SUBTREE ISOMORPHISM AND BIPARTITE PERFECT MATCHING
ARE MUTUALLY NC REDUCIBLE

Andrzej Lingas
Department of Computer and Information Science
Linkoping University, 581 83 Linkoping, Sweden

Marek Karpinski
Department of Computer Science
Bonn University, 5300 Bonn 1, West Germany

Abstract : A simple NC reduction of the prbblem of subtree isomorphism to that of bipartite
perfect matching is presented. The reduction implies the membership of the subtree isomorphism
problem in random NC3, 1t is also shown that the problem of perfect bipartite matching is NC!
reducible to that of subtree isomorphism. Finally, it is observed that the latter problem is in
NC if the first tree is of valence O(logn).

1. Introduction

The subtree isomorphism problem is to decide whether a tree is isomorphic to a subgraph of
another tree. Analogously, we define the version of the problem for directed trees. The subtree
isomorphism problem is one of the two known restrictions of the general subgraph isomorphism
problem to a non-trivial graph family that are solvable in polynomial (sequential) time [GJ79).
The other example is the subgraph isomorphism problem for biconnected outerplanar graphs
|Li8s6].

The subtree isomorphism problem can be solved in the undirected and directed case by a re-
cursive reduction to the maximum bipartite matching problem in time O(n?%) [Ma78,Re77|.
Remembering that the latter problem is in random NC [KUWS85, MVV87|, it is natural to
ask whether such a reduction can be performed by a fast parallel algorithm using a polynomial
number of processors.

The recursive depth of the reduction in the sequential algorithms of Matula and Reynolds
[Ma78, Re77] is unfortunately proportional to the height of the input trees. To obtain an NC
reduction, we need cut the input trees recursively to decrease their height. A straight-forward
way of cutting by using a vertex "1/3 — 2/3” separator [LT77] in the firet tree and guessing
its image in the second tree can lead to unpolynomial number of considered components of the
second tree. By using a random method, one can decrease the number of components to a
polynomial one. This yields random NC reductions of the problem of subtree isomorphism to
that of maximum bipartite matching discovered recently and independently by Miller, Karp and
Smolenski, and Karpinski [K86].

The main result of the paper is a simple, deterministic NC reduction of subtree isomorphism to
bipartite perfect matching. The reduction uses a tree cutting technique relying on two following
observations:

In any isomorphism ¢ between a rooted tree T and a subtree of another rooted tree U that
maps the root of T on the root of U, the path P; from a given vertex separator v to the root of

1

T is mapped on the path P; from ¢(v) to the root of U.

If we cut T and U by respectively removing the path P; and P; with the adjacent edges then
the resulting subtrees are full subtrees of T and U respectively rooted at the sons of vertices on
the paths that themselves do not lie on the paths.

By the second observation and a straight-forward inductive argumentation, if we apply our tree
cutting method recursively then the number of resulting components is not greater than the
total number of full subtrees of the rooted trees T and U (the latter number is equal to the
number of vertices in T and U).

Since the problem of subtree isomorphism is easily reducible to that for rooted trees, we obtain an
NC3 reduction of subtree isomorphism to maximum bipartite matching, and hence, to bipartite
perfect matching. Next, since the general perfect matching problem is in random NC? [MVV8g7|,
we can conclude that the subtree isomorphism problem is in random NC3.

Interestingly, we can also show that a reverse reduction can be done efficiently in parallel. The
reverse reduction consists in a straight-forward construction of two tiees for the input bipartite
graph such that the subtree isomorphism problem for the trees is solvable if and only if the
graph has a perfect matching. The construction of the trees can be easily done by NC! circuits.
By slightly modifying the proofs of the two presented NC reductions, we could obtain also the
corresponding NC reductions between the problem of constructing a subtree isomorphism and
that of constructing a bipartite perfect matching.

Note that by our NC reductions, the intriguing problem of the membership of bipartite perfect
matching [KUWS85| in NC is equivalent to that of the membership of subtree isomorphism in
NC.

In [Ru81], Ruzzo observes that the restriction of the subtree isomorphism problem to trees of
valence O(log n) can be solved by an auxiliary non-deterministic PDA operating within O(log n)
working space and polynomially-bounded pushdown store. Since such an automaton can be
simulated by NC circuits [Ru81|, Ruzzo concludes that the restriction of subtree isomorphism
isin NC.

Combining Ruzzo’s observation with the fact that a depth first search of a tree can be performed
by NC circuits [Sm83], we conclude that the restriction of subtree isomorphism where only the
first tree is required to be of valence O(logn) is also in NC. We also observe that Ruzzo’s
method yields the membership of the problem of subtree isomorphism for ordered trees and the
problem of deciding whether a term is a subterm of another term in NC?2.

The main contribution of the paper is the new tree cutting technique used in the NC reduction
of subtree isomorphism to bipartite perfect matching. Recently, the first author has combined
an analogous technique with the ideas from [Li86] to design an NC reduction of the subgraph
isomorphism for biconected outerplanar graphs to the problem of finding a simple path between a
pair of vertices. Since the latter problem is in NC [Co83], the problem of subgraph isomorphism
for biconnected outerplanar graphs is also in NC [Li86a).

2. Preliminaries

We shall adhere to a standard graph and set notation (see [AHU74|, [H69]). Specifically, given a
set S, the term | S | will stand for the cardinality of §. Given a tree T, we shall often denote its set
of vertices also by T'. If T is a rooted tree and v is a vertex of T, then the term T, will denote the
full (i.e. largest) subtree of T rooted at v. By a vertex separator a tree T we shall mean a vertex
v of T whose removal disconnects T into subtrees none of which has more than two thirds of the
vertices of T. Recall that any tree has at least one vertex separator [LT77|. For the definitions
of uniform circuit families, the classes NC*, NC, their random versions RNC*, RNC and the
corresponding notions of reducibility, the reader is referred to [P79,Ru81,Co83|.

The NC reductions between the problem of subtree isomorphism and that of bipartite perfect
matching will be shown by proving corresponding reductions for simple modifications of these
two problems. In this section, we shall define the modifications and prove them to be equivalent
to the original problems in the sense of NC! reducibility.

The modification of the subtree isomorphism problem will be called the root subtree isomorphism
problem.

Definition 2.1: The root subtree isomorphism problem is to decide whether there exists an
isomorphism between a tree and a subgraph of another tree mapping the root of the first tree
on the root of the second tree. Such an isomorphism will be called a root imbedding of the first
tree in the other one. |

Lemma 2.1: The subtree isomorphism problem for undirected trees as well as that for directed
trees are NC'! reducible to the root subtree isomorphism problem.

Proof Sketch: For directed trees, the reduction is obvious; the first tree is isomorphic to a
subgraph of the other if and only if there is a root imbedding of the first tree in a full subtree
of the other tree. In the undirected case, following [Ma78], for every edge {v,w) of the second
tree U, we define the limb U(v, w) as the maximum part of U reachable from v by simple paths
passing through w, rooted at v. Analogously, we define the limb U(w,v). Next, we identify the
first tree T with its limb T'(z,y) where z is an arbitrary leaf of T. Now, it is easily seen that T
is isomorphic to a subgraph of U if and only if there is a root imbedding of the limb T'(z,y) in
a limb of U. It should be clear that in both cases, the simple many-one reductions can be done
by NC? circuits. g

Lemma 2.2: The root subtree isomorphism problem is NC! reducible to the subtree isomorphism
problem for undirected trees as well as to that for directed trees.

Proof Sketch: Let n be the number of vertices in the larger of the two input trees. It is enough
to add to each root of the input trees n dummy sons. g

The modification of the bipartite perfect matching problem will be called the bipartite partly
perfect matching problem.

Definition 2.2: Given a bipartite graph G(V;, Vi, E), a partly perfect matching of G is a
matching of G whose cardinality is equal to min{| V; |,| V2 |}. The bipartite partly perfect
matching problem is to decide whether a bipartite graph has a partly perfect matching.

3

Lemma 2.3: The problems of bipartite perfect matching and that of bipartite partly perfect
matching are mutually NC! reducible.

Proof Sketch: Clearly, the former problem is NC! reducible to the latter. To obtain the reverse
reduction, given a bipartite graph G(V;, V3, E), where | V; |<| V3 |, we extend V; by | V2 |-
| Vi | dummy vertices adjacent to all vertices in V5. g

3. Subtrcclisomorph:'sm is NC2 reducible to bipartite per fect matching

~In this section, we shall show that the problem of root subtree isomorphism is NC? reducible
to that of bipartite partly perfect matching. By Lemma 2.1 and 2.3, this yields also an NC3
reduction of subtree isomorphism to bipartite perfect matching.

The main, recursive, reduction procedure RSI, using some preprocessing, is defined as follows.

input : two rooted trees T and U, and for every vertex t of T, the number D(t) of the descendants
oftinT;

output : 1f there is a root imbedding of T in U then 1 else O;

data structures : a matrix M(t,u), t € T, u € U, setting the entry M(¢, u) to 1 (respectively, 0)
will denote that there is (respectively, there is no) a root imbedding of T} in U,,.

procedure RSI(T, U, D)

distribute the value of | T | to all vertices of T}

select a vertex separator v of T}

find the path P, from v to the root of T and its length | P, |;
for i =0,..,| Py | do in parallel v; « the i-th vertex of Py;
for all vertices u of U do in parallel

begin
find the path P, from u to the root of U and its length | P; |;
if | Py |=| Py | then
for i=0,..,| P, | do in parallel

begin
u; <+ the i-th vertex of Py;
1f v; has more sons than u, then

begin
YES(i) « 0;
goto A
end;
for all pairs (s;, 83) where s; is a son of v; not lying on P; and s; is a son of u;
not lying én P; do in parallel M(sy,s;) « RSI(T,,,U,,,D/T,,);
G:(M) « the bipartite graph induced by the matrix M restricted to the sons of
v; and u;; (i.e. sons s;, 83 are adjacent in G;(M) if and only if M(s1,s2) = 1);
YES (i) « if Gi(M) has a partly perfect matching then 1 else 0;
A: end;

YES(u) «— if NPYYES() then 1 else 0
end;
else YES(u) « O
end

if Vuev Y ES(u) then return 1 else return 0

The correctness of the procedure RSI(T, U, D) immediately follows from the fact that in any
root imbedding ¢ of T in U, the path P, in T from the vertex separator v to the root of T is
mapped on the path P, from #(v) to the root of U, and that for : = 0,..., | Py [, each full subtree
of T rooted at a son of thz i-th vertex of P; not lying on P; is root imbedded in a unique full
subtree of U rooted at a son of the s-th vertex of P; not lying on P;.

We may assume | T |<| U | without loss of generality. Let n denote | U | . To show that
RSI(T, U, D) can be implemented by NC circuits with oracle gates for bipartite partly perfect
matching tests, we argue as follows.

a) The distribution of the value | T' | to the vertices of T can be done by a circuit of O(logn)
depth and O(nlogn) size. Then, we can decide, for each vertex ¢ of T, whether ¢ is a vertex
separator of T by computing | T | —D(t) and the maximum of D(s) over the sons s of the vertex
¢ in T. Clearly, it can be implemented by NC! circuits (see [Co83]). Finally, we can select a
vertex v from these vertex separators using a circuit of depth O(log n) and size O(n log n).

b) The path Py, and similarly, the path P, can be found by using a standard O(log n) method
on a concurrent read exclusive write parallel RAM with O(n?) processors. In the j-th iteration
of the method, we find, for each vertex v in the tree, the path from v to its ancestor in the
distance 27 by concatenating the path from v to its ancestor in the distance 2/~! with the
copied path between the two ancestors of v. By [SV84], the method can be implemented by
(uniform) circuits of unbounded fan-in, O(log n) depth and polynomial size. Hence, it can be
implemented by NC? circuits.

c¢) The total number of son pairs (s;, s2) over all 1 = 0,1,...,| P1 |, is not greater than the
product of | T | and | U | which is at most n?.

d) By (a), (b) and (c), the body of RSI(T, U, D) can be implemented by NC? circuits if we
do not count the recursive calls and bipartite partly perfect matching tests.

e) Note that the subtrees T,, and U,, are full subtrees of T and U respectively. Hence, by
induction, all the subtrees occurring in the recursive calls of RSI(T, U, D) are also full subtrees
of T and U respectively, and the original values of the matrix D can be used there. It follows
that the procedure RSI(T, T, D) invokes at most | U || T | different recursive calls. Hence,
the whole procedure can be implemented by filling the entries of the matrix M in a bottom up
manner. By (d), it can be done by NC circuits with oracle gates for the matching tests.

f) The recursive depth of RSI(T, U, D) is O(logn). Hence, the depth of the circuits specified
in (e) is O(log®n) by (d). However, the depth of the oracle gates can be shown to be only
O(log? n) by the definition of RSI(T, U, D).

To estimate the parallel complexity of the whole reduction, it remains to estimate the cost of
preprocessing. We can find, for each vertex ¢ of T, the total number D(t) of descendants of t by
using the so called Euler tour technique [TV85). By applying this technique, the preprocessing

5

can be done in time O(logn) time using O(n) processors and O(n) space on an exclusive-read
exclusive write parallel RAM [TV85]. Hence, by [SV84], it can be done by (uniform) circuits of
unbounded fan-in, O(log n) depth and polynomial size, and consequently, by NC? circuits.
Thus, we obtain the following theorem.

Theorem 3.1: The problem of root subtree isomorphism is N C?® reducible to that of bipartite
partly perfect matching.

Combining Theorem 3.1 with Lemma 2.1 and 2.3, we obtain the main result of the paper.

Theorem 3.2: The problem of subtree isomorphism and that of directed subtree isomorphism
are NC3 reducible to the problem of bipartite perfect matching.

Combining Theorem 3.2 with the fact that the problem of bipartite perfect matching is in RN?
[MVV87], we obtain also the following important theorem.

Theorem 3.3: The problem of subtree isomorphism and that of directed subtree isomorphism
are in RNC3.

4. Bipartite per fect matching is NC! reducible to subtree tsomorphism

Let G = (Vy, Vz, E) be a bipartite graph where | V; |[<| V3 | . We shall construct rooted trees
T, and T, using NC? circuits such that there is a root imbedding of T in T; if and only if
G has a partly perfect matching. By Lemma 2.2, 2.3, this will yield an NC! reduction of the
problem of bipartite perfect matching to that of subtree isomorphism. The trees Ty and T; are
constructed as follows.

First, for each v; € V3, j = 1,...,n, we construct a tree S; which consists of a directed line of
length |log n] with additional single leaves attached to some vertices of the line but for its last
vertex. precisely, we attach such a single leaf to the i — th vertex in the line, t=1,..,|logn],if
the i — th digit in the binary |logn]-bit representation of j is 1. We root §; at the first vertex
of the line. Note that the tree S; is always of height |log n|,and for 1 < j' < n, j #j', there is
no root imbedding of S; in Sj.

Secondly, for each v; € V3, j = 1,...,n, we construct a tree U(v;) such that the root of Uf{v;)
and the son of the root are of outdegree one, and the grandson of the root is the root of the tree
S;. By the properties of 5(j), the tree U(v;) is always of height llogn] + 2, and for 1 < ;' < n,
j # j', there is no root imbedding of U(v;) in U(v;).

Thirdly, for each w; € V3, j = 1,...,n, we construct a tree T(w;) whose root as well as its son
are of outdegree one and the grandsons wy of the root are in one-to-one correspondence with
the vertices v; in V; adjacent to w; such that w; is the root of the tree S(i). By the properties
of the trees S(3), the tree T(w;) is always of height {logn | + 2. Next, by the construction of the
trees U(v;), i = 1,...,n, there is a root imbedding of U(v;) in the tree T(w;) if and only if v, is
adjacent to w; in G. Note that since the roots and the sons of the roots in the above trees are of
outdegree one, there are no two disjoint root imbeddings of two different trees U(v;) in T(w;).
Now, the construction of the trees Ty and T is obvious. The root of T, is of outdegree n and
its sons are the roots of the trees U(v;), { = 1,...,n, respectively. Similarly, the root of T, is of

6

outdegree n and its sons are the roots of the trees T(vj),t =1,..,m, respectively. Note that the
two trees are of height |logn| + 3 each. Consequently, by the construction of T} and T3, each
of the subtrees U(v;) of T} is root imbedded in one of the subtrees T(w;) of T3, in any root
imbedding of Ty in T;. As we know, each of the above subtrees T'(w,) is distinct. Moreover,
by the construction of T'(w;), there is a root imbedding of U(v;) in T(wj) if and only if the
vertices v; and w; are adjacent in G. Thus, if there is a root imbedding of T in T2 then the
graph G has a partly perfect matching. Conversely, if G has a partly perfect matching then we
can root imbed the subtrees U(v;) of T} in the subtrees T(w;) of T; in one-to-one manner and
additionally map the root of Ty on the root of T3 to a obtain a full root imbedding of T; in T3.
The const: uction of the basic parts of the trees T) and T; which are the subtrees S(5),i=1,..4n,
can be easily performed in O(logn) working space of a Turing machine since the subtrees are
in the one-to-one, trivial correspondence with the binary strings of length |logn|. Then, the
subtrees U(v;), T(v;) and finally the trees T} and T; can be easily assembled using O(logn)
working space by running the procedure for constructing the trees S(7) several times. Instead
of generating the subtrees S(j), U(v;), and finally the trees Ty, T, within O(logn) working
space, one can easily generate circuits of O(logn) depth that generate respectively the above
subtrees, using the circuits for smaller subtrees to assemble the circuits for the larger subtrees.
It is not difficult to see that the circuits can be generated using O(logn) space. Thus, we have
the following theorem.

Theorem 4.1: The problem of bipartite partly perfect matching is NC! reducible to the problem
of root subtree isomorphism.

Combining Theorem 4.1 with Lemma 2.2 and 2.3, we obtain the main result of this section.
Theorem 4.1: The problem of bipartite perfect matching is N C! reducible to the problems of

subtree isomorphism and directed subtree isomorphism.

5. Subtree isomorphism is in NC if the first tree is of valence O(logn)

In [Ru8l|, Ruzzo has observed that the subtree isomorphism problem constrained to trees
of valence O(logn) can be solved by a non-deterministic, log n space, auxiliary PDA with
polynomially-bounded pushdown store which implies the membership of so constrained subtree
isomorphism in NC2. The PDA performs a depth-first search of the second tree, i.e. this into
which we want to imbed the other, while in parallel traversing the first tree, non-deterministically
choosing an ordering of the descendants of each node.

We can slightly generalize the above observation of Ruzzo to allow the second tree to be of any
valence by using the fact that the problem of depth first search of trees is in NC [sM83] (i.e.
the vertices of a tree can be listed in a depth first order by NC circuits).

To use the above fact, ve equip a a non-deterministic, log n space, auxiliary PDA with an oracle
tape. When the PDA non-deterministically writes a binary word on the oracle tape, the oracle
answers yes if the word is an encoding of the consecutive vertex of the second tree in a given
depth search order. The pushdown store is used only to perform a depth first search of the
first tree in one-to-one, non-deterministically guessed correspondence to the given depth first

7

search of the second tree on a part of the second tree. As in the case of Ruzzo, but only for the
first tree, O(log n) bit vectors are used to keep track which sons of a vertex to which we shall
backtrack have been already visited. Since the problem of depth first search for trees is in NC,
we may assume that the oracle set is NC. On the other hand, we have the following lemma.

Lemma (Fact ?) 5.1: Given a non-deterministic, log n space auxiliary PDA with polynomially-
bounded pushdown store and an oracle in NC, the language recognized by the PDA is in NC.
Proof Sketch: Consider a non-deterministic, log n space auxiliary PDA that has a two part
input, the first part corresponds to the input of the original PDA, the second part consists of a
polynomial in the length of the first part sequence of answers YES or NO. The new PDA acts
as the original PDA on the first part of input treating the second part as answers to consecutive
oracle queries. Moreover, it prints the queries on the output tape instead of an oracle tape. It
is easy to show that the function computable by the new PDA is NC-computable. Now, given
NC circuits computing the above function, we can easily connect them with the NC-circuits
for the oracle set to get NC-circuits recognizing the language accepted by the original PDA. y

By the above lemma and the properties of the oracle of our PDA, we obtain the following
theorem.

Theorem 5.1: The subtree isomorphism problem where the first tree is of valence O(logn} is in
NC.

Marginally, let us observe that Ruzzo’s method can be directly applied to test ordered trees [H69]
for subgraph isomorphism (comparing with the definition of non-ordered subtree isomorphism,
the sub-isomorphism here is additionally required to be monotone with respect to the tree
orderings). To perform the corresponding depth-first search of both trees, it is sufficient to keep
the paths from the tree roots to currently visited vertices, and for each of the vertices on the
paths, the number of its sons already visited, using the polynomially-bounded pushdown store
of the auxiliary non-deterministic PDA operating within O(log n) space. Hence, by [Ru81], we
obtain the following remark.

Remark 5.1: The subgraph isomorphism problem for ordered trees is in NC2.
Similarly, using Ruzzo’s method, we can obtain the following remark.

Remark 5.2: The problem of deciding whether a term is a subterm of another term is in N c?
(the terms are over a given, finite alphabet).

References

[AHUT4] A.V. Aho, J.E. Hopcroft and J.D. Uliman, The Design and Analysis of Computer
Algorithms (Addison—VYesley, Reading, Massachusetts, 1974).

[Co83] S.A. Cook,The Classification of Problems which have Fast Parallel Algorithm, (Proc.
Foundations of Computation Theory, LNC 158, Borgholm, Sweden, 1983).

[GJT9] M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-completeness (Freeman, San Francisco, 1979).

8

[H69] F. Harary, Graph Theory (Addison-Wesley, Reading, Massachusetts, 1969).

[K&] R.M. Karp, personal communication. '

[KUWS83] R.M. Karp, E. Upfal, and A. Wigderson, Constructing a Maximum Matching is in
random NC (Proc. 17th STOC, 1985, pp. 22-31).

|Li86} A. Lingas, Subgraph Isomorphism for Biconnected Outerplanar Graphs in Cubic Time
(Proc. of the 3rd Symposium on Theoretical Aspects of Computer Science, 1986, France, LNC
210).

[Li86a] A. Lingas, Subgraph Isomorphism for Biconnected Outerplanar Graphs is in NC (in
preparation).

[LT77) R.J. Lipton and R.E. Tarjan,A separator theorem for planar graphs (Proc. of Waterloo
Conference on Theoretical Computer Science, 1975).

[Ma78] D. W. Matula, Subtree isomorphism in O(n®/?) (Annals of Discrete Mathematics 2
(1978) 91-106).

[MVV&| K. Mulmuley, U.V. Vazirani and V.V. Vazirani, A Parallel Algorithm for Matching
(manuscript, 1986).

[P79] N. Pippenger, On simultaneous resource bounds (Proc. 20th IEEE FOCS, 307-311).
[Re77] S. W. Reyner, An analysis of a good algorithm for the subtree problem , (SIAM J.
Comput. 6 (1977), 730-732j. :

[Ru81] W.L. Ruzzo, On uniform circuit complexity (J. CSS 22, pp. 365-383).

[Sm83] J. R. Smith, Paralle! Algorithms for Depth First Searches: 1. Planar Graphs (Interna-
tional Conference on Parallel Processing, 1984. To appear in SIAM Journal of Computing).
[SV84] L. Stockmeyer and U. Vishkin, Simulation of Parallel Random Access Machines by
Circuits (SIAM J. Comput. 13 (1984), 409-422).

[TV85) R.E. Tarjan and U. Vishkin, Finding Bi-connected Components and Computing Tree
Functions in Logarithmic Parallel Time (Proceedings 25th IEEE FOCS 1984 pp. 12-20).

