THE INTERPOLATION PROBLEM FOR k-SPARSE SUMS OF EIGENFUNCTIONS OF OPERATORS

DIMA YU. GRIGORIEV
STEKLOV INSTITUTE OF MATHEMATICS
SOV. ACAD. OF SCIENCES
LENINGRAD 191011

MAREK KARPINSKI *
DEPT. OF COMPUTER SCIENCE
UNIVERSITY OF BONN
5300 BONN 1

MICHAEL F. SINGER †
DEPT. OF MATHEMATICS
N.C. STATE UNIVERSITY
RALEIGH, NC 27695

In [DG 89], the authors show that many results concerning the problem of efficient interpolation of k-sparse multivariate polynomials can be formulated and proved in the general setting of k-sparse sums of characters of abelian monoids. In this note we describe another conceptual framework for the interpolation problem. In this framework, we consider R-algebras of functions A_1, \ldots, A_n on an integral domain R, together with R-linear operators $\mathcal{D}_i: A_i \to A_i$. We then consider functions f from R^n to R that can be expressed as the sum of k terms, each term being an R-multiple of an n-fold product $f_1(x_1) \cdot \ldots \cdot f_n(x_n)$ where each f_i is an eigenfunction for \mathcal{D}_i . We show how these functions can be thought of as k-sums of characters on an associated abelian monoid. This allows one to use the results of [DG 89] to solve interpolation problems for k-sparse sums of functions which, at first glance, do not seem to be characters.

Let R, A_1, \ldots, A_n , and D_1, \ldots, D_n be as above. For each $\lambda \in R$ and $1 \le i \le n$, define the λ -eigenspace A_i^{λ} of D_i by $A_i^{\lambda} = \{ f \in A_i \mid D_i f = \lambda f \}.$

For every $1 \leq i \leq n$ we fix some subset $S_i \subset R$. Furthermore, we suppose that

a) for each $i, 1 \le i \le n$, and each $\lambda \in S_i$, we are given an eigenfunction $0 \ne f_i^{\lambda} \in A_i^{\lambda}$ such that $A_i^{\lambda} = Rf_i^{\lambda}$, and,

^{*}Supported in part by Leibnis Center for Research in Computer Science, by the DFG Grant KA 673/2-1, and by the SERC Grant GR-E 68297.

Supported in part by NSF Grant DMS - 8803109.

b) a point $a_0 \in R$ is given such that for each $i, 1 \le i \le n$, and each $\lambda \in S_i$, we have $f_i^{\lambda}(a_0) \ne 0$.

Let X_1, \ldots, X_n be variables and let \mathcal{A} be the R-algebra of functions from \mathbb{R}^n to R generated by products of the form $g_1(X_1) \cdot \ldots \cdot g_n(X_n)$ where $g_i \in \mathcal{A}_i$, $1 \leq i \leq n$. We can extend the operators \mathcal{D}_i to operators on \mathcal{A} (which we denote again by \mathcal{D}_i) by setting

$$\mathcal{D}_{i}(g_{1}(X_{1})\cdot\ldots\cdot g_{n}(X_{n}))=g_{1}(X_{1})\cdot\ldots\cdot g_{i-1}(X_{i-1})(\mathcal{D}_{i}g_{i})(X_{i})g_{i+1}(X_{i+1})\cdot\ldots\cdot g_{n}(X_{n}).$$

For an integer $k \geq 1$, we say that a function $f \in \mathcal{A}$ is k-sparse (with respect to $\mathcal{D}_1, \ldots, \mathcal{D}_n$ and S_1, \ldots, S_n) if $f = \sum_{1 \leq j \leq k} c_j f_j$ where $c_j \in R$ and each $f_j = \prod_{1 \leq i \leq n} f_i^{\lambda_{i,j}}(X_i)$ for some $\lambda^{i,j} \in S_i$. Consider the following examples:

Example 1. Let $R = \mathbb{Z}$, the integers, and, for each $i, 1 \le i \le n$, let $A_i \subset \mathbb{Q}[X]$ consists of all polynomials with rational coefficients that map the integers to the integers. For $1 \le i \le n$, set $\mathcal{D}_i = X \triangle$ where $(\triangle f) = f(X) - f(X - 1)$ and let $S_i = \mathbb{Z}_{\ge 0}$, the non-negative integers. For each $0 \ne \lambda \in S_i$ we can take $f_i^{\lambda} = {X \choose \lambda} = \frac{X(X-1) \cdots (X-\lambda+1)}{\lambda!}$ and also $f_i^0 = 1$. In this case

$$\mathcal{A} = \{ f \mid f = c_0 + \sum_{\Lambda} c_{\Lambda} \begin{pmatrix} X_1 \\ \lambda_1 \end{pmatrix} \cdot \ldots \cdot \begin{pmatrix} X_n \\ \lambda_n \end{pmatrix} \}$$

where this sum is over a finite set of $\Lambda = (\lambda_1, \dots, \lambda_n)$ and $c_{\Lambda} \in \mathbb{Z}$. One can show that A coincides with the subring of $\mathbb{Q}[X_1, \dots, X_n]$ consisting of all polynomials mapping $\mathbb{Z}^n \to \mathbb{Z}$ (for n = 1, this can be found in [S 65]; one can prove the result for n > 1 using the ideas in [S 65] and double induction, first on n and then on the degree of a polynomial in X_n).

Example 2. Let R be an integral domain with $\mathbb{Z} \subset R$ and for each i, let $A_i = R[X]$. Let p_1, \ldots, p_n be pairwise distinct primes, let $(\mathcal{D}_i f)(X) = f(p_i X)$ for $f \in A_i$ and let $a_0 = 1$. For each i, $1 \le i \le n$, let $S_i = \{p_i^j \mid j \in \mathbb{Z}_{\ge 0}\}$ and let $f_i^{p_i^j} = X^j$. In this case $A = R[X_1, \ldots, X_n]$ and k-sparse functions correspond to k-sparse polynomials.

Example 3. Let $R = \mathbb{C}$, the complex numbers and let $A_i = R[e^X, e^{-X}]$ for each $i, 1 \le i \le n$. For each $i, 1 \le i \le n$, set $D_i = \frac{d}{dX}$ and let $S_i = \mathbb{Z}$. For each $0 \ne \lambda \in S_i$, we can take $f_i^{\lambda} = e^{\lambda X}$ and let $a_0 = 0$. In this case

 $\mathcal{A} = \{ f \mid f = \sum_{\Lambda} c_{\Lambda} e^{\lambda_{1} X_{1} + \ldots + \lambda_{n} X_{n}} \}$

where this sum is over a finite set of Λ in \mathbb{Z}^n and $c_{\Lambda} \in \mathbb{Z}$, that is A is the set of finite fourier series. A similar example can be constructed over \mathbb{R} , the real numbers.

Example 4. One can combine examples 2 and 3. Let n = 2. Let $A_1 = R[X]$ with $D_1 = p_1 X$ as in example 2 and let $A_2 = R[e^X, e^{-X}]$ with $D_2 = \frac{d}{dX}$. Let $S_1 = \{p_1^j \mid j \in \mathbb{Z}_{\geq 0}\}, f_1^{p_1^j} = X^j$ and $S_2 = \mathbb{Z}, f_2^{\lambda} = e^{\lambda X}$. In this case,

$$\mathcal{A} = \{ f \mid f = \sum c_{i,j} X_1^i e^{jX_2} \}$$

where the sum is over a finite subset of $\mathbb{Z}_{\geq 0} \times \mathbb{Z}$.

Example 5. Let A be an infinite cyclic monoid generated by a and let K be a field. Let $R = K[A] = \{r \mid r = \sum_{i \geq 0} c_i a^i\}$ where this sum is finite and $c_i \in K$. With the obvious addition and

multiplication, R is an integral domain. If χ is a character on A, then χ defines a function on R satisfying $\chi(\sum c_1 a^i) = \sum c_1 \chi(a^i)$. Let n = 1 and let $A_1 = \{f \mid f = \sum d_j \chi_j \text{ where } \chi_j \text{ is a character of } A \text{ and } d_j \in K \}$. For $f = \sum d_j \chi_j \in A$, and $r \in R$, we let $f(r) = \sum d_j \chi_j(r)$. In this way A is an R-algebra of functions on R. Let $(\mathcal{D}_1 f)(\chi) = f(a\chi)$ and $S_1 = K - \{0\}$. For each $\chi \in S_1$ we may take f_1^{χ} to be the character defined by $f_1^{\chi}(a) = \chi$. Finally, we let $a_0 = a^0$. In this case $A = A_1$, and k-sparse functions correspond to k-sums of characters (cf. [DG 89], Introduction).

We now return to the general situation. We are interested in computational questions involving k-sparse functions in A. We assume that a function $f \in A$ is given by a black box that allows to calculate $f(a_0)$ and $(\mathcal{D}_i^j f)(a_0)$ for $1 \leq i \leq n$ and all $j \geq 1$ $(\mathcal{D}_i^j f = \mathcal{D}(\mathcal{D}(\dots(\mathcal{D}f)\dots))$ where \mathcal{D} is iterated j times). In example 1, this means that we can calculate $f(-m_1,\dots,-m_n)$ for all $m_i \in \mathbb{Z}_{>0}$. In example 2, this means we can calculate $f(p_1^{m_1},\dots,p_n^{m_n})$ for all $m_i \in \mathbb{Z}_{>0}$. In these two examples our assumption would be satisfied if we had black boxes to calculate the values of f in \mathbb{Z}^n . In example 3, our assumption implies that we can calculate $(\frac{\partial^{m_1+\dots+m_n}}{\partial X_1^{m_1}\dots\partial X_n^{m_n}}f)(0)$ for all $m_i \in \mathbb{Z}_{>0}$. In general we shall show that the techniques of [DG 89] can be used to decide, given a black box (as above) for a k-sparse function $f \in A$, if f is identically zero and to interpolate this function, i.e. to find the $\lambda_{i,j}$ and c_j . To do this we must interpret f as a k-sparse sum of monomial characters on a monoid.

Let A be the subalgebra of $HOM_R(A, A)$ generated over R by $\mathcal{D}_1, \dots \mathcal{D}_n$. We consider A as a multiplicative monoid. Let F be the quotient field of R. Each element $f \in A$ yields a function \hat{f} on A defined by

 $\hat{f}(\sum r_J \mathcal{D}_1^{j_1}, \dots \mathcal{D}_n^{j_n}) = \sum r_J \mathcal{D}_1^{j_1}, \dots \mathcal{D}_n^{j_n} f)(a_0).$

For each $i,\,1\leq i\leq n$ and each $\lambda\in S_i$ we define an F valued character \hat{f}_i^λ on A by

$$\hat{f}_i^{\lambda} = \frac{1}{f_i^{\lambda}(a_0)} \tilde{f}_i^{\lambda}.$$

A k-sparse

$$f = \sum_{1 \le j \le k} c_j \prod_{1 \le i \le n} f_i^{\lambda_{i,j}}$$

on A corresponds to a k-sparse sum of monomial characters

$$\hat{f} = \sum_{1 \leq j \leq k} c_j \left(\prod_{1 \leq i \leq n} f_i^{\lambda_{i,j}}(a_0) \right) \prod_{1 \leq i \leq n} \hat{f}_i^{\lambda_{i,j}} \right)$$

on A. Therefore deciding if f is identically zero and interpolating are equivalent to the same problems for \hat{f} .

In example 2, the submonoid U of A generated by $\mathcal{D}_1, \ldots \mathcal{D}_n$ is abelian of rank n, so the comments in the second paragraph of section 2 of [DG 89] apply and we can conclude that we can reduce to a cyclic monoid. In general, we cannot guarantee the existence of such a submonoid of A but we can guarantee the existence of k-distinction sets for the set of monomial characters, if the ring R is infinite or contains $GF(p^{\lceil \log_p(\frac{s^2n}{2}) \rceil})$ if R is finite of characteristic $p \neq 0$ (c.f. [GKS 88], [DG 89]).

Lemma For any k, n, one can construct vectors $\Omega_1, \ldots, \Omega_{t_0}$, in R^n with $t_0 = \lceil \frac{k^2 n}{2} \rceil$, such that for any vectors $\Lambda_1, \ldots, \Lambda_k \in R^n$ there exists a $j, 1 \leq j \leq t_0$ for which $\Lambda_l \cdot \Omega_j \neq \Lambda_r$ Ω_j for all $1 \leq l < r \leq k$. Furthermore, if char(R) = 0 then the entries of $\Omega_1, \ldots, \Omega_{t_0}$ can be natural numbers

less than k^2n . If $\operatorname{char}(R) = p$ and $\operatorname{GF}(p^{\lceil \log_p(\frac{k^2n}{2}) \rceil}) \subset R$ then the entries of $\Omega_1, \ldots, \Omega_{t_0}$ can be chosen from $\operatorname{GF}(p^{\lceil \log_p(\frac{k^2n}{2}) \rceil})$.

PROOF. Consider first the case char(R) = 0. Let q be a prime number with $\lceil \frac{k^2n}{2} \rceil \le q \le k^2n$ (which exists by Bertrand's postulate) and define an integer matrix

$$\Omega = (\omega_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le t_0}}$$

where $0 \le \omega_{ij} \le q$ and such that $\omega_{ij} \equiv j^i \pmod{q}$. Note that each $n \times n$ submatrix of Ω is nonsingular because such a matrix is a Vandermonde matrix mod q. As $\Omega_1, \ldots, \Omega_{t_0}$ we can take the elements of Ω . For each pair $1 \le l < r \le s$, there exist at most (n-1) vectors among $\Omega_1, \ldots, \Omega_{t_0}$ which are orthogonal to $(\Lambda_l - \Lambda_r)$. Therefore, among $\Omega_1, \ldots, \Omega_{t_0}$ one can find a vector not orthogonal to all the differences $\Lambda_l - \Lambda_r$ (c.f. Lemma 2.3 [DG 89]).

If char(R) = p, the proof is similar using the matrix

$$(\alpha_j^i)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq i_0}}$$

where $\alpha_j \in R$ are pairwise distinct. If $GF(p^{\lceil \log_p(\frac{k^2n}{2}) \rceil}) \subset R$ we can chose α_j from the latter field.

From this lemma, we see that the elements D_1, \ldots, D_{t_0} , where

$$D_i = \sum_{j=1}^n \omega_{ij} \mathcal{D}_j,$$

form a k-distinction set. Therefore one can use the techniques of section 1 of [DG 89] to develop zero testing and interpolation algorithms in our setting. Conversely, example 5 shows that results developed in this setting can be transferred to results about characters on infinite cyclic monoids. For example, in example 3, the matrix M_k of Theorem 1 of [DG 89] arises naturally as a Wronskian matrix associated with solutions of a linear differential equation. This observation perhaps explains the somewhat mysterious appearance of ideas from BCH codes in this subject.

References

- [DG 89] Dress, A., Grabmeier, J., The Interpolation Problem for k-sparse Polynomials and Couracter Sums, Advances in Applied Mathematics, to appear.
- [GKS 88] Grigoriev, D.Yu., Karpinski, M., Singer, M., Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields, University of Bonn, Research Report No. 8523-CS, 1988.
- [S 65] Serre, J.P., Algèbre Local-Multiplicités, Lecure Notes in Mathematics Vol. 11, Springer Verlag, New York, 1965.