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This paper is concerned with structural and algorithmic aspects of cer-
tain R-bases in polynomial rings R[X;;] over a commutative ring R with
1. These bases are related to standard tableaux. We shall examine the
main tools in full detail: (symmetrized) bideterminants, Capelli op-
erators, hyperdominance, and generalized Laplace’s expansions. These
tools are then applied to the representation theory of symmetric groups.
In particular, we present an algorithm which efficiently computes for ev-
ery skew module of a symmetric group an R-basis which is adapted to a
Specht series. This result is a constructive, characteristic-free analogue
of the celebrated Littlewood-Richardson rule. This paper will serve
as the basis for a possible generalization of that rule to more general
shapes.

1 Introduction

This paper is concerned with structural and algorithmic aspects of bases in
polynomial rings, which are related to standard tableaux. It is closely related
to the works of Doubilet et al. (1974), Désarménien et al. (1978), De Concini
et al. (1980) and Clausen (1979,1980). For historical remarks the interested
reader is referred to these papers.

To be more specific let R be a commutative ring with unit element 1 il
The polynomial ring R[X;;] is a free R-module. Its most commonly used-
R-basis consists of (normalized) monomials in the indeterminates Xi; (4,5 €
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N := {1,2,...}). In this paper we study other R-bases, which seem to be ap-
propriate for tackling a number of structural and algorithmic problems, e.g. in
invariant theory, representation theory, algebraic geometry, commutative alge-
bra, physics and chemistry; see the references for more information. The bases
in question are closely related to certain pairs of standard tableaux. In fact,
the possible linear transformations from the basis of monomials to the latter
bases can be viewed as linear analogues of the celebrated Robinson-Schensted-
Schiitzenberger-Knuth correspondence in combinatorics, cf. Schensted (1961),

Schiitzenberger (1963), and Knuth (1970).

Surprisingly, the whole subject is essentially based on two tools: gener-
alized Laplace’s expansions and Capelli operators. In this paper we give a
thorough treatment of these tools with emphasis on the group theoretical and
combinatorial background. The Laplace Duality Theorem, cf. section 4, shows
that rather different-looking polynomial expressions in minors of the matrix
(Xi;) can define exactly the same polynomial in R[X]. This result, which ex-
tends and simplifies the generalized Laplace’s expansions in Désarménien et
al. (1974), Clausen (1980a) and (1980b), is the basis of several straightening
formulae and determinantal identities, cf. Doubilet et al. (1974), Désarménien
(1980), de Concini et al. (1980), and Abhyankar (1988).

Section 3 presents a new approach to Capelli operators, which avoids the
introduction of a set of new (“coloured”) indeterminates, cf. Désarménien et
al. (1978), Clausen (1980b). A closer look at the Capelli operators leads to a
partial ordering of standard tableaux, which we call hyperdominance, since this
ordering is contained in the well-known dominance partial ordering of stan-
dard tableaux. Using hyperdominance, we get stronger results and simplified
proofs. Compared to the dominance partial ordering these facts indicate that
hyperdominance is a more natural “data structure” in this context. Sections 2
and 5 discuss bideterminants and symmetrized bideterminants, and section 6
shows that they are adjoint to each other. '

Finally we apply these tools to representation theory. Besides other possi-
ble applications to the modular representation theory of classical groups, see
e.g. Clausen (1979), (1980b), Green (1980), Golembiowski (1987), and Pit-
taluga & Strickland (1988), we concentrate on the decomposition of certain
cyclic RS,-modules. More precisely, let G be a finite permutation group. Then
G acts on R[Xj;] as a group of R-algebra automorphisms via 7 X;; := X(,;-
For a number of classical groups and suitable rings R parts of the bases men-
tioned above reflect on one side the structure of simple RG-modules. On the
other side, the right hand indices, 7, in the X;; help via the Laplace Duality
Theorem to systematically generate combinatorial structures, which count the
multiplicities of the simple constituents. This program works for various series
of classical groups and will be illustrated by one example: the series of sym-



metric groups. Section 8 describes the simple modules for symmetric groups as
Specht modules. Combining all the tools mentioned above, we can construct
for every skew RS,-module an R-basis that is adapted to a Specht series of
this module. Section 9 presents the relevant proofs and section 10 describes
an algorithm (joint work with F. Stotzer) which efficiently generates such a
basis for every skew module. This makes results of James (1977), James &
Peel (1979), and Zelevinsky (1981a) more precise. Qur results will serve as the
basis for a possible generalization of the Littlewood-Richardson rule to more
general shapes, see Clausen & Grabmeier (1990), including a revision of the
notion of standardness.

The structure of skew modules is closely related to the Clebsch-Gordan co-
efficients in quantum physics, see e.g. Dirl & Kasperkovitz (1977), to the mul-
tiplication of Schur functions, see e.g. Macdonald (1979) and Stanley (1971)
as well as to the Schubert calculus, see e.g. Stanley (1977).

?

To make this paper essentially self-contained we give a brief introduction
to the ordinary representation theory of finite groups in section 7. We start
discussing several fundamental concepts, which will frequently be used in later
sections. The polynomial ring Z[X] := Z[X,; : 4,5 € N] or suitable scalar
extensions will serve as the universe where all our considerations will take
place.

2 Bideterminants

In this section we describe a remarkable Z-basis of Z[X] consisting of stan-
dard bideterminants. Bideterminants are power products in minors of the
matrix (X;;). Such a power product of minors is denoted by writing the fac-
tors along successive columns:

218 122 1 2
(lg 51 ) - (?Ié)-(; ;)-(812)

X X X12 Xll X14
= det ( X21 X28 ) - det ng Xgl X24 : ng.
s X3z Xz Xag

We prepare a more formal definition of bideterminants: Let A be a finite
subset of N x N. A mapping T: A — N is called a tableau of shape A (or, an
A-tableau) of content (|T-'{1}(,|T-1{2}|,...). As usual, we think of T as an
A-shaped matrix (2;;), where for (7, j) € A, t;; := T((i,5)) is the entry in row
¢ and column j. AN ({1} x N) and AN (N x {j}) are the i-th row and j-th



column of A, respectively. Sym(A) denotes the symmetric group on A, H(A) ~
[1; Sym(:—th row of A) is the subgroup of all horizontal permutations of A, its
counterpart is V(A) =~ []; Sym(j—th column of A), which is the group of all
vertical permutations on A. An A-bitableau of content (o, 8) is a pair, (S,T),
of A-tableaux such that o = content(S) and 8 = content(T"). We call {S|T'} :=
[laea X's(a),7(a) the natural monomial and (S|T) := ¥,cy(a)sgn(o) {Soo|T}
the bideterminant corresponding to the A-bitableau (S,T). We summarize

some simple facts.

Lemma 2.1 Let (S,T) and (U,V) be bitableaux of shapes A and B, respec-
tively. Then

(a) {S|T'} = {U|V} if and only if there is a bijection p: A — B such that
(Uowp,Voyp)=(ST).
(b) {Soc|T} ={S|T oo™}, for all o € Sym(A).

(c) Yoev(a)sgn(a){Soo|T} = (S|T) = Yrev(a) sgn(T){S|T o 7}.

(d) (S|T) = [1;(S?|T9), where the factor (S7|T7) denotes the bideterminant
=minor) corresponding to the j-th columns of S and T.

(e) (Soo|T o) =sgn(or)(S|T), for all 0,7 € V(A).

(f) (SIT) # 0 off all S7 and all T¢ are injective. (In that case S and T are

called column-injective. ) o

An A-tableau S is called standard iff A is a diagram (i.e. if (3,j) € A then
(¢,5) € Aforalll1 < ¢ < iand1 < j' < j§), and the entries in S are
weakly increasing from left to right in each row, and strictly increasing from
top to bottom in each column. A bitableau (S,T) is standard, iff both S
and T are standard: By definition, the empty bitableau is standard, and

{010} = (09) :=

Example.
(1 1 2 4 2 3 3 5)
2 3 5 , 4 5 5
1s a standard bitableau of content (e, 8) = ((2,2,1,1,1),(0,1,2,1, 3)). o

For a proof of the following crucial result the reader is referred to Désarménien
et al. (1978). This result is due to Mead (1972), although parts or variants of
it can be traced back to the works of Young, Turnball, Hodge, Igusa, among
others.



Theorem 2.2 The bideterminants corresponding to all standard bitableaur
form a Z-basis of Z[X]. o

Later on we will need local versions of this theorem adapted to the following
direct decomposition of Z[X] into Z-submodules Z,4 of finite rank:

2X] = @ 2(Xl: = DD Z.s.
d>0 420 o8

Here, Z[X]y is the space of all d-homogeneous polynomials, and for non-
negative integral sequences o = (o, ,...) and 8 = (8, B,...) satisfying
lo| := Y a; = d = ||, we define Z,3 to be the Z-span of all monomials
Xy oo - Xiyj, of content (o, f) ,ie. ((i1,...,14), (j1,...,Jq)) is a bitableau
of content (e, 5). We describe a Z-basis of Z,5: If M, denotes the (finite) set
of all non-negative integral matrices with row (resp. column) sums ay, as, . ..
(resp. B1,B:...), then the monomials X := []X[;” corresponding to the
elements M = (m;;) in My, form a Z-basis of Z,4. If SBT(a, 8) denotes the
set of all standard bitableaux of content (e, 8), and SBD(a, ) the correspond-
ing set of bideterminants, then the local version of the above theorem gives a
second Z-basis of Z,s.

Theorem 2.2 (local version) The bideterminants corresponding to all stan-
dard bitableauz of content (a,B) form a Z-basis of Z,p, for short: Log =
(SBD(ev, 8))), -

Observe that all results of this section remain valid if Z is replaced by any
commutative ring R. In particular, Ryp = ((SBD(e, 8))) .

Example. o =(2,3), 8= (1,1,3).

101 110
012 003

y X y X

0023 + 011
111 102

Ly = (X", X D2

1122 | 1333 1122 | 1233
(((11222|12333),(2 ’2 )(2 ’3 )

(2 |5

Il

According to the last theorem every bideterminant (U|V) € Z,4 can uniquely
be written as a Z-linear combination of standard bideterminants:

(Ulv) = > astouv (S|T).
(8, T)eSBT(e,8)
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The coefficients asryy € Z have been called straightening coefficients. A
problem which will frequently occur is to have a priori information about
the (non-)vanishing of these straightening coefficients. The next section is
concerned with this problem.

3 Capelli Operators

Let us first survey the content of this section: With every A-bitableau (S,T) we
associate the so-called Capelli operator Csr € Endz(Z[X]4), d = |A|. A closer
look at the Capelli operators leads to a relation J on the set of bitableaux
which is reflexive and antisymmetric when restricted to standard bitableaux.
Hence its transitive closure J* is a partial ordering on the set of all standard
bitableaux, the so-called hyperbidominance. Capelli operators, bideterminants
and hyperbidominance are related by various fundamental properties; for the
moment let us mention the following:

Cs(S[T) #0 (1)

Csr(UIV) £ 0= (5, T) (U, V), 2)
for all (5,7),(U,V) € SBT(e, 3).

These properties already guarantee the linear independence of the standard

bideterminants, for if 0 = ¥y v)espr(asy avv (U|V) is a non-trivial linear

relation, then the finite, non-empty set {(U,V)|ayy # 0} has a J -maximal

element (S, T). Applying Csr to the last identity, using then (1), (2) and the
-maximality of (S5, T'), we get the following contradiction:

0= Z GUVcST(U|V) = aSTCST(S|T) 7& 0.

wy)

This shows that the linear independence of SBD(«, 8) is a simple consequence
of (1) and (2).

Next we introduce a class of operators, which will play a dominant role in the
sequel. All Capelli operators are contained in this class.

For every matrix D = (d;;) with non-negative integral entries summing up to
d, we define a left operator Lp and a right operator Rp in End;(Z[X],) as
follows. If (U, V) is an A-bitableau, |A| = d, then



I{UIV} = % {S|V}

SeSubp (V)

{UIViRp == > {U|T},
T€Subp(V)
where

Subp(U) = {S: A = N|V¥i,j : di; = |S™ i} n U{5)}

is the set of all D-substitutes of U. Lp (resp. Rp) is called the left (resp.
right) D-substitution. If Subp(U) = 0, then Lp{U|V} = {V|U}Rp := 0.
Less formally, for an A-tableau U, Subp(U) is the set of all A-tableaux which
result from U by replacing for all ¢ and j in a simultaneous and disjoint manner
di; entries j in U by 4. In particular, Subp(U) = 0, unless U is of content
(e, @,...), where a; = ¥, d;;. Lp and Rp are well-defined, for if {UlV} =
{W|Z} for a B-bitableau (W, Z), then, by Lemma 2.1, W = U o ¢ and Z =
V o for a suitable bijection ¢. A straightforward computation then shows
that Subp(U o ¢) = Subp(U) o ¢. The cardinality of Subp(U/) is a product of
multinomial coefficients:

U=} )
Subp(U)| = | .
subo@)| =TT ( 0,6
(Since the group []; Sym (U~'{j}) acts transitively on Subp(U) and the sta-
bilizer of § € Subp(U) is isomorphic to [T; ; Sym (U~'{5} N S-1{:}) our claim
follows from the orbit formula.)

We next describe the action of D-substitutions on bideterminants.

Lemma 3.1 Lp(U|V)) = £5(S|V) and (VIU)Rp = £5(V|S), where both
summations run over all column-injective elements S in Subp(U). Hence, if
Subp(U) contains no column-injective tableau, then Lp(U|V) = 0 = (VIU)Rp.

Proof. Use Lemma 2.1 (c) and (f). o

Most pairs (D,U) relevant for our purposes share the property that there
exists at most one column-injective tableau in Subp(U). We now describe
those pairs. For a tableau S let D(S) denote the matrix whose (,7)-th entry
equals the number of occurences of j in the i-th row of S: D(S);; := |{i} x
NN S5}



Example.

1133 2020
If S = 234 then  D(S) = | 0111 |.
4 0001

Now if (5,T') is a bitableau then Lp(s) (resp. Rp(s)) is called the left (right)
Capelli operator relative to S and

Csr = Lp(s) o Rpr)

is called the Capelli operator w.r.t. (S, T). For later use we now prove a slightly
generalized version of (1). This generalization is based on the following well-
known

Lemma 3.2 (Sorting Lemma) Let X be a diagram, U a column-strict A-
tableau, i.e. the entries in each column of U are strictly increasing from top
to bottom. Then rearranging the entries in each row of U from left to right in
non-decreasing order yields a standard A-tableau U** the standardization of U.

Example.
12113 11123
34325 st 23345
If Ll = 554 then U = 4455 -
5 5

Proof. We prove the Sorting Lemma by induction on the greatest entry m

in U.
m = 1. Since U is column-strict, we have /' = 1...1 = U*,

m > 1. Since U is column-strict, every m in U is placed at the end of a
suitable column of A. Now ordering the columns of equal length in U according
to their last entry, we get a column-strict A-tableau X such that X* = [/#t,
Let Y denote the “m-free part” of X:



X = |mm row

fm....m T'OIU:E
| p— | — N, ——
#:C #:b #:a

Of course, Y is column-strict as well, and, by the maximality of m, in pro-
ceeding from X to X** the m’s will stay in their positions, i.e. X — X* is
essentially described by ¥ +— Y*, By assumption, Y* is standard, hence
Xt (= U*) is standard as well. o

Now we can prove the first fundamental property of Capelli operators, which
generalizes (1).

Theorem 3.3 Let U and V be column-strict A-tableauz, A a diagram. If
Py: A — N denotes the projection (i,5) — i, then

Low) (UIV) = (R|V)#£0
(UIV) Rpvy = (UIR) #0
Cov UIV) = (B|P) #0.

Proof. By symmetry, it suffices to prove only the first statement. To begin
with, note that for all horizontal permutations ¢ € H(}) we have D(U) =
D(U o o). We refer to the notation of the previous proof.

The rearrangement of the columns of U to get X can be simulated by a suitable
horizontal permutation ¢ € H(A): X = U oo. Hence (U[V) = (X|V oo)
and Lpw) (U|V) = Lpixy (X|V 0 0). If the diagram p denotes the shape
of Y, then, by induction, we can assume that the projection P, is the only
column-injective tableau in Subp(y)(Y). Hence all column-injective tableaux
in Subp(x)(X) are necessarily of the following type



11. 1
e 2
X o O | onuey *
| —
O
< R — *
D —
b
R 2R & T *
S
C

where the a + b+ ... + ¢ #’s have to be replaced by a a’s, b f’s,..., ¢ 7’s.
Obv10usly, P is the only column-injective tableau with’ thls property. Hence
Lowy (UIV) = L) (XIV 00) = (BIV 0.0) = (Pyo o[V} = (B|V) # 0.
Thls completes the proof of Theorem 3.3. _ R -

We now investigate the relation J Tableaux S:A — N and U: B — N are
called row-simslar (S < U) iff for all ¢ the content of the i-th row of S equals

the content of the same row of U. Analogously, one defines column-similarity
(§ T U). Now, by definition, S_TU, iff for some tableau Z, S & Z and Z | U.

If (S, T) and (U, V) are bitableaux then (s T)J(U, V) iff both S_TU and

Example.
11223
3446 = U
5
124 1142
233 323
S = 45 o 54
hence S_JU. ' _ e B o

The relation [ is reflexive but not antisymmetric. Nevertheless, J, when
restricted to the set of standard tableaux, becomes antisymmetric.
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Lemma 3.4 Let S and T be standard tableauz. Then S = T iff S _IT and

T 1.

Proof. “=": trivial.

“<": For an A-tableau U and p,q € N let r,,(U) denote the number of
entries < ¢ in the first p rows of U. Now S « Z | T implies for all p and ¢:
Tpa(S) = rpg(Z) < 1pg(T). This combined with T TS yields r,,(S) = r,o(T),
for all p,¢. Since S and T are standard, this forces § = T. o

The proof uses implicitly the well-known (row) dominance partial ordering <
of standard tableaux: § Q T iff r,o(S) < rpe(T), for all p, g € N. Similarly,
if ¢pq(U) denotes the number of entries < ¢ in the first p columns of U then,
by definition, § is column dominated by T, S 9, T, iff cpe(S) < ¢(T) for all
p, g. Let X' denote the transpose of the diagram /\ As is well known A < p iff
p' QA X, for all diagrams A and g of n. Consequently, for standard tableaux S
and T', both of content y, we have S QAT if T 4, S.

Obviously, T is more restrictive than <. The transitive closure, 1™, of I 8
which is a partial ordering according to Lemma 3.4, will be called hyperdom-
inance. The following figure shows both the domlnance and hyperdominance
partial ordering for a = (2,2,1).

' 11223 . 11223

| e
émz __ 1122 -, 1123,
1123 112/ 11|3
2| 23 22
112 s T2

23 2w,
/\ 3

AN

112 113 11
2 22 22
3 / 3
N
11
22
3

11



The following results indicate the importance of hyperbidominance.

Theorem 3.5 If (S,T) and (U,V) are bitableauz, both of content (o, 3), and
if all oy, B; € {0,1}, then Csy (U|V) # 0 iff (S, TV AU, V), i.e. S U and
T V.

Proof. It suffices to prove that under our assumptions, Lps)(U|V) # 0 iff
8 JU. Since S and U are bijections with common range, Lp(s)(U|V) # 0 iff
for all z, the entries in the i-th row of S are in different columns of U; i.e.
(pry(S7{7}), pra(U1{j})) = j yields a well-defined bijection Z, satisfying
SeZandZ]U,ie. S_IU. g

The second fundamental property of Capelli operators, which is a generaliza-
tion of (2), reads as follows.

Theorem 3.6 For bitableauz (S,T) and (U,V), both of content (, ), the
following is valid:

Lpis) (UlV) #0=> S QU
(UlV) Rpy #0= T IV
Csr (UlV) #0= (S,7)wW,Vv).

Proof. If S is of shape A and U of shape B, then Lpis (U|V) # 0
guarantees the existence of a bijection g: A — B satisfying U o g = S and
|g(:—th row of A)Ny—th column of B| < 1 for all i and y. Hence, if g(i,;) =
(x,y) then g.(¢,7) := (4,y) and ¢.(¢,¥) := (z,y) yield a well-defined factoriza-
tionof g: g =g.0g,. Now, S =Uog=(Uog)og, = Uog, U, ie S_IU.

The next result gives a necessary condition for the non-vanishing of straight-
ening coefficients in terms of hyperdominance. We need some preparations.
By definition, a standard tableau S is hyperdominated by the column-strict
tableau U (S _J"U) iff there exist standard (!) tableaux S,...,S, such that
§=5J7S7... 39 U. Similarly, the standard bitableau (S,T) is hy-
perbidominated by the column-strict bitableau (U,V) iff there exist stan-
dard bitableaux (51,T1),...,(S;,T;) such that S = §; _T... 1S, JU and
T'=n1d... IT. V. Note that hyperbidominance for standard bitableaux,

denoted by J *, is more restrictive than the cartesian product of hyper-
dominance for standard tableaux, since hyperbidominance additionally forces
shape(S;) = shape(T;) for all i.

12



Theorem 3.7 Let A be a diagram, (U,V) a column-strict A-bitableau, and let
(UIV) = £(5,7) standara @sTov (S|T). Then the following holds:

(a) asov £0= (S, 7)., V).
(b) ayastys yy = 1 (Désarmém’en (1980))

Proof. Let (S,T)be a .J-maximal element in the support {W, D)|lawzpv #
0} of (U|V). Applying the Capelli operator Csr to the above formula for
(U|V), we get by the J-maximality of (S, T): Csr (U|V) = asruvCsr(S|T)
# 0. Hence (S, T)d)(U, V). If (W, Z) lies in the support of (U/|V), but is not
I-maximal, then (W, Z) *(8,T), for some J-maximal bitableau in that

support. Thus (W, Z)J*(S, T) (U, V), ie. (W, 2) *(U, V). This proves
the first statement.

The second statement results from Cysyva(U|V) = Cyv(U|V) = (PA|P))
and the remark that no standard tableau W # U* does exist satisfying

Ut Iw 1. o

Corollary 3.8 LetU be a column-strict A-tableau, X a diagram. Then (U|P))
= (U*|P\)+ X s aus(S|Py), for suitable ays € Z. (The sum is over all standard
A-tableauz S which are strictly dominated by the standardization U™ of U.)

4 Laplace Duality

The classical Laplace’s expansions express the determinant of an n-square
matrix as polynomials in certain of its minors. We generalize these results as
well as Rota’s straightening formula (see Doubilet et al. (1974), Désarménien
et al. (1978)) by showing that rather different-looking polynomial expressions
in such minors can define exactly the same polynomial in Z[X ].

Theorem 4.1 (Laplace Duality Theorem) Let (S,T) be an A-bitableau,
¢: A — B a bijection, ¥ := ¢, (§',T") := (S0, T o). Then

(S;lT) = )3 sgn(0)(S 0 o|T)

s€V(B)¥ modV(B)¥nV(4)

= Z sgn(7)(S'[T" o 7) =: (S'|T"; ¢).
TEV(A)? mod V(A)nV(B)

13



(Here, V(B)¥ mod V(B)¥ N V(A) denotes an arbitrary transversal of the left
cosets of V(B)Y N V(A) in V(B)Y :=¢oV(B)oy™.)

Proof. Since both V(B)¥ and V(A) are subgroups of Sym(A), we can form
their complex product V(B)¥-V(A) = {oBorp~loa|8 € V(B),a € V(A)}.
This corresponds under inversion followed by ¢-conjugation to the complex
product V(A)? - V(B). Hence

> sgn(o){Soo|T} = 3 sga(o)}{Sop ! |Top lopos top™}
cEV(B)¥-V(4) 2€V(B)¥ V(4)

= Z sgn(7){Soy|Topor}.

rEV(A)*-V(B)

To complete the proof, we recall that the complex product H - K of two
subgroups H and K of a group G is a disjoint union of certain left cosets of
K in G; more precisely:

H-K= |J &K,

heHmod HNK

the union is over an arbitrary transversal, H mod H N K, of the left cosets of
HNKin H. o

The classical Laplace’s expansions are concerned with the case where B (or
A) has exactly one non-empty column. In that case V(B) = Sym(B) and thus
(S'|T"; ¥) = (S'|T). If in addition both S’ and T” are of content (17) then, up
to a sign, (5'|7") equals the determinant of the generic n-square matrix (X;;).
Applying suitable substitutions of the form {X;;|i,7 € N} — {X,.|p,q €
N} U {0,1} to this special case, one gets the universal determinantal identities
of Abhyankar (1988).

After these remarks, we come back to the Laplace Duality Theorem. To every
bijection t: B — A we now select a particular transversal V(B)¥ mod V(B)¥N
V(A). To this end we totally order the permutations of A and attach to each
coset its smallest element. The total ordering of Sym(A) to be defined below
is based on the following “twisted” total ordering <; of N x N: (a,b) <, (z,y)
fib>yorb=yand a <z. Nowlet A= {ay,...,8,} CN XN, a1 <; a2 <;
.+» <t @n. We order the permutations of A <; -lexicographically according to
their second row: 7 <; o iff there exists an index ¢ such that 7(a;) <; o(a;) and
m(a1) = o(ay1),...,7(ai_1) = o(a;_). In the sequel, if ¥h: B — A is a bijection,
then V(B)¥ mod V(B)¥ N V(A) will always denote the <, -lexicographically
smallest transversal of the left cosets of V(B)¥ N V(A) in V(B)¥. We give a
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more explicit characterization of those transversals. Let A7 and B’ denote the
j-th columns of A and B, respectively. An easy computation then shows that

V(B)¥ mod V(B)¥ N V(A) =
{x eV(B)¥|Vj, k: restricted to (B7) N A* is <t-isoton} =
{r € Sym(A)|Vj, k: m(x(B?)) = (B) and 7 | (¥(B?) N AF) is <-isoton}.

Those permutations are called t-shuffles. Note that the identity, id,, is a
-shuffle for all bijections 1: B — A.

Example.
( 512 1 1 1
g's 2% 2 2
(S;0|T) := 121 108 g2 333
13% 732 3% 4 4 4
\ 113 g4 a8 55 5

(1 5 9 121 114 928 g3
2 6 10 13|2% 338 332 44
= 37 11 413 442 531 =: (5'|T"; ).
\ 4 8 553 552

We illustrate the set V(B)¥ mod V(B)?NV(A) of all ¢-shuffles, which describe
the summation subject to (S;¢|T), as follows:

15| 24 4353’14 3314252 123132151 3141
4 Ve VAR Ve Ve VAR VavaVad vV B

Here, elements between two adjacent double bars can arbitrarily be permuted
as far as all local <¢-monotonicity conditions are satisfied. The above transver-

sal consists of 6-6-6- 1 elements; one of these shuffles is the following permu-
tation:
33

1524|4353 | 14
52

43|15 |24 53 || 33

.

14 42| 23 | 51

42 52 || 23 | 32
32| 31 41

51 " 31 41
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5 Symmetrized Bideterminants

The horizontal group H(A) acts from the right via composition on the set of all
A-tableaux, A a d-subset of N x N. Symmetrized bideterminants are closely
related to the H(A)-orbits. The left and right symmetrized bideterminants
relative to an A-bitableau (U, V) are defined by [U|V) := Cureyoray(U'|V)
and (U|V] := Cyievona)(U|V'), respectively. Symmetrized bideterminants
come into the play very naturally: Let £y (resp. R4) denote the Z-subalgebra
of Endz(Z[X],), generated by all left (resp. right) D-substitutions, where D =
(di;) runs through all non-negative integral matrices satisfying X di; = d.
Then the following holds.

Theorem 5.1 For every d-subset A of NxN and for every A-bitableau (U, V)
we have

Lq-(PalV) = S_AZ Z[S|V)
(UlPa)-Ra = Y Z(U|T],

T:A—-N

where Ly-(P4|V') denotes the cyclic left £L4-module generated by (P4|V). (Re-
call that P4: A — N denotes the projection (i,j) — i.)

Proof. The fact that L;- (P4|V) 2 TsZ[S|V) follows from the equation
[UIV) = Lpwy«(Pa|V), where D(U)* denotes the transpose of D(U) = (d;;)
di; == |{t} x NN .S71{j}, f. section 3.

In order to show that £4- (P4|V) is contained in 3 g Z[$|V), recall that

K

SubD(U o h) = SubD(U) o h._, (3)

for all bijections k of A. Now let (U|V) := Cpena)(U © k|V). Then (U|V) =
[Stab(U)| - [U|V), where Stab(U) denotes the stabilizer of U under the H({A)-
action. Working in Q[X] for the moment, we have for Lp € L

LplU|V) = [Stab(U)”* Lp(U|V)
= [Stab(U)|”" X 2. (Gav)

heH(4) Up€Subp(Uch)
= |Stab(U)]”" T .
Ur€Subp(U)  hEH(A)
|Stab(U7)]|
= [atabiUy)| U V |
UlESquD{U} ISta,b(U)l[ 1| )
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Now, by (3), Stab(U) acts on Subp(U). The stabilizer of U; € Subp(U) under
this Stab(U)-action equals Stab(U) N Stab(U;). Hence

LplU|V) = > [Stab(Uy) : Stab(Uy) N Stab(U)] [U4|V). (4)
U1 €Subp(U) mod Stab(U)
Finally, the index [Stab(U) : Stab(U;) N Stab(U)] lies in Z. o

For certain A-tableaux V, a Z-basis of £, (P4|V) can be specified. We need
some preparations. The set theoretic difference of two diagrams is called a
skew diagram. A tableau T whose shape is a skew diagram is called a skew
tableau. A skew tableau T is called standard iff the entries in each row of T
are weakly increasing from left to right and the entries in each column of T
are strictly increasing from top to bottom.

Example.

1 1
1 2 4 is a standard skew tableau of shape
2 (5,4,1,1)\ (2,1).

Now we can state the main result of this section, which is a variant of the well-
known Gordan-Capelli formula, cf. Doubilet ef al. (1974), Carter & Lusztig
(1974), Clausen (1980a), and Barnabei & Brini (1987).

Theorem 5.2 Let I be an injective tableau whose shape A is a skew diagram.
Then the set of all left symmetrized bideterminants [T|I), T: A — N standard,
ts a L-basis of the module [—|I):= Yy, Z[U|]).

Proof. First we show the linear independence. Suppose, 7 wandard ar[T|I) =
0 is a non-trivial linear relation. Being a finite non-empty set of standard
skew tableaux of shape A, {T|e; # 0} has a J-minimal element T,. Now
[~|I) is a Z-submodule of the space Sy.4_.n Z{U|I}, having all monomials
{U|1},U: A — N, as a Z-basis. (Here we use the injectivity of I.) Expressing
both sides of our non-trivial linear relation in terms of this basis we see that
the coefficient of the monomial {7,|I} w.r.t. the left-hand side of the relation
equals Y r andard T 3 (1,4 5€0(v), where the second summation runs over all
pairs (T”,v) satisfying the following conditions: 7% € T o H(A), v € V(A),
and 7" ov = T,. The last condition implies T, I7,. Since both T and T, are
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standard skew tableaux of shape A, the . [-minimality of T, forces T = T,
as soon as ar # 0. Hence the coefficient of {7,|I} w.r.t. the left-hand side
equals ar,. Combining this with the right-hand side we get ag, = 0; this is a
contradiction and the linear independence is proved.

We now turn to the proof that all [T|I), T standard, generate [—|I) as a Z-
module. Since [U|I) = [U o k|I), for all A € H(A), the module [—|I) is the
Z-linear hull of all [U|I), U being weakly increasing in each row. If U has
this property, but is not standard, we can find the following situation in two
consecutive rows of U:

Here, p := min{: > e|a; > b} and ¢ := max{j|b; < a,}. Note that p > e
implies a,_; < @, since @,y < b,_1 < b, < a,. Now fix an z € N not in
the image of U; e.g. = = 1 4+ max{u;;}. We modify U in these two rows by
replacing every a;, j > p, and every b, [ < ¢, by z. This yields an A-tableau

U Ug; v Bpq Tond FonBond
T Bl E wew B Beeal® gyl

Since no tableau in U’ o H(A) is column-injective, [[’|I) = 0. Denote the
contents of (a,,...,a,), (by,...,b), and the z-free part of U’ by a, 8, and v,
respectively. Let the matrix D be defined by D := ¥, {(o; + ) Eiz + %:Ei)},
where E;; denotes'the indicator matrix of the position (i,7). Using (4), a
straightforward calculation then shows that the trivial identity [U’|I) = 0 is
transformed by the left D-substitution Lp into the following identity:

0 = Lp[U'll) = 3 m(e, 8)Uarpr| D). (5)

a]'ﬁt

The summation in (5) runs over all pairs (o, #') of sequences satisfying o’ +
B=a+p Tiai =r+1-p, and YiBi = q. Uyg results from U’ by
replacing the sequence of all z in the first (resp. second) relevant row of U’ by
the weakly increasing sequence of content o (resp. #). Finally,

(r+a)! (o +5)
ol ol

m(d, ) =

€ Z,
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where 7 := content(a,,...,a,1), ¢ := content(b,4y,...,5,), and 7! :=

mlml... . The case @ = @ and ' = B is of special interest. Since
@p-1 < @p < byyy we have in this case (7 + a)! = rla! and (¢ + 8)! = o!8;
hence m(a,8) = 1. If p = e then » = (0,...,0), and the same reasoning shows

m(e, B) = 1. Altogether this allows us to rewrite formula (5) as follows:

U = = X mled, ) Vasl). 6)

(o' ,8")# (2, 8)
To finish the proof, it suffices to mention that U and all U,z have the same
content and all Uyrgr are row lexicographically smaller than U. Eq. (6) specifies
the fact that a left symmetrized bideterminant [U|I), which is not standard,
can be written as a Z-linear combination of smaller ones having the same
content. Since there are only finitely many A-tableaux of a prescribed content,

this term rewriting process terminates, and the theorem is completely proved.
o

A closer look at the straightening coefficients w.r.t. the above Z-basis of [—|I)
results in the following theorem.

Theorem 5.3 Let U and I be skew tableauz of shape A, and let I be injective.
Then the left symmetrized bideterminant [U|I) is a Z-linear combination of
standard ones [T'|I), where U _T*T, i.c. there exist standard skew tableauz
1y,...T. of shape A such that U Iy T... 1T, =T:

U\ € 3 Z[T|I).
T standard: U, ] T

Proof. According to the last theorem,

U = 3 arlTl), (7)

T standard

for suitable ar € Z. Let T, be a J-minimal element in the support {T|ar #
0}. Comparing the coefficients of the monomial {T,|/} in (7), we get in analogy

to the last proof
D> sgn(v) = ar, # 0,
(U'r"}

where the summation is over all pairs (U, v) such that U’ € U o H(A) and
v € V(A) satisfy U’ ov = T,. Hence U _IT,; since T, is J-minimal, our claim

follows. o
Without proof we mention the following result.
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Theorem 5.4 The left (respectively right) symmeirized bideterminants corre-
sponding to all standard bitableauz form a Q-basis of Q[X].

6 Adjointness

Ordinary and symmetrized bideterminants are adjoint to each other. The goal
of the present section is to make this more precise.

We first recall some notions and facts from algebra. Let V, W be Z-modules.
A symmetric Z-bilinear form f:V x V — 7 is called non-singular iff z +—
(y = f(z,y)) defines an isomorphism V — Homz(V,Z) of Z-modules. If both
VXV - Zand :W x W — Z are non-singular, then to every C €
Homgz(V, W) there exists one and only one C* € Homz(V, W) satisfying ¢ o
(C xidw) = fo(idy x C*). C and C* are called (f, g)-adjoint.

Now we apply this to our situation. For a fixed finite subset A of N x N
let [4:A — N be any injection, and let P,: A — N denote the projection
(¢,7) — 1. We summarize some crucial facts relating the Z-submodules

{-Pa} = 37 Z{S|Pa} and (-|La):= 3 Z(S|La).

S5:A—N S:d—MN
Theorem 6.1

(a) {-|Pa} is a free Z-module. The monomials {S|P,}, S:A — N weakly
increasing in each row, form a Z-basis of {-|P,}.

(b) (-|14) is a free Z-module. The bideterminants (S|I,), S: A — N strictly
increasing in each column, are a 1-basis of (-|14).

(c) (Sl1a) = (S|P4) defines a Z-linear mapping Cy: (-|14) — {-|P4}. (In
fact, Cy is the restriction to (-|I4) of the right Capelli operator w.r.t.
Is.)

(d) {S|Pa} — [S|14) defines a Z-linear mapping C: {-|Pa} — (-|14).

(e) Viewing the Z-bases specified in (a) and (b) as orthonormal bases with
corresponding Z-bilinear forms P: {-|P4}*> - Z and I: (-|I4)? = Z, Cy4
and C} are (P,I)-adjoint. More precisely, for all S, 5": A — N we have

P((S|Pa), {S'|P4}) = > sgn(o)

g€V(A), SoceS'oH(A)
= I((S|1a), [S'114)).
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Proof. The case that A is a skew diagram is proved by Barnabei & Brini

(1987). The results easily generalize to arbitrary A. a
The images
im(Ca) = Y. Z(S|Pa) and im(C%) = > Z[S|1,)
S5:A—N S:A—=N

have been called Schur and Co-Schur module respectively, cf. Barnabei & Brini
(1987). By Theorem 5.1,

im(C3) = Ly - (PalL4).

Restricting im(C4) and im(C%) to that part corresponding to all A-tableaux of
a prescribed content o we get the following local version of the above results.

Corollary 6.2

> Z(5|P4) and S Z[S|L)

S:A—N S:A=N
content(S)=a content{S)=a

are finitely generated free Z-modules of equal rank.

Proof. Recall that submodules of free Z-modules are free as well. Now
the rank of both modules is the rank of the matrix (P((S|Pa), {S'|Pa})) =
(Z((SI1a), [S'|14))), where S (resp. ') ranges over all A-tableaux of content
a, which are strictly (resp. weakly) increasing in each column (resp. row). o

7 Group Representations

The following sections are concerned with applications to representation the-
ory. To keep this paper self-contained to some extent, the present section
recalls fundamental notions, facts and problems of the theory of group repre-
sentations.

Let G be a group, F a field. An F-representation of G of degree d with
representation space V is a group morphism D : G — GL(V), where V is
a d-dimensional vector space over F. Choosing an F-basis of V, every F-
automorphism D(g), ¢ € G, is described by an invertible d-square matrix
D(g) over F, and g — D(g) is a group morphism D : G — GL(d, F), a so-
called matriz representation of G. Typically, different F-bases of V will give
rise to different but “equivalent” matrix representations corresponding to D.
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More generally, two F-representations D; : G — GL(V;) (i = 1,2) are called
equivalent, Dy ~ Dy, iff there exists an F-isomorphism 7' : V] — V; such that
Dy(g) = T o Dy(g)oT71, for all g € G. A central problem in representation
theory is the classification of all F-representations of G up to equivalence.
For the moment, let us assume that G is a finite group. The classification
problem substantially depends on how the order of G and the characteristic
of F are related. There are two alternatives leading to completely different
theories: ordinary representation theory (char F' does not divide |G|) and
modular representation theory (char F divides |G|). We sketch the ordinary
theory, although the methods presented so far also have applications to the
modular theory, cf. Clausen (1979,1980b), Green (1980), Golembiowski (1987),
Pittaluga & Strickland (1988). In the case of the ordinary representation
theory it is allowed to take averages of the form |G|™! 3 cq. With the help of
such averages one can prove the following.

Theorem 7.1 (Maschke). If the characteristic of the field F' does not divide
the order of the finite group G, then every F-representation D : G — GL(V)
is a direct sum of irreducible F'-representations:

D=D®...®D,, D;irreductble.

That is to say, V = Vi ®...8V, is the direct sum of F-subspaces V; # 0, each
Vi is G-invariant (i.e. D(g)V; C V;, Yg € () and in addition, besides 0 and
V: there are no further G-invariant subspaces in V;. The restriction of D to V;
yields an irreducible representation D;: G - GL(V;}). U D=d1® ... @ d; is
another decomposition of D into irreducible constituents d;, then a result of
Krull-Remak-Schmidt guarantees s = t and (after a suitable permutation) the
equivalence of D; and d; (: = 1,...,s). Consequently, if A is an irreducible
F-representation of G then the multiplicity (A|D) = |{i|D; ~ A} of A in
D is well-defined. Thus in case of the ordinary representation theory the
classification problem splits as follow:

(i) Compute a transversal Irrep(G, F) of the equivalence classes of irreducible
F-representations of G.

(ii) Given any F-representation D of G, determine its equivalence type by
computing all the multiplicities {A|D}, D € Irrep(G, F).

In connection with (i) the following questions naturally arise: How many
equivalence classes of irreducible F-representations do exist? Where to look
for irreducible representations? At least theoretically, it is easy to answer
these questions: The F-vector space F'G with F-basis (G is the representation
space of G via R(g)(z) := gz (g,« € G). Every irreducible F-representation
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of G is equivalent to an irreducible constituent of this so-called regular F-
representation B : G — GL(FG) of G. It turns out that FG (via group
multiplication) is a semisimple F-algebra. Applying Wedderburn’s theory of
semisimple algebras to this special situation results in the following classical
theorem.

Theorem 7.2 Let F be a field whose characteristic does not divide the order
of the finite group G. Let h denote the number of conjugacy classes of G and
let R denote the reqular F-representation of G. Then

(a) |Irrep(G, F)| < h;
(b) for all A € Irrep(G, F), 1 < (A|R) < degree(A).

(c) If F contains in addition a primitive |G|-th root of unity then there
are ezactly h classes of irreducible F-representations of G and (A|R) =
degree(A), for all A € Irrep(G, F).

In the next section we will present transversals for irreducible F-representat-
lons of symmetric groups, G = S,. Section 8 is concerned with the computa-
tion of the equivalence classes of certain reducible representations D : G —
GL(V). To this end it suffices to compute a composition series of V, ie. a
maximal chain 0 = Uy C U, C ... C U, = V of G-invariant subspaces U; of V.

In the sequel we prefer the language of module theory: If D: G — GL(V) is
an F-representation of G then gv := D(g)v makes V into a left FG-module.
The G-invariant F-subspaces of V are called FG-submodules. V is a simple
FG-module, iff V # 0 and V and 0 are the only FG-submodules of V. Simple
modules and irreducible representations correspond to each other. An FG-
module V is eyelic if V = FGu, for some v € V. A morphism of left FG-
modules V4, V; is an F-linear map f : V4 — V; commuting with the G-actions:

flgv) = gf(v) (9 € G,v € V).

8 Simple Modules

This section discusses composition series for every (split) semisimple group
algebra RS, viewed as left RS,-module. Section 9 generalizes this to a wider
class of cyclic left RS, -modules.

Let R be a commutative ring with unit element 1 = 15 # 0. The symmetric
group S, acts as a group of algebra automorphisms on R[X] via oX;; :=
Xsij (01 :=ifor ¢ > n). The map o — [li<i<n Xoii yields an isomorphism
RS, — Rap of left RS,-modules, where @ = 8 = (17), cf. Theorem 2.2.
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For an A-bitableau (U, V), a permutation ¢ € §,, and a right substitution
Rp satisfying 37, ;d;; = |A| one easily checks that o{U|V} = {o o UV},
o(U|V) = (e o U|V), (¢{U|V})Rp = o({U|V}Rp). In particular, the right
Capelli operators are RS,-morphisms.

According to the local version of Theorem 2.2, the standard bideterminants
of content ((1"),(1")) form an R-basis of Ryn)qn). A suitable arrangement of
this basis indicates a close relationship to Wedderburn’s structure theory of
(split) semisimple (group) algebras: Let T} < ... < T, be a total ordering of
all r standard tableaux of content (1) such that T; _1"T; = T; < T, for all
1,7. W.r.t. this ordering we define a partial r-square matrix (b,(-;-‘)), which lists
all elements of SBD(1%, 1):

pm . 1 (GIT;) ,  if shape(T;) = shape(T;)
¥ "7 1 undefined, otherwise.

The matrix (b,{;}), based on the column lexicographical ordering of all standard
tableaux of content (14), reads as follows:

()

L

134|134 134

2 2 2

124 {134 124124 124122
3 2 3 |2 3 4
123134 122

4 2 4

(1234|1234)

Let U, »(R) denote the R-linear hull of all bideterminants in the first p columns
of (b(’-l)).

17
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Theorem 8.1 Letr be the number of standard tableauz of content (1™) and let

R be a commutative ring with 1 # 0. Then, referring to the above notations,
the following holds:

(@) 0 =: Upn(R) C Ur1n(R) C ... C Urn(R) ~ RS, is a chain of RS,-
submodules of R(1nyan).
(b) The RS,.-morphism Rp(z,) (1 < p < 1) maps U,,(R) onto the so-called
Specht module
SA\(R) := RS, - (S|Py) = ({T|P)IT € ST*(1™))z.
Here, T, is assumed to be of shape A and S : A — {1,...,n} is any
bijection.

(¢) Up—1,a(R) = Kernel(Rp(r,) | U, n(R)), for everyp, 1 < p < r. Hence the
chain Up,(R) C ... C U, n(R) is a Specht series of RS,, i.e. all factors
corresponding to this chain are isomorphic to Specht modules.

(d) If R is a field whose characteristic does not divide n! then the chain in
(b) is a composition series of the left reqular module RS,. Furthermore,

{SA(R)|A a partition of n}

is a transversal of the isomorphism classes of simple left RS, -modules.

Proof.

(a). Let b‘{?) € U,n(R) and let 0 € S,. Then, by definition, i < p and orbf?) =
o(Ti|T;) = (0 o T;|T}) is a Z1g-linear combination of standard bideterminants
(T|T;), such that T, 1°T;. Hence T, < T i.e. ¢ < j < p. This proves (a).

(b) and (c). Let T, be of shape A. By the first fundamental property of Capelli
operators (Theorem 3.3) we get for all T}, of shape A:

(TplTp)RD(Tp} = (TplT-\) .
Hence S)(R) is contained in the image of Rp(t,) | U, .(R). On the other hand
let b,(-;-‘) € U,n(R),j < p. As the total ordering < is a linearization of _I",
it is impossible that 7, _*T; holds. By the second fundamental property of
Capelli operators (Theorem 3.6), this yields
bg?}RD(Tp) =0.
Combining this with the linear independence of {(T|T))|T € ST*(1™)}, we get
altogether
SMR) = Image(Rp(,) | Upn(R))
Ups1a(R) = Kernel(Rp(r,) | U,»(R)).
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(d). First we observe that the Specht module Sy(R) occurs in U, C .. C
U, »(R) at least dimpSy(R) times. Under the assumption, RS, is a semisimple
R-algebra (by Maschke’s Theorem). In general, if A is a semisimple algebra
over the field R and M is a simple left A-module, then (by Wedderburn’s
Theorem) for the multiplicity (M|A) of M in any composition series of A (as
a left A-module) the following holds:

1 < (M]A) < dimp(M) .

Now (d) follows easily. o

Example. If B = Q is the field of rational numbers and n = 4, a transversal
of simple QS4-modules is given by the following list of Specht modules:

Sw(@)=((12341111))a,

Sn(Q) =«(;34l;11) , (;24‘;1 1) ’ (123‘%11)»‘&,

s @=1(3353) (22t e

/1411 1311 1211
3(2,1,1)(Q)=(( 2 (2 |2 |2 | 3 |2 »Q:

\3 [3 403 4 [3

(11

202

3(1,1,1,1}(Q) ={ 3l3 Na -
\ 4]4

9 Skew Modules

In this section we associate to every n-subset A of N x N a cyclic (left) RS,-
module S4(R). If A is a skew diagram, then Si(R) is called a skew module, if
A is a diagram, S4(R) specializes to the Specht module corresponding to A.
For every skew diagram A, we will describe two R-bases of the skew module
Sa(R). The first basis corresponds to all standard A-tableaux of content (1%),
whereas the second one, adapted to a Specht series of Sa(R), corresponds to
certain standard bitableaux. The next section presents an algorithm which
efficiently generates such R-bases adapted to Specht series.
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To begin with let A be an n-subset of N x N and let P4 denote the projection
A 3 (3,7) v 4. Then, by definition, S4(R) is the R-linear hull of all bidetermi-
nants (U|Py), where U runs through all bijections A — {1,...,n},i.e. U is an
A-tableau of content (1"). Since o(U|P4) = (0 0 U|Py) for all o € S,,, S4(R)
is a cyclic RS,-module generated by (U|P,4), where U is any fixed A-tableau
of content (1%):

Sa(R) = RS, - (U|Py) .

In the sequel we mainly discuss the case when A is a skew diagram. Our first
goal is to describe an R-basis of S4(R) closely related to A, see James (1977),
James & Peel (1979) and Clausen (1980a).

Theorem 9.1 Let A be a skew diagram. Then the set of all bideterminants
(U|Pa), where U runs through all standard A-tableauz of content (1*), forms
an R-basis of Su(R).

Proof. Linear independence: Let Y i yandard @/ (U|P4) = 0 be a non-trivial
linear relation and let S be _1"-maximal in {U|ay # 0}. Then Lps)(S|Pa) =
(Pa|Pa) and, by Theorem 2.6, Lps)(U|P4) = 0 for all U # S satisfying
ay # 0. Equating coefficients we get 0 # ag = 0, a contradiction.

Span: Use the Laplace Duality Theorem 4.1 and a “transposed” version of the
proof of Theorem 5.2. The details are left to the reader. o

Now we are going to describe a second R-basis of the skew module Sa(R)
which is adapted to a Specht series. By Theorem 2.2 every X € Sa(R) can
uniquely be written as an R-linear combination of standard bideterminants:

X= Y t&wlV).
(U,V) standard

We will call

supp, (X) := {V[3U : fyy # 0} and supp,(M) := | supp,(X)
XeM

the right support of X € R[X;] and M C R[X;], respectively. The following
theorem indicates the importance of this notion.

Theorem 9.2 Let A be any n-subset of N x N and let A be a partition of
n. Furthermore let R be a field of characteristic zero and let < be any par-
tial ordering on the set of all standard tableauz refining J". Then for the
multiplicity of the Specht module S\(R) in Sa(R) the following holds:
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(a) {SA(R)|Sa(R)) € H{T'|T is a <-mazimal element in supp,(X) for some
X € Sa(R) and shape(T) = A}|.

(b) {SA(R)|Sa(R)) = |{T'|T' is the <-greatest element in supp,(X) for some
X € Sa(R) and shape(T) = A}

Proof. The right support of M := S4(R) is finite since every T' € supp, (M) is
a standard tableau whose content equals the content of P4. Thus if supp,(M)
consists of the r standard tableaux T3,...,7, then we may arrange the T; in
such a way that
TIT > T<Tyj=i<;.

Let M; := {X € M]supp,(X) C {T1,...,T;}}. Then, by Theorem 3.7,
0=M, <M <...<M, =M is a chain of RS,-submodules of M. More-
over, if M;/M;_, is non-zero and T; is of shape A, then M;/M;_; is isomorphic
to the Specht module S)(R). In order to see this let X € M;\M;_;. Then
X = X1+ X3+.. .+X;, where Xj is a linear combination of standard bidetermi-
nants (U|T;), U a standard tableau of content (1"*). According to our assump-
tion, X; is non-zero. Furthermore, the right Capelli operator Rp(r;), which
is an RS,-morphism, maps X; onto a non-zero element of the Specht module
Sx(R) whereas, by Theorem 3.6, Rp(r;) annihilates every Xj;, for 1 < j < 1.
Thus M;_, is in the kernel of Rp(z;) whereas M; is mapped by Ep(r;) onto a
non-zero RS,-submodule of §(R). By the simplicity of the Specht modules,
Rpr)(M;) = Si»(R). Finally, since dimp(M;/M;_,) < dimg(S:(R)), a dimen-
sion argument shows that M;/M;_; and S)(R) are isomorphic RS,-modules.
Hence

(Sx(R)|Sa(R)) = [{i|Mi > M;_, and shape(T;) = A}| .
Now M; > M;_, implies that 7} is a <-maximal element in supp,(X) for every
X € M\M;_,. This proves statement (a). (Note that in general supp,(X)
has several <-maximal elements. But only one of it contributes to the mul-
tiplicities.) If T; is the <-greatest element in supp,(X) then M; > M;_; and
M;/M;_, ~ 8,(R), where ) is the shape of T;. This proves our second state-
ment. D

In the sequel we will show that if < is the dominance partial ordering < of
standard tableaux and if A is a skew diagram then :

{T|T is a 9 —maximal element in supp,(X) for some X € S4(R)} =
{T|T is the 9 —greatest element in supp,(X) for some X € Sy(R)} .

In addition, Theorem 9.4 characterizes those T by a suitable combinatorial
condition. We need some preparations.

Let A and B be two n-subsets of N x N. Furthermore, let o; and §; denote
the length of the :th row of A and B, respectively. Then a = (a1, aq,...)
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(resp. 8 = (Bi,B2,...)) is the content of the projection P4 (resp. Pg) and
Yia; =3 ; f; = n. Let T4<(3) denote the set of all A-tableaux of content 3
that are weakly increasing from left to right in each row of A. Define T8<(a)
in a similar way. It is easy to see that there is a unique bijection

* TAS(B) - TBL(a)
T=() o T = (t,)

satisfying for all ¢ and j

H{plte = 53| = Halt5, = i} -

In a sense, this bijection dualizes content and shape. Therefore T* will be
called the B-dual of T. Interchanging the rdles of A and B, every S € T2 (a)
is associated with its A-dual S*. The A-dual of the B-dual T* of T € T4< (B)
equals T T =T.

In our applications, A will be a fixed skew diagram and B varies through all
partitions of n. The bijections just mentioned will help to link the set S74(8)
of all standard skew tableaux of shape A and content 4 and the set STB(a) of
all standard tableaux of shape B and content a. One of our goals is to prove
that

IST?(a)* N ST(B)|
is the multiplicity with which the simple module Sg(R) occurs in the skew
module S4(R). (T C TP<(a) then T* will denote the set of all T*, T € 7))
Example Let

X
X

A = s and B =
X

X X X X
X

X
X

X*X X

Then @ = (1,3,3,2) and 8 = (4,2,2,1). We show two standard tableaux T,U
of content a and its A-duals:

1 1 22 3
. 11 2 23
"= 5 3 — T= 4
3 4 4
11; 1224
U = —s U= 2 3 3
2 92 3 5 3
1 3
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The last example shows that the dual of a standard tableau need not be
standard. Theorem 9.4 will show that such abnormalities cannot occur in our
situation.

Our next preparatory result proves a close connection between right Capelli
operators, dual pairs (T, T*), right symmetrized bideterminants, and the dom-
inance quasi-ordering.

Theorem 9.3 Let A and B be two n-subsets of N x N, and let a (resp. 3) be
the content of Py (resp. Pg). Then the following holds.

(a) (S|Pa)Re) = (S|T"] for every A-tableau S and every T € T4<(B).
(b) UV ifU*QAV” for all U,V € TAS(B).

Proof.
(a). The proof is an easy exercise.

(b). For U = (ug) let p;;(U) := |{p|lui, = 7}|. Then, by definition, p;(U) =
p;i(U*). Hence rpg(U) := [{(5,5)l2 € pyui; < g} = Ticp Tj<epii(U) =
rop(U™); consequently, U AV :& Vp,q (rpg(U) < 7,0(V)) & Vp,q (r,,(U*) <
rp(V*)) & U a V™. o

Theorem 9.4 Let A be a skew diagram. If T is Q-mazimal in supp,(X) for
some X in Syo(R) then its A-dual T is a standard skew tableau.

Proof. The right Capelli operator Re(r) does not annihilate X: X Re(r) # 0.
(To see this, write X as a linear combination of standard bideterminants and
note that 7' is also ,_["-maximal in supp,(X). Our claim now follows from the

first and second fundamental property of Capelli operators, see Theorems 3.3
and 3.6.)

Suppose T™ is not standard. By Theorem 9.1, X = 3 scsraqn) as(S|Pa) for
suitable ag € R. Combining this with Theorem 9.3 (a) we get

0 -',é XRc(T} = Z GS(SIT*] .

SESTA(1m)

Since T* is not a standard skew tableau, by Theorem 5.3 we can write (S|T*] =
Yows bw+(S|W*], where the sum is over all standard A-tableaux W* satisfying
T* J"W=*. (Note that the coefficients by« do not depend on S but only on its
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injectivity.) Using Theorem 9.3 (b) and Theorem 3.6 and denoting the B-dual
of W* by W where B := shape(T), we get the following contradiction

0# XRery = Tsas(S|T
— ZS dg ET‘<W‘ bw-(SlW*]
= 2545 rew bW‘(SlpA)RC{W)

= X. (ZT(W bWORC{W)) =0.

This proves the standardness of 7. o

One consequence of our last result is that in the case of ordinary representation
theory the multiplicity of the simple module Sg(R) in the skew module S4(R)
is < [ST®(e)* N STA(B)|. We aim to prove that equality holds. This will be
done by constructing appropriate elements in the skew module by means of
the Laplace Duality Theorem. To this end we use those bijections @7 : B — A
which are encodings of dual pairs (T, T*), where both T and T* are standard.
In order to describe the ith row of o7 let {(p1,¢1), ..., (pr, ¢,)} denote the set
of all @ = (p,q) € A satisfying T*(a) = 4. Since T™ is standard we can arrange
the (p;,¢;) in such a way that both p; < p, <...<p,and ¢ > gz > ... > qr
hold. In our last example both T' and T* are standard. The corresponding ¢
and its inverse read as follows:

14 23 22 31 1223 4321
24 32 23 L oy
=T = a3 g = 34 31 = 1 X

42 4 9

11 1 1
13 12 21 11 9 32 1
WS T S g 55 ai = 123 X491 =tixyge.
32 41 3 4 2 1

A skew tableau C is called co-standardiff the entries in C are strictly decreasing
from left to right in each row and weakly decreasing down each column. If
¢ : X — Y is a mapping between subsets X and ¥ of N x N then o(z) =:
(¢1(2),p2(2)), £ € X, defines the projections ¢; : X — N. We will write
¥ = 1 X 3. The following crucial definition goes back to James & Peel
(1979) and Zelevinsky (1981a), (1981b), see also Clausen & Stétzer (1982)
(1984).

1
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Definition. A bijection ¢ = ¢; X ¢, : X — Y between skew tableaux X and
Y with inverse ¢™! =¥ = 9, x 1, : Y — X is called a picture iff ¢, and 1,
are standard, and ¢, and 4, are co-standard. P(X,Y’) will denote the set of
all pictures p: X —= Y.

Note that ¢ € P(X,Y) iff ¢! € P(Y, X). In our last example 7 is a picture.

Theorem 9.5 Let A and B be skew diagrams, n = |A| = |B|, and let o
(resp. ) be the content of P4 (resp. Pg). Then T +— o7 defines a bijection
from STE(a) N STA(B)* onto the set P(B, A) of all pictures from B to A.

Proof. If T is in ST8(a) N STA(B)* then or =: ¢ = 1 X ¢, is a bijection
from B onto A and @7+ =: ¥ = ¥ X ¥y equals the inverse of 7. Moreover,
w1 = T and 3; = T™; hence both ; and %, are standard skew tableaux.
By construction, both ¢, and 1, are strictly decreasing from left to right in
each row. Thus @7 is a picture if and only if ¢, and ¢, are weakly decreasing
down each column. By way of contradiction assume that ¢, does not have
this property. Let the jth column be the first column of ¢, violating the co-
standardness of ¢;. Then ¢(p, 7) = (a,b) and ¢(p + 1,5) = (¢, d) with b < d,
for suitable p and j. Since ¢, is standard we have a < ¢. Hence v¥(a,b) = (p, j)
and ¥(c,d) = (p+1,7). Since A is a skew diagram, (e, d) belongs to A and
the standardness of ¥, forces ¥(a,d) = p. Now ) is strictly decreasing in
each row; thus ¢(a,d) = (p, k) for some ¥ < j. Consequently, as (p, k) and
(p+1,7) belong to the skew diagram B so does (p+1, k). Hence the minimality
of j ylelds the contradiction d = @a(p, k) 2> wa(p + 1,k) > wa(p+ 1,7) = d.
This proves that T' — @7 maps STZ(a) N STA(8)* into P(B, A). Finally, a
straightforward computation shows that ¢ + ¢, is the inverse of T' +— 7. @

Now we are prepared to describe the relevant part of the right support of a
skew module, ‘

Theorem 9.6 For a skew module M = S,(R) the following sets are equal:

Ga :={T|T is the A-greatest element in supp,(X) for some X € M},
My = {T|T is a Q-mazimal element in supp,(X) for some X € M},
Pa:={th|Y =1 X ¢ : B — A is a picture, B a diagram}.

Proof. Trivially, G4 € M4. By Theorem 9.4 and Theorem 9.5, M4 C Pa.
We finally prove that P4 C G4: Let B be a diagram and let ¢ : A — B denote
the inverse of the picture ¥ : B — A. Then T" := %, is a standard B-tableau.
Let 5’ be any fixed standard B-tableau of content (1*), n = |A| = |B|. If
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S := 80, T := T o ¢ then, by Laplace Duality (see Theorem 4.1 and its
notation), (S;¢|T) = (S'|T";¢). Since T =T op =y 0p = Py, (S;|T) is a
signed sum of bideterminants of the form (S o o|P,); thus (S;¢|T) € Sa(R).
In order to finish the proof it suffices to show that

(S1T5 ) = (S'IT) + Yo avw (VIW)

where the sum is over all standard bitableaux (V, W) such that W is strictly
dominated by 7", W < T". (Since (§',T") is a standard bitableau this then
shows that 7" is the J-greatest element in the right support of ($'|T";).)
According to section 4, (5'|T";4) = ¥, sgn(7)(S’|T" o7), where 7 runs through
all -shuffles. Since the identity of B is a ¢-shuffle, one of the above summands
equals (S'|T"). We prove that for all p-shuffles 7 # idp, the expansion of
(S$'|T" o 7) as a linear combination of standard bideterminants only involves
standard bitableaux (V, W) satisfying W « T". W.lo.g. we can assume that
(§|T"o7) # 0, ie. T o 7 is column-injective. Since, by Theorem 3.7, W is
dominated by the standardization (7" o 7)* of T” o 7, it is enough to show
that (I" o 7)* is strictly dominated by T”. Let A’ denote the jth column of
A. Then C; := ¢[A’] is a skew diagram contained in B. In addition, since
¢1 is standard, each row of C; has length at most 1. Furthermore 7" | C; is
a standard skew tableau whose content ¥ equals that of ¢, | A9. Thus if 7
runs through all ¢-shuffles, then T o 7 | C; runs through all standard skew
tableaux of shape C; and content 7. Since T' | C; is an order monomorphism
from (Cj, <¢) into (N, <), 7" | C; is strictly column-dominated by T"o 7 | Cj,
for every p-shuffle 7 # 1. Hence, if 7 # 1 is a p-shuffle and if T"or o7 is a
column-strict B-tableau, where # € V(B), then "< T oron < (T'o7)* =: Z.
By section 3 this implies 77 1> Z, and the proof of Theorem 9.6 is complete. o

The last theorem and its proof enable us to describe for every skew module
Sa(R) an R-basis that is adapted to a Specht series. If 1) : B — A is a picture,
B a diagram, let By denote the set of all (5’|t %), where S’ runs through all
standard B-tableaux of content (1*), n = |A| = |B].

Theorem 9.7 Let A be a skew diagram. Then the union of all By, where
runs through all pictures in

Pic(A):= (J P(B,A),
B a diagram

is an R-basis of the skew module S4(R). Under a suitable ordering, this basis
is adapted to a Specht series of the skew module Sy(R).

Proof. Let B4 denote the union of all By. The last theorem combined with

the linear independence of the standard bideterminants implies the linear inde-
pendence of B4. Next we show that every element X in the skew module can be
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written as a linear combination of the elements in B4. Let X = 3 &uv (U|V)
be the expansion of X as a linear combination of standard bideterminants.
Now let < be a fixed linearization of the dominance ordering <1 on the set of
all standard tableaux whose content equals the content of P4. Furthermore
let T' be the <-greatest element in supp,(X). By Theorems 9.4, 9.5, and 9.6
there is a unique picture ¢ whose first projection equals T”, i.e. 3p; = T". If

I := {5'{€s7 # 0} then by the proof of Theorem 9.6
X'i=X =Y Lop(S'|T; ) € Sa(R) .

S'er
If X’ = 0 we are done. Otherwise we replace X by X’ and continue as above.
Since the <-greatest element in supp,(X") is strictly smaller than 7" and since
the right support of the skew module is finite, this process must terminate.

Finally we show that under a suitable ordering the basis consisting of the union
of all By is adapted to a Specht series of the skew module. Let !, ..., %" be all
elements in Pic(A), and let T; denote the first projection of 7. W.l.o.g. we can
assume that T} < T3 < ... < T,. Let M; be the R-linear hull of all elements
in Byt U...By;. By Corollary 3.8 and Theorem 9.6, 0 =: My C M;... C
M, = S4(R) is a chain of RS,-submodules of S4(R), and the right Capelli
operator Rp(r,y maps M; onto the Specht module Sy;(R) if ¥ := shape(T});
furthermore, M;_, is the kernel of Rp(z;) | M;. Hence Mo C M;... C M, is
a Specht series of the skew module S4(R). a

The next section presents an algorithm which constructs for a given skew
diagram A all pictures in Pic{A).

10 Pictures

Let A be a skew diagram. In order to generate Pic(A) we associate to A a tree
whose leaves irredundantly describe Pic(A). Our algorithm is quite simple. It
essentially consists of a description of the root T4 and the hook deformation
rule by which all descendants of a node in that tree are constructed.

To get the root T4 we simply reverse the order of the columns in the identity
id4 of A:

1415 15h14
23{24 |22
: 31[azlz3 33fa2f
idf" = [afadfea Ty = 242l
s1|s2{s3 sab2is1
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To describe the hook deformation rule, we need some preparations. For (r,s) €
N X N the set H(r,s) := {(r +i,5 + )|, > 0} is called the hook w.r.t. (r,s).
Let T be a node in our tree corresponding to A. As a matter of fact, T is a
bijection, mapping the domain, denoted by |T|, onto A, thus T : |T| — A. In
the example above

[ T4 |=

ke
»

XIXK|X|x
F
x

In order to construct all descendants of T' we first have to compute the greatest
diagram D contained in |T|. If D = |T| then T is a leaf. Otherwise let (r,s)
be the leftmost element in the topmost row of [T\ D. If (r1,81)5+-,(7a, 34)
are all elements in N x N satisfying for all 1 < k < d

re S8 < 8,
(re,s6) € D, and
DU {(rx,st)} is a diagram,

then T has d descendants Ty,...,7;. For 1 < k < d the descendant Ty
results from T by translating the portion in 7' corresponding to the hook
H(r,s) into the hook H(r,si). (It can be shown that H(rg,si) and |T'| are
disjoint sets.) T and T} are equal outside H(r,s) U H(ry,s;). The hook
deformation T | (H(r,s) N|T|) — Ty | (H(r&, ) N |Tk|) is a bijection that
is defined as follows: if (r,s + j) € |T| and j > 0 then (ry,s + j) € |T}| and
Ti(r,s +j) :== T(r,s + j). Analogously, if (r 4+ i,s) € |T| and i > 0 then
(r+14,5¢) € [Tkl and Ti(r + ¢, 84) := T(r + i, ). Finally, Ti(rx, s) := T(r, s).
For a detailed version of this algorithm and its verification the reader is re-

ferred to Clausen & Stotzer (1982),(1984). We illustrate this algorithm by an
example. If

16)1s)14[22] ©
2s]24[42[ o
3sl34fo N

53] o — 52851

{e2ls1
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then (r,s) = (4,5), T(4,5) = (5,2) and (r1,81) = (1,5),(r2,82) = (2,4),
(ra,83) = (3,3),(r4,54) = (4,2). Hence T has four descendants 11,75, 73, T,

which read as follows

T T; T T,
16[15[1 4fadfs2fs1] 16[15]14[33 16151 ]33} 16[15]1 4[za]
252443 25244524 [:B 25)24(43 25{24]43
35(3+4 3sf34 asjays 2 E 35)34
53 53] 53] 5352
&3 o1 ] @
& | @

Our final example shows such a tree. Recall that the leaves of this tree describe
Pic(A).
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14]23[32[21]
33

[43] [
wl.u. 52|51
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38

15]14[31 15]14]32}21 1511 4[32f31 18[14[23 15]1423[31 1sfiafasfazfa] [1s[i4f2afsa] 151 4]23]31 15]1 4{23[32[31] 15]1 4[23]32]21
24[23f41 24[23[41 24]23]+ 241 “[24[32}31 24[az]a 24[¢2]1 243332 24[aajaz[a 24133l 24[a3]¢2[0n
33[azs1 aafa2]sa 33[s2[51 aaja2)s1 334 2[51 p3 [s52]51 aafazli1 434251 4afe2[51 13[52]51
1342 43]52] [43] 43[s2p1 43]52] 43] safs2[51 5352 [sals2 53]

5352 53] _w 53 _...I 53] _

! _ . | | _

151 4[31 h 5 14{32[31] 15114[32]31 - 15[14[23]31] 15]14[23p1 15[14]23]32f31] 15l14[23[32(31
24[2af41 24[23}41 24[23]+2[41 24[adu 24]a3]32]a1 243341 24[33]s2]11
3afz2 3afe2 a3fsz] s3] adja2 4afa2 mE aals2]  [s1
13fs2 43[52]51] 43 435251 [safs2 53[52]s51 53

53[5251] 53 53 53 —

_ _ | _ _
15[14/31] 15[14]32f3| 15T14[32[31 15]14[23 15]14[23[31] 151 4[23[32]a1] 15]1 4]2332[21
24]23 24]23[41] 24234 2]41 24[azfa1 24[az]a1 244241 24f3afa2fnr
33[32 a3le2] 33 Jaale2]4a 33f42 33] e
3¢z i3 43 3] 43 13 53]

53[52]51 s3]52]51) m 2] s3[52]51) 53[52]51) 53]5251] B
1514 15143221 151 4]23]31] 15fazals2fs1] [1efi4f22[sa] 15[14]23]31 15[14]23{32{31] 15]14]23[32]31]
24[23 24}23 24]32 24[42 41 [24]3as2 24[33[azfa1 243341 24]3afe2]a1
a3faz asjaz] [ ajiz) [1] 23] 4sfazs1 aafi2 BE 3]
4342 43 43 43
53[52 5357 [1] 537 [ 5a]s2) sa]52]
j _ 3

~ _ _ |

1 8[1432]31f 151 4f2a 15]14[23a1] 15[14]23[22[31] 15[14]23[31 15]14p3]32fa1] az[n

24[23 24[32]31 2432 24 24[a3p2 2433 1]

3] 33 33 53] [EERE oz [

3| [42]a1 1312[41 1342] |41 m M

s3] [s2]s2 [safs2[51 53(52 53] s2[51 352 [p1] m@ B

|
| ™~ | T~

1s]14]3g] [31] 15[14 15[14]23]31] 1514

24]23 24[32 24[asf32 2433

33] 33 43] a2z}t 43

43| [+2] [41] . 4312 [ B

53 2] [ 53[5 53 [52]1] 53]




References

Abeasis, S., Del Fra, A. (1980). Young diagrams and ideals of Pfaffians, Ad-
vances in Math., 35, 158-178.

Abhyankar, S. (1988). Enumerative Combinatorics of Young Tableaux, New
York: Marcel Dekker.

Barnabei, M., Brini, A. (1987). Symmetrized skew determinants, Communi-
cations in Algebra, 15(7), 1455-1468.

Carter, R. W., Lusztig, G. (1974). On the modular representations of the
general linear and symmetric groups, Math. Z., 136, 193-242.

Clausen, M. (1979). Letter place algebras and a characteristic-free approach
to the representation theory of the general linear and symmetric groups,
I, Advances in Math., 33, 161-191.

Clausen, M. (1980a). Letter place algebras and a characteristic-free approach
to the representation theory of the general linear and symmetric groups,
I, Advances in Math., 38, 152-177.

Clausen, M. (1980b). Letter-Place-Algebren und ein charakteristik-freier Zu-
gang zur Darstellungstheorie symmetrischer und voller linearer Gruppen,
Bayreuther Mathematische Schriften, 4, 151 S.

Clausen, M. (1984). Dominance orders, Capelli operators, and straightening
of bideterminants, Europ. J. Combinatorics, 5, 207-222.

Clausen, M., Grabmeier J.(1990). On a class of cyclic S,-modules, in prepa-
ration.

Clausen, M., Stotzer, F.(1982). Pictures and skew (reverse) plane partitions,
Springer Lecture Notes in Mathematics, 969, 100-114.

Clausen, M., Stotzer, F. (1984). Pictures und Standardtableaux—Grundlagen
und Algorithmen, Bayreuther Mathematische Schriften, 16, 1-122.

De Concini, C., Procesi, C. (1976). A characteristic free approach to invariant
theory, Advances in Math., 21, 330-354.

De Concini, C. (1979). Symplectic standard tableaux, Advances in Math., 34,
1-27.

De Concini, C., Eisenbud, D., Procesi, C. (1980). Young diagrams and deter-
minantal varieties, Inventiones Math., 56, 129-165.

De Concini, C., Strickland, E. (1979). Traceless tensors and the symmetric
group, J. Algebra, 61, 112-128.

De Concini, C., Strickland, E. (1981). On the variety of complexes, Advances
in Math., 41, 57-71.

Désarménien, J. (1980). An algorithm for the Rota straightening formula,
Discrete Math., 30, 51-68.

Désarménien, J., Kung, J. P. S., Rota, G.-C. (1978). Invariant theory, Young
bitableaux and combinatorics, Advances in Math., 27, 63-92.

39



Dirl, R., Kasperkovitz, P. (1977). Gruppentheorie, Anwendungen in der Atom-
und Festkdrperphysik, Braunschweig, FRG: Vieweg.

Doubilet, P., Rota, C.-G. (1976). Skew-symmetric invariant theory, Advances
in Math., 21, 196-201.

Doubilet, P., Rota, C.-G., Stein, J. (1974). On the foundations of combinato-
rial theory: IX. Combinatorial methods in invariant theory, Stud. Appl.
Math., 53, 185-216.

Golembiowski, A. (1987). Zur Berechnung modular irreduzibler Matrixdarstel-
lungen symmetrischer Gruppen mit Hilfe eines Verfahrens von M. Clau-
sen, Bayreuther Mathematische Schrifien, 25, 135-222.

Green, J. A. (1980). Polynomial representations of GL,, Springer Lecture
Notes in Mathematics, 830.

James, G.D. (1977). A characteristic-free approach to the representation the-
ory of Sy, J. Algebra 46, 430-450.

James, G.D., Kerber, A. (1981). The representation theory of the symmetric
group, Encyclopedia of Mathematics and its Applications 16, Reading,
MA: Addison Wesley.

James, G.D., Peel, M.H. (1979). Specht series for skew representations of
symmetric groups, J. Algebra, 56, 343-364.

Knuth, D. E. (1970). Permutations, matrices and generalized Young tableaux,
Pacific J. Math., 34, 709-727.

Kramer, P., John, G., Schenzle, D. (1981). Group theory and the interaction
of composite nucleon systems, Braunschweig, FRG: Viehweg.

Kung, J. P. 5., Rota, G.-C. (1981). On the differential invariants of a linear
ordinary differential equation, Proc. Roy. Soc. Edinburgh, 89A, 111-123.

Louck, J. S., Biedenharn, L. C. (1973). On the structure of the canonical
tensor operators in the unitary groups. III. Further developments of the
boson polynomials and their applications, J. Math. Phys., 14, 1336-1357.

Macdonald, I1.G. (1979). Symmetric Functions and Hall Polynomials, Oxford:
University Press.

Mead, D. G. (1972). Determinantal ideals, identities and the Wronskian, Pa-
cific J. Math., 42, 167-175.

Pittaluga, M., Strickland, E. (1988). On computers and modular represen-
tations of SL,(K), Lecture Notes in Computer Science, 307, 120-129,
Heidelberg, FRG: Springer. :

Pommering, K. (1981). Invarianten unipotenter Gruppen, Math. Z., 176, 359-
374.

- Rota, G.-C., Désarménien, J. (1977). Théorie combinatoire des invariants clas-
siques, Series de Mathématique Pures et Appliquées, IRMA, Strasbourg.

Schensted, C. (1961). Longest increasing and decreasing subsequences, Canad.
J. Math., 13, 179-191.

40



Schiitzenberger, M. P. (1963). Quelques remarques sur une construction de
Schensted, Math. Scand., 12, 117-128.

Stanley, R.P. (1971). Theory and Application of Plane Partitions, Part 1,
Studies in Applied Mathematics, 50, 167-188.

Stanley, R.P. (1977). Some Combinatorial Aspects of Schubert Calculus, Lec-
ture Notes in Mathematics, 579, Heidelberg, FRG: Springer.

Stein, J. (1980). Hopf Algebra Structures on Tensor Products of Z-Modules,
Thesis, Harvard University.

Strickland, E. (1980). The symplectic group and determinants, J. Algebra, 66,
511-533.

Zelevinsky, A.V. (1981a). A generalization of the Littlewood-Richardson rule
and the Robinson-Schensted-Knuth correspondence, J. Algebra, 69, 82—
94.

Zelevinsky, A.V. (1981b). Representations of finite classical groups—a Hopf
algebra approach, Lecture Notes in Mathematics, 869, Heidelberg, FRG:
Springer.

41



