for maximum matching in bipartite graphs runs in time O(nglogzn) using
O(BFS(n,m)) processors [GTV] *, where BFS(n,m) is the number of processors
needed for breadth-first search of the input graph on n vertices and m edges.

For planar bipartite graphs, the problem of finding a perfect matching has been
recently shown to be in NC [MN]. However, the problem of finding a maximum
matching in planar bipartite graphs remains open (see [MN]) since the mentioned
NC reduction does not preserve planarity. We present a parallel algorithm for
finding a maximum matching in an arbitrary planar bipartite graph G. If the size
of a maximum matching ! of G is large our algorithm is faster and more processor
efficient than that for arbitrary bipartite graphs due to Goldberg, Plotkin and
Vaidya [GPV). It runs in time O((n/2 — I + /%) log” n} on a CRCW PRAM with
O(n!® log® n) processors. Our algorithm relies on a deterministic modification of
an efficient parallel, randomized algorithm for planar separator due to Gazit and
Miller [GM]. It resembles a sequential algorithm for maximum weight matching

based on planar separator given in [LT).

* The known most efficient parallel algorithms for BFS use matrix multiplica-
tion and therefore their processor-time complexity has the trivial quadratic lower
bound. For planar graphs, the best known upper bound on the number of pro-
cessors used by a parallel algorithm for BFS running in polylog-time is n!-*/logn
(see [GM,PR]).

2. Preliminaries

We use standard set and graph theoretic notation and definitions. Specifically, we

assume the following set and graph conventions:

1) For a finite set S, | S | denotes the cardinality of S. Forsets S and T, S @ T
denotes the symmetric difference of S and T.

2) For a graph G = (V, E), and a subset U of V, G(U) denotes the subgraph of G
induced by U, i.e. the graph (U, {(v,w) € E | v,w € U}).

3) For a graph G = (V, E), and an integer m, a subset S of V is an m separator of
G if | § |< m, and the vertices in V that are not in S can be partitioned into two
sets A and B such that there is no edge in E from A to B,and | A |, | B |< (2/3)n.
4) For a graph G = (V, E) and a matching M of G, a path P = (v;,v3), (va,v3), ...,
(vak—1,v2k) is called an augmenting path if its endpoints v; and vy are not in-
cident to edges in M, ana its edges are alternately in E — M and M (see also
[HK]).

Our parallel algorithm will construct a maximum matching of the input planar
graph recursively and incrementally. The input graph will be recursively divided

using the so called planar separator theorem [LT].
Fact 2.1 [LT]: Every planar graph on n vertices has an O(y/n) separator.

The idea of incrementing the current matching in our algorithm will rely on the

following facts.

Fact 2.2 [HK]: If M is a matching and P is an augmenting path relative to M,
then M @ P is a matching, and | M ® P |=| M | +1.

Fact 2.3 (see [HK]): M is a maximum matching if and only if there is no augmenting

path relative to M.

3. The algorithm

Algorithm 3.1
Input : a planar graph G on n vertices

Output : a maximum (cardinality) matching of G

procedure MAXCAR(G)
begin
if n < 10 then

begin
find a maximum matching M of G;
goto E

end;

find an O(y/n) separator S of G;

set V; and V3 to the two subsets of V' separated by S5;

set G to G(V; U S) and G; to G(V3);

for ¢t = 1,2 do in parallel

M; « MAXCAR(G:);

M — M, U M;;

for each vertex v € V that is not incident to an edge in M do
if there exists an augmenting path in G relative to M that starts from
v then find such a path P and set M to M & P;

E: return M

end

The correctness of the above procedure follows from Facts 2.2, 2.3. In order to
analyze the cost of this procedure, we introduce the following notation:

a) T,(n), P,(n) are respectively the time and the number of processors used to
construct an O(y/n) separator of G.

b) Ta(n), Pa(n) are respectively the time and the number of processors used to
find an augmenting path in G relative to a matching of G.

¢) P(n) is the number of processors used by M AXCAR(G). Next, for a non-
negative integer k, T(n, k) is the time used by M A XCAR(G) provided that the

size of a maximum matching of G is not less than | 3! — k.

If G has a matching of size %] — k then each of the subgraphs G;,1 = 1,2, has a
matching of size | 3| —k— | S | where n; is the number of vertices of G. Thus, the
number of vertices in G that are not incident to edges in My UMa is O(k+ | S |).

Hence, we obtain the following recursive inequalities on T'(n, k) and P(n):
T(n, k) < 2T(2/3n + O(v/n), k + O(v/n)) + O(log n + Tu(n) + (k + v/n)Ta(n))

P(n) < 2P(2/3n + O(v/n)) + O(n + Ps(n) + Pa(n))

In our implementation of MAX CAR(G); we employ the following facts. The proof

of the first one is similar to the proof of Lemmas 2.1, 2.3 in [Li].

Fact 3.1: For any positive ¢, one can find an O(y/n) separator of a planar graph
on n vertices in time O(log® n) using a CRCW PRAM with O(n*¢) processors.

Proof: Let G be a planar graph on n vertices. First suppose that G is two-
connected and its planar embedding is given such that each face is of size O1).
Then, employing a recent algorithm due to Gazit and Miller, we could find an
O(y/n) separator of G in the form of a simple cycle in time O(log? n) using a
random CRCW PRAM with O(n!*¢) processors (GM|. The PRAM uses random
bits only in order to find maximal independent sets by applying the randomized,
parallel algorithm due to Luby [Lu]. By replacing Luby’s algorithm with the
recent, deterministic, paraliel algorithm for the maximal independent set due to
Goldberg and Spencer [GS]. we can eliminate the use of the random bits increasing
the asymptotic time by a facter of O(log3 n), preserving the asymptotic number

of processors.

In the general case, we do noi have a planar embedding of G, and G is not necessar-
ily two-connected. On the other hand, we may assume without loss of generality
that G is connected. Otherwise, we could find connected components of G in time
O(log n) using CRCW PRAM with O(n) processors [SV]’, and trivially reduce the
problem of finding an O(y/n) separator of G to that of finding an O(y/n) separator

for each of the connected components.

We can find a planar embedding of G by applying an algorithm due to Klein and
Reif [KR| which runs in time O(logn) on 2 CREW PRAM with O(n) processors.
Next, we can transform the resuliing planar embedding of G to a two-connected
one by partitioning each its face in parallel as follows. First, we pick a vertex
v incident to the face. Next, for any other vertex w on this face that is not
immediately to the right or left of v, we add the edges (v, u), (4,w) to E’, where u
is a new vertex in one-to-one correspondence with the face, v and w. (The reason of
adding the two edges instead of (v, w) is to avoid creating a multigraph). Note that
each of the resulting faces is of size < 5. It is also clear that G’ is two-connected
and has O(n) vertices. The final adjacency lists for vertices of G’ can be obtained
by sorting the set of old and new edges, for instance, by using Cole’s algorithm
[C]. Now, it is enough to find a cyclic O(/n) separator in G’ in the way described
in the above and delete all vertices that are not original vertices of G from the

separator to obtain an O(y/n) separator of G. y

Suppose that our graph G is a bipartite graph (Vi U V3, E) where E C V) X V3.

Let M be a matching of G. For i = 1,2, the bipartite digraph Gi{(M) = (V; U
Va, E¢(M)), with edges in one-to-one correspondence with edges in £, is obtained
from G by directing the edges in E as follows. Each edge in M is directed from its
endpoint in V3_; to its endpoint in V;i. On the other hand, each edge in E — M is
directed from its endpoint in V; to its endpoint in V3_;. The following fact is well
known [HK].

Fact 3.2: Assume the above notation. Let v,v’ be vertices in V; that are not
adjacent to any edge in M. Any directed path in G;(M) starting from v and
ending at v’ is in a one-to-one correspondence with an augmenting path in G

relative to M starting from v and ending at v'.

By the above fact, if there is an augmenting path in G relative to M starting from
v then we can find such a path by depth first or breadth first search in G;(M)
starting from v. Unfortunately, no processor-efficient, deterministic NC algorithm
for breath first or depth first search in planar digraphs is known. On the other
hand, Lingas [Li] has recently used another method of graph searching to derive

the following result.

Fact 3.3[Li]: All the reachability problems for a distinguished vertex of a planar
digraph can be solved in time O(log®n) using a CRCW PRAM with O(n!* log®)

processors.

By applying Fact 3.3 to G;(M), and a given vertex v in V;, we can determine
whether there exists an augmenting path in G relative to M starting from v,
and if so, we can find the other endpoint v’ of such a path. Next, by applying
backtracking to algorithm used in the proof of Fact 3.3, we can produce such an
augmenting path connecting v with v’. Everything can be done within the time-
processor upper bounds given in Fact 3.3. Thus, for u planar bipartite graph
G, we can simultaneously set T,(n) to O(log® n), and P.(n) to O(n'*® log? n) in
the model of CRCW PRAM. Also, by Lemma 3.1, we c¢an simultaneously set
T,(n) to O(log® n), and P,(n) to O(n'*¢), for an arbitrary € < 0.5 (2gain in the
model of CRCW PRAM). It follows from the soluticn of the recursive inequalities
that for a planar bipartite graph G, we can implement MAXCAR(G, k) in time
O((k + v/n) log” n) using a CRCW PRAM with O(n!-® log® n) processors.

Theorem 3.1: Let G be a planar bipartite graph on n vertices for which there

exists a matching of size |n/2] — k, where k is a non-negative integer. One can

find 2 maximum matching of G in time O((k + /) log” n) using a CRCW PRAM

with O(n!-5 log® n) processors.

Final Remark

The upper bound on the number of processors used by our algorithm for maximum
matching in planar bipartite graphs given in Theorem 3.1 is up to a logarithmic
factor of the same order as that for the planar directed reachability problem given
in Fact 3.3. If there existed a more processor efficient NC algorithm for the planar
directed reachability problem, the above upper bound could be proportionally
improved. For instance, one could try to extend the method of parallel BFS for
planar (undirected) graphs due to Pan and Reif (see [GM,PR]) to include planar

digraphs to decrease the number of processors by a log® n factor.

Acknowledgements: We would like to express our appraciation to Christos Lev-

copoulos for useful comments.

References

[GM] H. Gazit and G.L. Miller, A parallel algorithm for finding a separator in
planar graphs, Proc. 28th Symp. on Foundations of Computer Science, 1987.
[GPV] A.V. Goldberg, S.A. Plotkin, M. Vaidya, Sublinear deterministic parallel
algorithms for matching and related problem, MIT /LCS/TM-357, June 1988.
[GS] M. Goldberg and T. Spencer, A new parallel algorithm for the maximal
independent set problem, Proc. 28th Symp. on Foundations of Computer Science,
1987,

[HK] J.E. Hopcroft and R.M. Karp, An n?® algorithm for maximum matching in
bipartite graphs, SIAM J. Comp. 2 (1973), pp. 225-231.

[KUW|] R.M. Karp, E. Upfal, and A. Wigderson, Constructing a Maximum Match-
ing is in Random NC, Combinatorica, 6(1), (1986) pp. 35-48.

(KR] P.N. Klein, J.H. Reif, An Efficient Parallel Algorithm for Planarity, Proc.
27th Symp. on Foundations of Computer Science, 1986.

[Li] A. Lingas, An Efficient Parallel Algorithm for Planar Directed Reachability,
manuscript, December 1988,

[Lu] M. Luby, A simple parallel algorithm for the maximal independent set prob-
lem, SIAM J. Comput., 15(4):1036-1053, November 1986.

[LT] R.J. Lipton and R.E. Tarjan, Applications of a planar separator theorem,

SIAM J. Appl. Math. 36 (1979), pp. 177-189.

[MN] G.L. Miller and J. Naor, Flow in planar graphs with multiple sources and
sinks, manuscript, Univ. of Southern California, 1988.

[PL] P.A. Peterson and M.C. Loui, The General Maximum Matching Algorithm
of Micali and Vazirani, Algorithmica (1988) 3, pp. 511-533.

[PR] V.P. Pan and J. Reif, Extension of the Parallel Nested Dissection Algorithm
to Path Algebra Problems, Proc. FST-TCS, India, 1986, LNCS Springer Verlag.

