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In [DG 89], the authors show that many results concerning the problem of efficient interpciation
of k-sparse multivariate polynomials can be formulated and proved in the general setting of k-sparse
sums of characters of abelian monoids. In this note we describe another conceptual framework tor
the interpolation problem. In this framework, we consider R-algebras of functions A,,. N B
an integral domain R, together with R-linear operators D; : A; = A;. We then consider functions
f from R™ to R that can be expressed as the sum of k terms, each term being an R-multiple of
an n-fold product fy(21) - ..." fa(zn) Where each f; is an eigenfunction for D;. We show how these
functions can be thought of as k-sums of characters on an associated abelian monoid. This allows:
one to use the results of [DG 89] to solve interpolation problems for k-sparse sums of functions
which, at first glance, do not seem to be characters.

Let R, A;,...,An, and Dy,...,D, be as above. For each A € R and 1 < i < n, define the
A-eigenspace A} of D; by
A = {f € A |Dif = Af}.

For every 1 < i < n we fix some subset S; C R. Furthermore, we suppose that

a) for each i, 1 < i < n, and each ) € 5;, we are given an eigenfunction 0 # f} € A} such that
Af\ = Rfi}v and,
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b) a point ag € R is given such that for cach1, 1 2 i < n, and each A € S, we have f}(ao) # 0.

Let Xy,..., Xn be variables and let A be the R-algebra of functions from R™ to R generated by
products of the form g1(X:1)-...- gn(Xn) where g, € A, 1 <1 & n, We can extend the operators
D, to operators on A (which we denote again by D) by setting

Dr(gl{xl) * oy Qn(Xn)) =M f.'f;} e s -_’Jx--‘.(-Y.-:}{D:fis}(—ri)gi-n(xiﬂ] T 'Qn(Xn)-

For an integer k > 1, we say that a function f € A is k-sparse (with respect to Dy,...,Da and

BiymrsrDay ik = z ¢;f, where ¢, € R and each f; = H £.*7(X;) for some A'J € S;. Consider
1<5<*% 1<i4n

the following examples:

Example 1. Let R = Z, the integers, and, for each i, 1 < i< n, let A; C Q [X] consists of
all polynomials with rational coefficients that map the integers to the integers. For 1 <1 < n, set
D, = XA where (Af) = f(X) - f(X - 1) and let S, = Z »o, the non-negative integers. For each
0 # )\ € 5; we can take [l (‘E) = ‘Y{x"‘)"i!(x*)ﬂ' and also f2 = 1. In this case

_ - "‘){1 . ‘,,4Yﬂ
A—{flf—%*';fijttf\l) l\Aﬂ)}

where this sum is over a finite set of A = (A;,...,As) 2nd ¢y € 2Z. One can show that A coincides
with the subring of Q [X1,...,Xn] consisting of all polynomials mapping Z® — Z (for n = 1,
this can be found in [S 65]; one can prove the result for > 1 uzing the ideas in [S 65] and double

induction, first on n and then on the degree of a polynomial in X,). ®)

Example 2. Let R be an integral domain with Z C R and for each 1, let A, = R{X]. Let

P, ..., Pn be pairwise distinct primes, let (D;f)( X} = f{p:X) for fe A andlet @y = 1. Foseachs,
1<i<n,letS;= {pl;7 | j € Z>o} and let ffi = X?. In this case A = R[Xy,...,X,] and k-sparse
functions correspond to k-sparse polynomials. o

Example 3. Let R = C, the complex numbers and let 4; = R[ex,c‘x] foreachi, 1 <1< n.
Foreachi,1<i< n,setD; = E‘"jf and let S; = Z. Foreach 0 # A € S;, we can take f.—Jt = ¢*X and

let ag = 0. In this case
A= {f ' f e Zc.ﬂh’rﬁ' ‘+A..X..}
A

where this sum is over a finite set of A in Z" and cp € Z, that is A is the set of finite fourier series.

r—

A similar example can be constructed over IR, the real numbers. s

Example 4. One can combine examples 2 and 3. Let n = 2. Let A; = R[X] with D; = p1 X
as in example 2 and let A; = R[eX,e~X] with D, = d};_.- Let §; = {p'; |j € Z>o}, ff’-" — X7 and
Sy = Z, f} = ¢*X. In this case,

A={f|f=Y cXieX}

where the sum is over a finite subset of Z 0 X Z. o

Example 5. Let A be an infinite cyclic monoid generated by a and let K be a field. Let
R=K[A]={r|r= an"} where this sum is finite and ¢; € K. With the obvious addition and
20




multiplication, R is an int:gral domain. If x is 2 character on 4, then x defines a function on R
satisfying Y(Y c,a') = T eax(a’). Letn=1landlet A = {f|f = 2. djx; where x; is a character
of Aandd, € K }. For f = 3 d)x; € A, andr € R, we let f(») = S d;x;(r). In this way A is an
R-algebra of functions on R. Let (D;f)(x) = f(ax) and 5, = K - {0}. For each A € §; we may
take f} to be the character defined by fia) = A. Finally, we let ag = a°. In this case A = A;, and

-

k-sparse functions correspond to k-sums of characters (cf. [DG 89|, Introduction). o

We now return to the general situation. We are interesied in computational questions involving
k-sparse functions in A. We assume that a function f € A is given by a black box that allows
to calculate f(ao) and (D f)(ap) for 1 < i < nandail j 2 1 (D{f = D(D(...(Df)...) where
D is iterated j times). In example 1, this means that we can calculate f(-my,...,~my) for all
m; € Zso. In example 2, this means we can calculate f{p"",... ,prn) for all m; € Z~o. In these
two examples our assumption would be satisfied if we had black boxes to calculate the values of
f in Z". In example 3, our assumption implias that we cnn calculate (E%IJ(O) for all
m; € Z-o. In general we shall show that the techniques of (DG 89] can be used to decide, given a
black box (as above) for a k-sparse function f € A, if f is identically zero and to interpolate this
function, i.e. to find the A, ; and ¢;. To do this we must interpret f as a k-sparse sum of monomial
characters on a monoid.

Let A be the subalgebra of HOMg{ A, A) generated over R by Dy,...D, . We consider A as a

multiplicative monoid. Let F be the quotient field of f. Each element f € A yields a function J on
A defined by . . _
O rsDR,... D) =Y ry DY, .. Dir F)(00).

Foreach i, 1 <i < n and each A € S; we define an F valued character f* on A by

1 o

oy
i

f,;‘(du)‘

fr=

A k-sparse

f= 3 o I £

1<j<k  1<&ign

on A corresponds to a k-sparse sum of monomial characters

; Ai FAi

f= Y (Il £i7@) IT £*)

1<j<k  1<ign 1<i<n
on A. Therefore deciding if f is identically zero and interpclating are equivalent to the same probleins
for f.
In example 2, the submonoid U of 4 generated by Dy, ... D, is abelian of rank n, so the comu 2.1ts

in the second paragraph of section 2 of (DG 89] apply and we can conclude that we can reduce to

a cyclic monoid. In general, we cannot guarantee the existence of such a submonoid of A bul we
can guarantee the existence of k-distinction sets for the set of monomial characters, if the ring [ s

infinite or contains GF(PT]‘?S,(";’}'I) if R is finite of characteristic p # 0 (c.f. [GKS 88], [DG &si).

Lemma For any k, n, one can construct vectors {2y,..., ¢, in R” with £y = (%’.. suck tnat
for any vectors Ay,...,Ax € R" there exists a j, 1 < j < tg for which A;- Q; # A, §2; for an
1 <1 < r < k. Furthermore, if char(R) = 0 then the entries of ;,..., 1, can be natural nurit~:



3“
less than k2n. If char(R) = p and GF(pp"“r(lF”) C R then the entries of Qy,..., 0, can be chosen
]’I
from GF(plesr(*z*)1),

Proor. Consider first the case char(R) = 0. Let ¢ be a prime number with ['—‘%—’—‘} < g < kn
(which exists by Bertrand’s postulate) and define an integer matrix

Q= (W:j) 1<1<n

1<5<t

where 0 < w;j < ¢ and such that w;; = j'(mod g). Note that each nxn submatrix of O is nonsingular
becanse such a matrix is a Vandermonde matrix mod ¢. As {),...,Q, we can take the elements
of . For each pair 1 <1 < r < s, there exist at most (n — 1) vectors among Ry,..., N, whick are
orthogonal to (A; — A,). Therefore, among 9;,...,:, cne can find a vector not orthogonal to all
the differences A; — A, (c.f. Lemma 2.3 [DG 89]).

If char(R) = p, the proof is similar using the matrix

(a;) 11€n
1g1%io

1 hl
where a; € R are pairwise distinct. If GF(pﬂWr(l&"‘L) C R we can chose a, from the latter Sald.

O
From this lemma, we see that the elements Dy, ..., Dy, where
n
0%
Dy=) wi;Dy,
3=1

form a k-distinction set. Therefore one can use the techniques of section 1 of [DG 89] to de.=iop
zero testing and interpolation algorithms in our setting. Conversely, example 5 shows that results
developed in this setting can be transfered to results about characters on infinite cyclic moroiz's.
For example, in example 3, the matrix My of Theorem 1 of [DG 89] arises naturally as a Wronskian
matrix associated with solutions of a linear differential equation. This observation perhaps explaias
the somewhat mysterious appearance of ideas from BCH codes in this subject.
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