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Abstract

The linear complexity L,(G) of a finite group G is the minimal num-
ber of additions, subtractions and multiplications needed to evaluate a
suitable Fourier transform of CG. Combining and modifying several
classical FFT-algorithms, we show that L,(G) < 8|G|log, |G| for any
finite abelian group G.

1 Introduction

The design and analysis of efficient algorithms for Discrete Fourier Transforms
(DFT) on finite non-abelian groups has been the subject of several recent in-
vestigations, see the references. The present paper re-investigates the classical
FFT-algorithms for finite abelian groups. Our improved upper complexity
bounds for the DFT on abelian groups automatically lead to improved bounds
for the DFT on metabelian groups, see [6].

The set CG := {a ] a : G — C} of all complex valued functions on the finite
group G becomes a |G|-dimensional C-space by pointwise addition and scalar
multiplication. A natural C-basis is given by the indicator functions of the
group elements. Identifying each group element with its indicator function,
CG can be viewed as the space of all formal sums ¥ ¢ @gg with complex
coefficients. The multiplication in G can be extended to CG:

(;} Ggg) ’ (:1;6 b;.h) = kezc(ggkagbh)k .

Thus CG becomes a C-algebra, the so-called group algebra of G over C. For
instance the group algebra of the cyclic group C, of order n can be identified
with the algebra C[X]/(X™ —1) of polynomials of degree < n with multiplica-
tion modulo X” — 1. By Chinese Remaindering we know that C[X]/(X™ —1)
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is isomorphic to the algebra of n-square diagonal matrices. This isomorphism,
known as the (cyclic) Discrete Fourier Transform (DFT,), can be viewed as
a structural transition from the signal domain CC, into the spectral domain
C™; in particular, the DFT, is multiplicative and thus links the convolution
in C[X]/(X™ — 1) and the multiplication of n-square diagonal matrices. More
generally, if G is abelian of order n. then CG is isomorphic to C* as well.

Every algebra isomorphism W:CG — C" is called a Fourier transform for
CG. With respect to natural bases, W can be viewed as a |G|-square complex
matrix. E.g., if G = Cy is the cyclic group of order n then W = (w*)o<ap<n
with w = exp(2xi/n). It is well known that for an abelian group G of order n
there are exactly n distinct group morphisms G — C*, the so-called (linear)
characters Xi,..-sXn- U G = {g1+---+9n}, then W = (xi(gj) h<ij<n 18 @
Fourier transform for CG. Up to permutations of rows and columns, W is
uniquely determined by G.

The linear complexity L,(A) of a matrix A € C**" is the minimal number
of C-operations (= additions/subtractions/scalar multiplications) sufficient to
compute Az from a (generic) input vector z € C". If P and @ are n-square
permutation matrices, it is easy to see that L,(A) = L,(PAQ). Hence for an
abelian group G, L,(G) := L,(W), where W is a Fourier transform W for CG,
is well-defined. We call L,(G) the linear complezity of G.

For example, L,(C>) = 2, L,(C3) < 8 and L,(Cs) < 22: Ly(Cq) = 21s

trivial. If w is a primitive third root of unity, the computation scheme

Ao = a + o + a;
A] = ay + (al—ag)w — Qa3
Ay = a — @ — (a1 —ax)w

for the DFT; yields L,(Ca) < 8. Winograd [20] gives an algorithm for the
computation of DFT; using 22 linear operations.

In [5], Biichi implicitly shows that L,(G) < 38|G|log |G| for every finite
abelian group G. (Throughout this paper, log = log,.) The constant 38 has
been improved to 15 in [6]. Combining and modifying several classical FFT-
algorithms, we will show in the present paper that

L,(G) < 8|G|log |G|

for any finite abelian group G. However, for special classes of finite groups,
this last result can be improved, see section 2.

2 Classical FFT algorithms revisited

In this section we are going to describe several basic algorithms for the efficient
computation of Fourier transforms for abelian groups.

2



2.1 Good-ThomaS

If K = G x H is a direct product of finite groups, we can construct a Fourier
transform for K from several Fourier transforms for the factors G and H. This
construction is an important tool in the proof of our result, as it leads to upper
bounds for the linear complexity of direct products of finite abelian groups.
In order to prove those upper bounds, we first cite without proof a fact from
linear complexity theory.

Lemma 1 For the Kronecker product A®@ B of A € C**® and B € CH%8, we
have
L(A®B)<b-L(A)+a-L,(B).

The proof can be found in [6], for instance. We can now state the following
important

Lemma 2 IfG and H are finite abelian groups, then
L,(G x H) < |G|L,(H) + |H|L.(G) .

In particular, if L,(H) < c|H|log |H| and L,(G) < c|G|log |G| for some ¢ > 0,
then L,(G x H) <c|G x H|log|G x H|.

PROOF. If W and Wy are Fourier transforms for G and H, respectively, then
the Kronecker product W ® Wy is a Fourier transform for G x H, see (11, p.
516]. By the previous lemma, we have:

L(GxH) = L, (We@Wg) < |G|L,(Wg)+|H|L,(Ws) = |G|L,(H)+|H|L,(G)

The second claim follows by an easy calculation.

Algorithmically, Lemma 2 means that Wey i can be computed by |G| eval-
uations of Wy followed by an intermediate permutation (which is free of cost
in our model) and |H| evaluations of Wg. This algorithm is known as the
Good-Thomas-FFT.

For elementary abelian 2-groups G = C7, repeated application of Lemma 2
yields the Fast Walsh-Hadamard transform with L,(C7) < n2".

Every finite abelian group is isomorphic to a direct product of cyclic groups
of prime power order. Thus Lemma 2 allows us to restrict our analysis of the
linear complexity of finite abelian groups to cyclic groups of prime power order.
From now on, let L(n) := L,(C,) denote the linear complexity of the cyclic
group of order n, i.e. the linear complexity of the matrix DFT, = (w“b)gs,,,b(n.



2.2 Cooley-Tukey

The method of Cooley and Tukey (8] reduces the computation of DFT,, n
composite, to several computations of smaller DFTs. For n = pq, let w be a
primitive n-th root of unity. For a given input vector (ao,...,a,_1) we have
to compute the spectral coefficients

n-1
AF=Za,w“”, 0<u<s<n—-1
=0

As n = pq, the indices & and v have a unique representation g = kg + ! and
v =ip+j where 0 < k,j < p and 0 < 1,i < ¢. Rewriting the above equation,
we obtain

- g lipt ) (ke
At = ) Za'pﬂ“’( Kt
i<g j<p

(Tt ) ) ()

J<p ‘i<q

In order to evaluate Ay, ..., A,_; we first compute, for each 0 < j < p, the
coefficients b;; := 3., @ipy;(WP) (0< 7 <p,0<1<q)bya DFT,. Then we
multiply the b;; by the corresponding ‘twiddle factors’ ' and finally obtain
for each 0 <1 < q the spectral coefficients Agy4: (0 < k < p) by a DFT,,.

Altogether we have to perform p evaluations of DFT,, q evaluations of
DFT, and n — p — ¢ + 1 multiplications by the non-trivial twiddle factors.
Thus

L(pg) <p-L(g)+q - L(p)+pg—p—q+1.
By induction, it follows that, for m € N,

L(p™) < mp™ - L(p) +(m —1)p" —mp™ " + 1.

For p = 2, this yields

L@™) < Sm2m 2" 41

2.3 Rader

If p is prime, Rader [16] suggested computing the D F'T,, via a cyclic convolution
of length p — 1, which in turn can be computed using the DFT,_;. As Z, is a
field, the multiplicative group Z; = Z,,\ {0} is cyclic of order p — 1. Let g be
a generator of Z;. Then the mapping a — ¢* (mod p) is an isomorphism of
(Zp-1,+) onto (Z3,-).



In order to compute A, = ~la,w, 0 < u < p, we first compute

Ao = Y72} a,, which takes at most p — 1 operations. Next we consider

-1
AL:AH—%:Ea,w“”, 1<p<p

r=1

and change the order of summation using the isomorphism described above:
v — g’
po— g*

We obtain
p-2

A=) agpw? ", 0<u<p-2.
v=0

. 1 - = -
Defining A, := A)_,, &, :=ap and @) :=w? , we get

p=2
A, = Z a,&,—y
v=0

by a cyclic convolution of length p — 1. We compute this convolution using
the DFT,_y:

(Au) = DFT; (DFT,1((&)) - DFT,1((@4)))

As (@) is input-independent, we have to perform a DFT,_ | as wellas p— 1
multiplications and a DFT,};. But DFT,”; is (up to an output permutation)
equivalent to 1/(p—1)- DFT,_;, and we can combine the factor 1/(p—1) and
the multiplications with DFT,_1(®y). To compute the A, from A,, we need
p — 1 additional operations. Altogether, we have

Lip)<2-L(p—1)+3p-3.

If p is relatively small, the cyclic convolution of length p — 1 can be more effi-
ciently computed using interpolation at a suitable set of points, see Winograd

[19].

2.4 Bluestein

For arbitrary n, Bluestein’s Algorithm [4] computes the DFT, using a cyclic
convolution of a suitable length N > 2n, which again can be computed using
a fast algorithm for DFTy.

We rewrite the formula

A, = ) aw™ (0<p<n)

o0<r<n



using 2uv = p? + v — (g - v)? to

A, = w1 z Gy P =i

vn

and substitute u; := ajt.s.r-’lzf‘2 and v; 1= w=**/2_ We obtain

2
—utf2 _
w A= E Up Vi -
0<v<n

Thus we can compute the DFT, via a cyclic convolution of length n. Quite
surprisingly, it turns out that it can be more efficient to simulate this convolu-
tion by a cyclic convolution of increased length. For any length N > 2n (the
choice of N will be discussed later), the simulation works as follows, modifying
Bluestein’s original approach: Let Cy = (X|X”" = 1) be the cyclic group of
order N. Consider the convolution UV of the two elements U := 3 gc;cn wi X*
and V := Tocjcn vi( X7 + (=1)"XV="+) in the group algebra CCn. Noticing
that N > 2n, XV =1 and v,_,4n = (=1)"v,_,, we can write

UxV = Z(Z u;v; + (—=1)" Z u,—v_,—)X“—!—X“(..,)

p<n tig<n Ly<n
i=p y-n=u
N n-1
= Z (Z u,v,_, +(—1)" Z u,vp_,+n)X“ +X™(...)
u<n p=0 ' v=u+l
n-1
= Z(Z UUU’U_H)X“'!‘JY“(...)
p<n ry=0

Thus the first n coefficients of U * V are just the desired numbers w“‘zflem
0 u<n.

Now let us look at the complexity of this algorithm. We need n — 1
multiplications to compute U from the input vector (a,). If we compute
U*V = DFT(DFTn(U) - DFTn(V)) using the DFTy, this takes at most
2. L(N) + N operations, see the last section. Finally, we need n — 1 multi-
plications to recover the spectral coefficients A, from U * V. Altogether, we
have

L(n) <2-L(N)+ N+2n-2.

Of course, N should be chosen such that DF Ty can be efficiently computed,
e.g. N = 2821 which was Bluestein’s original choice. On the other hand,
our selection of N should be as small as possible, i.e. close to 2n. Depending
on n, we will choose N = ¢2* with ¢q € {1,3,5,9,27}.

From the definition of U, it is obvious that the last N — n coefficients of
U are equal to zero. In our case where N = ¢2*, we can compute DFTn(U)
by first computing ¢ DFT,’s and then 2¢ DFT,’s, see Lemma 2. If we use
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the Cooley-Tukey-algorithm to compute D F Ty, the N —n zeroes in the input
(which are in fixed positions) save at least 3NV — 4n operations. As N —n
outputs of the final DFTy' are irrelevant, we can again save at least 3N — 4n
operations. Thus

L(n)

IA

3
2. (Q*L(q) a(skt -2+ 1)) _5N+10n—2
< M L(q) + (3k—T)g2¥ + 10n +2¢ - 2.

3 The main result

We will now combine the algorithms described in the previous section to prove
the following

Theorem 3 For any finite abelian group G, L,(G) < 8|G|log |G].

PROOF. According to Lemma 2, it suffices to prove our assertion for cyclic
groups of prime power order n. We use Bluestein’s algorithm and choose N
as follows:

interval for n | choice of N
( 92“!: 151.}2"] 9. Qz“"
3 =
(2% 32 o 5 «QF=2
(-2" 32"] 3 «phet
(324,224 | 27.2%
272k 2k] 2k+l

In the five cases, we obtain the following upper bounds for L(n) (recall that

L(2) =2, L(3) < 8 and L(5) < 22):

Case 1. n € (32F

116

29, N =9.2%2, Then

nlogn > (k —1)2F1.

Thus
L(n) < 2¥L(9)+(3k—16)9-22+10n +16
< 52282 4 97k2%-3 _ 144 .23 + 10n + 16
< %((k 1)25-1) + (27 10)2*~! + 10n + 16
< ?;nlogn ;2"'1 +10n + 16
< 6.75nlogn 4+ 7.12n 4+ 16 .
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Hence L(n) < 8nlogn for n > 61.

Case 2. n € (&2¢,22%, N=5.- 2%=2 Then

nlogn > %2"(:: —4+4log9) > %m* —0.47-2%.

=
&
A

2%-1L(5) 4 (3k — 13)5-2*"2 + 10n + 8

11-2"+14—5k2“—65-2’°‘2+10n+8

20,9

3 (16
20 k

?nlogn -211-2°4+10n+38
6.67nlogn 4+ 6.63n + 8

IA

IA

20 65
k2F — 0.47-2%) + (3 - 047 +11 - 2-)2* +10n +8

IN A

Hence L(n) < 8nlogn for n > 36.

Case 3. n € (§2%,22%], N = 3.2*"", Then

nlogn > 225(k — 3 + log 5) > =k2F — 0.43 - 2% .

Qo|
ool o

Thus

L(n)

IA

2L(3) + (3k — 10)3-2*~1 + 10n + 4
9

8-2"+-2—k2*-30-2*-1+10n+4

%ﬁ(%mk 043-29+ (? 043 +8—15)2* + 10n + 4

IA

IA

%gnlogn —~3.90-2%+10n +4
7.2logn +4.8n + 4

IA A

Hence L(n) < 8nlogn for n > 68.

Case 4. n € (32%, 32", N = 27.2%*, Then

nlogn > %2"(&: —2+1log3) > %k2" —i039~92* .



=
=
IA

9k=3[,(27) + (3k — 19)27 - 257* + 10n + 52

244 .23 4 %kz* —513-2F4 4+ 10n + 52

81,3, . " 81 244 513,
29k —0.32. Sl e e Ll 2
12(41&2 0.32 2)+(12 + g 16) +10n+5

1
%nlogn +0.60 - 2F + 10n + 52

6.75n logn + 10.72n + 52

IA

IA

IN A

Hence L(n) < 8n 1og.n for n > 410.
Case 5. n € (25,2, N = 2F+1, Then
2., 27 \
> — e > —k2F -0.21 - 2%,
nlogn_322 (k 5+310g3)*32 25 -0.21-2
Thus

L(n)

IA

3
2(§(k+1)2"+1—2k+1+1)—5-2k+1+10n-ﬂ2
6(k +1)2° — 14-2* + 10n

6k2* —8 .25 + 10n

64 27 ., (. 64 1
—(=k2*-0.21-2 021 =8)2

5 (552 21-2) + (5021 - 8)2" + 10n
7.12nlogn + 3.5n

N IA

IAIA

Hence L(n) < 8nlogn for n > 16.

We now look at those small prime powers n that do not already satisfy
L(n) < 8nlogn by the above arguments, i.e.

neM := {2,3,4,5,7,8,9,11,13,14,15,17,19,23,25,27,41,43,47,49,
53,97,101,103,107, 193,197,199, 211, 389,397, 401, 409} .

For n € M \ {47,107}, recursive application of the Cooley-Tukey algorithm
(for prime powers p*, k > 1), Rader’s method (for primes) and Lemma 2 (for
composite numbers with more than one prime divisor) yields L(n) < 8nlogn.
This can be easily checked by a little computer program that successively

computes upper bounds for L(n), n = 1,2,3, ... using the bounds given in the
previous section.



For n = 47 and n = 107, Bluestein’s algorithm with N = 96 and N = 256,
respectively, shows that also L(n) < 8nlogn. Altogether, we have shown that
L(n) < 8nlogn for all positive integers n, which proves our theorem. a

The Fourier transform for abelian groups can be generalized to arbitrary
finite groups: By Wedderburn’s Theorem, the group algebra CG of a finite
group G is isomorphic to a suitable algebra of block diagonal matrices:

h
CG~Ep Clixd |
=1

Every such isomorphism is called a (generalized) Fourier transform for G. Since
a non-abelian group G has infinitely many Fourier transforms, we define the
linear complexity of the group G by L,(G) := min L,(W), where the minimum
is taken over all possible Fourier transforms W for G.

Combining Theorem 3 and the results in [6], we get

Theorem 4 If G is a finite metabelian group, i.e. G" = E, then
L,(G) < 8|G|log|G] .
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