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Abstract

The 2-linear complexity Lo(G) of a finite group G is the minimal number
of additions, subtractions and multiplications (by complex constants of
absolute value < 2) needed to evaluate a suitable Fourier transform
corresponding to G. We prove that Ly(G) > 1|G|log |G| for any finite
group G, and present two infinite classes of non-abelian groups G with
L2(G) < 0.6|G|log |G| and Ly(G) < 0.8|G|log |G|, respectively. Thus
there are non-abelian groups with even faster Fourier transforms than
elementary abelian 2-groups (for which L2(G) < |G|log|G]) !
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1 Introduction

The design and analysis of efficient algorithms for Fourier transforms on finite
groups has been the subject of several recent investigations, see the references.
The present paper continues the studies in [6]. Although we assume familiarity
with [6] and its notations, we briefly recall the mathematical background.

By Wedderburn’s theorem, the group algebra CG of a finite group G is iso-
morphic to an algebra of block diagonal matrices: CG = @, CHx% | where
the blocks correspond to the equivalence classes of irreducible representations
of CG. Every algebra isomorphism W : CG — @/, C*** is called a (gener-
alized) Fourier transform for CG. With respect to natural bases, W can be
viewed as a |G|-square complex matrix. (E.g., if G = Cy is the cyclic group of
order n then W = (w*)ocap<n With w = exp(27i/n).)

The linear complexity L,(A) of a matrix A € C™** is the minimal number
of C-operations (= additions/subtractions/scalar multiplications) sufficient to
compute Az from a (generic) input vector z € C*. Since a non-abelian group
G has infinitely many Fourier transforms, we define the linear complezityof G
by L,(G) := min L,(W), where the minimum is taken over all possible Fourier
transforms W for CG. Combining (2] and [6], we get

L,(G) < 9|G|log |G|

for all finite metabelian groups G. (Throughout this paper, log = log,.) f G
is an abelian 2-group, the classical FFT-algorithms show that

L(G) < 1G] log G .

For the class of elementary abelian 2-groups, i.e. G =~ Cy x - -+ x Cy, the fast
Hadamard-Walsh transforms prove the even better bound

L,(G) < |G|log [G] -

All the algorithms proving the above three upper bounds use (besides addi-
tions and subtractions) only multiplications with complex constants of abso-
lute value < 2. This motivates to study the 2-linear complezity

Ly(G) := min{Ly(W)|W a Fourier transform for CG}

of the finite group G, where Ly(W) is the minimal number of C-operations
needed to evaluate the complex matrix W at an input vector when scalar
multiplications are restricted to complex constants of absolute value < 2. Ac-
cording to the above remark, Ly(G) < 9|G|log|G] for all finite metabelian
groups.



In order to get a lower bound for the 2-linear complexity of a finite non-
abelian group G. we are faced with the problem of estimating L,(W) for
infinitely many Fourier transforms W on G. Nevertheless, combining a result
of Morgenstern and the Schur relations we can prove in section 2 that

L(6) 2 301

e > 2lGllog G/

for any finite group G, where G’ denotes the commutator subgroup of G.

How tight is this general lower bound? Up to now, the elementary abelian
2-groups satisfying L(G) < |G|log |G| seemed to have the fastest Fourier
transforms. But in fact, this is not true: In sections 3 and 4 we present
two infinite classes of non-abelian groups G with L,(G) < 0.6|G|log |G| and
L,(G) < 0.8]|G|log |G, respectively.

2 Lower bounds in the L;-model

In this section we are going to prove a general lower bound for the 2-linear
complexity of any Fourier transform on a finite group G.

Theorem 1 [fG is a finite group, CG ~ @, CH*% | then
61
dd“m .

This result has several interesting consequences.

L:(G) > log

1=1

Corollary 1 For any finite group G,

1
L(G) 2 7(1 + 7=7)[Gl log |Gl > IGlloglG'l-

IG’I

PROOF. CG ~ @b, C%*% implies |G| = LI, d?. As the number of one-
dimensional irreduable representations of G equals [G : G'], see e.g. [13, V,6.5],

we get
Y. di=|G|-[G:G.

d;>1
Hence, by Theorem 1,
£6) = Siog o) - 5 &g a2
d,>1 4
> Gogia- 3 Einglo
2 di>1 4
ZIQMWI%P L6116
1
= 20+ =)IGllog[Gl

IG’I



This proves Corollary 1. O

Corollary 2 If G is abelian then
1
L(G) 2 561 1og |G

PROOF. Use Theorem 1 and the fact that all d; = 1 for an abelian group G.
O

As a special case of Corollary 1 we mention

Corollary 3 If |G'| = 2 then
3
L(G) 2 2IGllog G .

In order to prove Theorem 1 we first recall a special case of
Morgenstern’s Theorem. [17] If A € C™*" 15 invertible, then

L,(A) > log|det A| .

As a second tool we need the so-called

Schur Relations. [13,V, Satz 5.7) Let Dy, ..., Dy be a full set of inequivalent
irreducible matriz representations of CG of degrees dy, ..., dy, respectively.
Then for all 1 < a,b < h and1 <i,j <dgand 1 < k1 < dy, the following
holds:

Gl

dy

S Dal(9)s; - Di(g7 )kt = 8asitbik
geG

Note that the right hand sides of the Schur relations only depend on the
equivalence classes of the irreducible representations of CG. We are now ready
to give the

PROOF OF THEOREM 1. Let G be a finite group of order n and D, ..., Dy
a full set of inequivalent irreducible representations of CG, d; := degree(D;).
If A € C**" is a Fourier transform matrix of CG with respect to Dy, ..., Dh,
the columns of A are parametrized by the elements of G whereas the rows of

A correspond to
U {(a,i,7)1 <4, < da}
1<a<h

i.e. (a,i,j) describes the position (¢,7) in D,. Now let B € C™*" be the
matrix obtained from A by first transposing A and then performing in AT



permutations of the rows corresponding to the inversion (G 3 g — ¢~') and
permutations of the columns corresponding to (a,z,7) — (a,7,%). According
to the Schur Relations, A- B is a diagonal matrix with d? occurences of |G|/d,
for 1 <a < h. Asdet B=tdet AT = tdet A, we get

d
GIa+-+4 _ |G|

Md®  MLde

By Morgenstern’s Theorem, our claim follows. a

- el
|det A = |detA-B|=][[=

i=1

The following example will illustrate (the proof of) Theorem 1.

Example. The symmetric group S3 has (up to equivalence) three irreducible
C-representations: the trivial representation

t: (S35t 1),
the alternating representation
€:(S3 3 7 sgn(x))

and a 2-dimensional representation A realizing S3 as the symmetry group of
a regular triangle. If we take its center of gravity as the origin in 2-space and
denote its vertices by e, €;, €3, then {e;,e;} is a basis and e3 = —e; — e;. The
natural Sy-action we; := e,; yields the following realization of A:

s=(3 %) a0m= (8 1), som= (2 1)

Auz)=(‘1’ }]) ,A(23)=(§, j) aA(13)=(:i {1})
Thus

I 1 1] 1] 1] 1]
I 1 T| =L} —=L| —L}e
1 0] —1| 0] 1] —1]An
A=[0] 4 I 1| =1]| 0]Ax
0 1| =1| 1| 0] —1|Axn
T 0 0] —1| 1]|Axn
M) [ (123) [(132) [(12) | (23) [ (13)

is a Fourier transform on S3. The corresponding matrix B reads as follows:



1T 1] o] 0] 1](1)
T =1 =1] 1} 01132
I 0 1] =1 —-1[(123)
0] (12)
-1 1 o[ —1] —1](23)
-1} -1} -1 0 1[(13)
el An | A | Az | An

and A - B equals the diagonal matrix diag(6,6,3,3,3,3).

oy
I
N e e e e B
|
—
[ ]
—
[e—

3 FFT for a class of Frobenius groups

We are going to consider a special class of Frobenius groups G, constructed
as follows: For n > 2, let F, be the additive group of the finite field GF(2")
and let H, denote the multiplicative group of that field. It is well known that
F. is an elementary abelian group of order 27" and H, is cyclic of order 2" — 1.
H, acts faithfully on F, by automorphisms via H, > hw— (F,3 f— hf).
As hf # f for every h € H,\ {1} and f € Fu\ {0}, H, can be viewed as
a fixed-point-free automorphism group of F,. Hence the semi-direct product
G, := F.H, is a Frobenius group of order 2"(2" — 1), see e.g. (13, V, §8].
The ordinary representation theory of Frobenius groups is well understood,
see e.g. [13, V, Satz 16.13]. In our case, G, has (up to equivalence) exactly
the following irreducible representations:

1) 2" — 1 one-dimensional representations x; (1 < ¢ <27 obtained by com-
P y
posing each linear character 7; of the cyclic group H, with the natural
projection G, — H, ~ G,/ F,, i.e.

xi(fh) == mi(h)
for all f € F, and all h € H,.

(2) One (2" — 1)-dimensional representation « which is induced by any non-
trivial linear character ¢ of Fy:

7=¢TGn-

Note that the restriction of v to F;, equals the direct sum of all non-trivial
linear characters of F,:

TWFh= @ ¢.

12veX (Fn)

Now we can state the main result of this section.
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Theorem 2 For the groups G, defined above,
3
Qn—l
In particular, L3(G,) < 0.6|Gy|log |G, for alln 2 7.

1
Ly(Gr) < (§ + )|Ga|log |Gal .

PROOF. Given a = ¥ ,¢q, 2,9 € CG,, we have to compute xi(a), ..., x2n-1(a)
and vy(a).

In order to compute y(a), write a = S hep, anh with ay := Tjep amf €
CF,. Then

v(@) = D (v 1 Fu)(aw) (k)

heH,

= S ( @ W) (81Ga)(h).

h€Hn 1£VEX(Fn)

According to the last formula we first compute for each h € H, all Y(an),
b € X(F,), by |Hy| evaluations of a DFT(F,). This can be done by fast

Hadamard-Walsh transforms in at most
|Ha| - | Ful log | Fl

arithmetic operations. The matrices (¢ T G)(h) are monomial with nonzero
entries equal to £1. (Observe that ¢(F,) = {£1} because F,, is an elementary
abelian 2-group.) The multiplication of the diagonal matrices (B4, Y(an))
by (¢ T G,)(h) is therefore free in our computational model. Moreover, the
concluding summation is also free since all the summands have their nonzero
entries at pairwise disjoint positions: as 7 is irreducible we have dimy(CG) =
|Ha|2. On the other hand, the summand corresponding to A has its < [Ha|
nonzero entries at the support of the monomial matrix (¢ T Ga)(h).
To evaluate all x;(a) simultaneously we use the coefficients

bh = Z Afp = an(Cth)

fe€Fn

already computed in the first step. According to (1),
xi(a) =n( Y bah),

heHn

and we obtain all x;(a) by a single DFT(H,). Thus we get x1(a),..., x2r-1(a)
with at most Ly(H,) operations. Altogether we have

L2(Gn) < |Hn”Fn|l°g|Fn|+L2(Hﬂ)
< |Gpllog|Fu| + 9|H,|log |H,|

9
< (n+ §—"’})|c;“| .
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As log|G,| > 2n —2'7" for n > 2, we get

Ly(Gr )<( + 57=7)|Gnl log |Gal -

2n1

Comparing upper and lower bounds for the groups Ga:

1
7

(1 + 5,=5)|Gnllog |Gnl ,

th-—*

(6n) < 51+ 53
we see that they asymptotically differ by a factor of 2. This is quite similar to
the situation for elementary abelian 2-groups G where we have

1
5161 log|G1 < L(G) < [Gllog |G .
In the next section, we will present an infinite class of groups G satisfying

3
*IGllog G| < Lo(G) = (1 + )IG|log |G .

it
log |G|

Again, lower and upper bounds differ by an asymptotic factor of 2.

4 FFT for extra-special 2-groups

In this section. we are going to present another class of finite groups with faster
Fourier transforms than those of elementary abelian 2-groups.

Let G be an extra-special 2-group of order 22*1 i.e. the center of G is
of order 2 and equals the Frattini subgroup of G. Up to equivalence, G has
exactly the following irreducible representations, see e.g. [13, V, 16.14]:

1) 2?™ one-dimensional representations xi, ..., X2m
P X

(2) One 2™-dimensional representation 4 which is induced by a linear char-
acter ¢, of a maximal abelian normal subgroup A 4 G. Note that
|A| = 2™*! and either A ~ Cy x C77 or A ~ C7*' (see eg. [13,
I11, 13.8}). Moreover, v | A = E-B‘_1 é:, where the ¢; are distinct linear
cha.racters of A.

Thus like the groups G, in the previous section, extra-special 2-groups have

only one irreducible representation of large degree (= /|G|), all other irre-
ducible representations are one-dimensional. Again, this situation leads to
very fast Fourier transforms:



Theorem 3 For an extra-special 2-group G,
3 3
Ly(G) < ZiG“OE G| + 351Gl -

PROOF. We have to evaluate x1(a),. .., Xxzm(a) and y(a) for a given a € CG.
As before, write @ = Ypegraanh with ap € CA and evaluate the (unique)
Fourier transform W, of the abelian group A at all a,. This takes at most
[G : A]Ly(A) linear operations.

Now we can compute (a) according to the equation

y@)= 3 (v L Aaw)r(h) = Y (EDdilan))(é1 T G)(h) .

heEG/A heG/A i=1

The multiplication of the diagonal matrix (@%, ¢i(an)) by the monomial ma-
trix (¢1 T G)(h) takes at most 2™ arithmetic operations. As we can assume
that one of the coset representatives h € G/A equals 1, and as the concluding
summation is free (see the proof of Theorem 2), ¥(a) can be computed with
at most 2™(2™ — 1) operations.

It remains to compute x1(a),...,Xam(a). To this end, we observe that
any linear character ¢ of G/A can be viewed as a linear character of G by
composing it with the natural projection G — G/A. It is well known that
the linear characters of a finite group G form an abelian group X (&) under
pointwise multiplication, the so-called character group of G. Thus, if x is a
linear character of G and ¥y, ..., %,m are all linear characters of G/A, then
Y1, ..., Xxbm € X(G) are pairwise distinct and x1s | A = x | A By
Frobenius reciprocity, the x; are all linear characters of G whose restriction
to A equals x | A. As

x¥i(a) = Y xwilan) - x¥i(h) = ST i(hA)(x L A)(en) - x(R))

heG/A heG/A

x¥1(a), . .., x%am(a) can be computed from the (x | A)(en) by a DFT of the
elementary abelian 2-group G/A and [G : A] — 1 additional multiplications.
To evaluate all linear characters of G, we repeat this process 2™ times. This
takes at most 2™(L,(G/A) + [G : A] — 1) operations. Altogether, we have

Ly(G) < [G : AlLy(A) + 2™ (2™ — 1) + 27(L2(G/A) + [G:A]-1).
For A~ Cy x C7Y, L,(A) €92 4+ 4(m — 1)2™-1, and

Ly(G) < 2™(9-2™ 1 4+4(m—1)2" 1+ 2" —14m2™ +27 - 1)
9 3
2'2m+1 pud bt



_ 6m+9 (2m+1)22"‘+1
4(2m + 1)

3 3
= 1|G110giG| + :2'|G| -
For A ~ C**', we obtain the slightly better bound

3 3
L4(G) < 5161 og 1G] + 7161 -
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