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Abstract

We discuss the problem of determining the weight distribution of lin-
ear codes on elliptic curves. It is shown that the weight enumerators
of non-MDS elliptic codes are completely determined by the number
of minimum weight codewords. Using the structure of the group of
rational points of the curves in question, we give a procedure to de-
termine the number of minimum weight codewords. For two classes of
elliptic codes we shall give explicit formulas for this number. Several
examples are presented.

1 Introduction

One of the problems of coding theory is to determine for a given linear code
C its weight enumerator which is defined as follows: If C is an (n, k, d)-code,
1e. 1t has block length n, dimension k and minimum distance d, then for each
w with 0 £ w < n let A,(C) denote the number of codewords in C' which
have Hamming-weight equal to w (i.e. which have nonvanishing coordinates
at exactly w positions). It is customary to replace A, (C) simply by A, if
there is no danger of confusion. Then the weight enumerator Ac(z) of C is
defined by Ac(z) := Y0 _, Awz® € Z[z].

The importance of the weight enumerator of a linear code is partly due
to the fact that the weight enumerator of a (linear) code C is directly related
to the probability of decoding failure of C [1, Chapter 16].

The problem of determining the weight enumerator of an arbitrary lin-
ear code which is e.g. given by its generator matrix seems to be very hard.
Since the minimum distance of a code can be easily derived from its weight
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enumerator, the determination of the latter is at least as hard as the deter-
mination of the minimum distance which is conjectured to be NP-complete
in the case of linear codes. (To be more accurate, the corresponding decision
problem is conjectured to be NP-complete [2, 11]).

Surprisingly there are classes of linear codes, for which the weight enu-
merators are known. For the class of MDS-codes there exist explicit formulae
for the coefficients of the weight enumerators [5, Chapter 11]. (Recall that
an (n, k,d)-code C is called MDS, if d =n — k + 1.)

In this paper we are going to investigate the problem of computing the
weight enumerator of elliptic codes. By elliptic codes we mean linear codes
constructed on elliptic curves over finite fields using Goppa’s construction of
algebraico-geometric codes [3, 7). It turns out that elliptic codes are almost
MDS: If the elliptic code C is an (n,k,d)-code, then either d = n — k or
d=n—k+1. In the latter case C is of course MDS. The computation of the
exact minimum distance of an elliptic code over the finite field F, leads to
the investigation of the group of F,-rational points of the underlying elliptic
curve [7]. :

The fact that the dual of an elliptic code C is again an elliptic code can
be used to compute the dual distance of C, i.e. the minimum distance of the
dual C* of C. Since the duals of MDS-codes are again MDS, it turns out
that the dual distance of an (n, k,n — k)-elliptic-code is k¥ (Lemma 1). Once
the dual distance of C is known, one can use the MacWilliams-identities in
order to give explicit formulae for the coefficients of the weight enumerator
of C. The method involved is similar to the method for computing the
weight enumerator of an MDS-code as is done in [5, Chapter 11]. It turns
out that the weight enumerator of an elliptic (n, k,n — k)-code is completely
determined by the number of minimum weight codewords, that is codewords
of weight n — k. The problem of determining the weight distribution of
an elliptic code thus leads to the problem of computing the number of its’
minimum weight codewords. As a consequence of this one gets the assertion
that elliptic codes of even block-length 2k and dimension % are formally
selfdual which means that their weight enumerators coincide with those of
their duals.

The method used so far works for every linear (n, k,n — k)-code with dual
distance k. The determination of the number of minimum weight codewords
now calls for specific properties of elliptic codes. One of the properties of
elliptic codes one can use is the fact that the rational points of the underlying
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elliptic curve form an abelian group. With the aid of this so-called class group
of the curve the problem of determining the number of minimum weight
codewords can be interpreted as a combinatorial problem in the theory of
finite abelian groups. To be more specific, for a given finite additive abelian
group &, a given subset M of &, a given element g € ® and a given integer
j satisfying 1 < j < |M| we are interested in the number of j-subsets T of
M such that the sum of the elements of T equals g. A constrained version of
this problem is the case where M = ®. Although the general problem seems
to be more difficult than the constrained problem, it can be shown that one
can solve the general problem for given & for every subset M, every j and
every g € ® if one can solve the constrained problem for every j and every
g € ® (Theorem 6).

The above constrained problem is closely related to a series of elliptic
codes which we have called elliptic codes of Type I. We shall give explicit
formulae for the solution of the constrained problem in the case where n and
J are coprime (Section 4). This leads to the number of minimum weight
codewords of elliptic code of Type I in certain cases. The case M = & \
{0} leads to the so-called elliptic codes of Type II. These are considered in
Section 5.

The paper is organized as follows: Section 2 contains a brief introduction
to elliptic codes and curves. Section 3 discusses the problem of the computa-
tion of the weight enumerators of elliptic codes. Here explicit formulae for the
coefficients of the weight enumerators are derived. This Section also discusses
the relationship between the number of minimum weight codewords and the
above mentioned combinatorial problem. Sections 4 and 5 are devoted to
the investigation of elliptic codes of Type I and Type II, respectively. In
Section 6 we show how the solution of the constrained problem leads to the
solution of the general problem (in the above terminology). The last section
presents some examples how to compute the weight enumerators with the
help of the theorems presented in this paper.

2 A Review of Elliptic Curves and Codes

In this section we are going to give a brief summary of elliptic curves and
linear codes arising from them. A more thorough treatment can be found
in [7]. For general facts about elliptic curves and function fields the reader



can consult [4, 8].

Let £ be an elliptic curve defined over the finite field F,. Thus, £ is
an irreducible smooth algebraic curve of genus one. Let us denote by £(L)
the set of L-rational points of £, where L is an algebraic extension of F,.
Further, let P(£) denote the set of prime divisors of £. Since £ is assumed to
be smooth, there is a bijection between P(€) and £(F,), where F, denotes
the algebraic closure of Fy. There is a map deg: P(§) — Z: for P € P(£)
deg(P) is defined to be the (absolute) residue class degree of P. Equivalently,
using the mentioned bijection, one can say that deg(P) is the degree of the
smallest field extension L of F, such that P lies in £(L).

The group D(£) of divisors on £ is defined to be the free abelian group
generated over P(£). Each divisor D on £ has thus a representation of the
form D = Y pepe) dpP where the dp are integers vanishing for almost all
P € P(€). There is a partial order < on D(&): if C = Y pep(eycpP is
another divisor, then D < C if and only if for all P € P(£) we have dp < cp.
The divisor D is called integral if dp > 0 for all P. Each divisor D has
a unique decomposition D = Dy — D,, with integral divisors Dy and D,
There is a special kind of divisors called principal divisors on £: for each
non-vanishing function f on £, the divisor (f) := 2_pep(g) ordp(f) P is well
defined and called the principal divisor of f. The principal divisors form
a subgroup H(£) of D(£) which is isomorphic to K*/F,* where K is the
function field of £. They give rise to a partition on D(£): The divisors C and
D are called equivalent, if there is a function f such that C = D + (f). The
classes under this equivalence relation are called divisor classes. The map
deg extends to D(€) by deg(D) := Y pep(e) dp deg(P). The kernel Dy(€)
of deg contains the group H() and the quotient Dy(E)/H(E) is called the
class group of £. The degree map is thus constant on divisor classes.

The linear space £(D) attached to D is defined to be the union of {0}
and the set of all functions f in K* which satisfy (f) > —D. £L(D) is
a vector space over F; of finite dimension dim(D). The determination of
dim(D) for all divisors D is the problem of Riemann-Roch, the nontrivial
case being the case where deg(D) > 0. (For deg(D) < 0 it is easily seen that
dim(D) = 0. If deg(D) = 0, then dim(D) = 1 if D is a principal divisor and
dim(D) = 0 otherwise, a fact which can also be seen easily.) By the Theorem
of Riemann-Roch we have dim(D) = deg(D) if deg(D) > 1.

If P € £(F,) denotes the neutral element of £(F,) and G € D(E), we
define the trace Tr(G) of a divisor G of nonnegative degree to be the (unique!)
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divisor in £(F,) such that G — deg(G)P and Tr(G) — P belong to the same
class.

The Theorem of Riemann-Roch establishes a bijection between the class
group of £ and the set £(F;). This bijection carries over the structure of
Do(£)/H(E) to E(F,). Thus, £(F,) is equipped with the structure of an
abelian group. The operation in this group is usually written additively.
In order to distinguish between the addition in the divisor group and the
inherited addition in £(F,), we denote the latter by @. Stated in terms
of divisors, the addition @ (also called o-addition) goes as follows: fix an
element P € £(F,). For P;, P, € £(F,) there is by the Theorem of Riemann-
Roch a (unique) divisor P; € £(F,), such that P, + P, — 2P and P; — P
belong to the same class. One defines P, @ P,: = P;. Fixing a model for £,
one can also give explicit formulae for the addition of points. These can be
found in standard textbooks such as [4, §].

Linear codes over the curve £ are constructed in the following way:
take n different points Pi,..., P, € &(F,) and a divisor G € D(E) sub-
ject to the condition ordp(G) = ... = ordp,(G) = 0. Denote by D the
divisor Py + --- 4+ P,. There is a morphism v : £(G) — F," given by
YSf) :== (F(P1),..., f(Pn)). The image C(G, D) of this morphism is called
an elliptic code (over £). For the rest of this paper we shall make the
auxiliary assumptions 0 < deg(G) < n. This guarantees C(G, D) to be
nontrivial and « to be injective. Hence, the dimension k of C(G, D) equals
dim(G) = deg(@). The determination of the minimum distance d of C (G,D)
turns out to be more difficult. Using the Theorem of Riemann-Roch, one gets
the inequality d > n— k. In view of the Singleton-inequality d < n—k +1 [5,
Chapter 2], d can only take the values n — k or n — k + 1. In the latter
case, C(G, D) is MDS. Utilizing the group structure of £(F,) one can derive
a criterion for C(G, D) to be MDS, hence a criterion for determining d:

Theorem 1 C(G, D) is MDS if and only if for every deg(G)-subset J of
{1,...,n} the divisor G — T, P; is not principal.

Proof [7]. 1

In this paper we shall primarily be concerned with two types of elliptic
codes: with the above assumptions, the first class of codes (called codes of
type I) consists of codes for which {P,,...,P,} = £(F,). The second class of
codes (called codes of type II) consists of codes for which D = P, +---+ P o
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and G = aP, for some integer o satisfying 0 < a < n. The minimum distance
of these codes has been determined in [7].

3 Weight Distribution of Elliptic Codes

In this section we shall derive explicit formulae for the weight distribution of
elliptic codes. Actually, the method involved can be used to determine the
weight distribution of any linear code with given dual distance.

Let C be an elliptic code over F, as constructed in the last section. Let n
denote the block-length, k the dimension and d the minimum distance of C.
Then, as was pointed out in the last section, we have d € {n — k,n — k + 1}.
Ifd =n— k41 then C is MDS. This case is not of interest to us, since the
weight distribution of MDS-codes is well-known [5, Chapter 11]. So assume
that d = n — k. Let C* denote the dual of C. By [9, Theorem 2.5] C* is
an (n,n —k,d')-code with & € {k,k+1}. (Actually, the mentioned theorem
implies that C't is an elliptic code, so the assertion on d’ follows.) Since C
is assumed to be non-MDS, so is C* [5, Chapter 11]; thus d’ = k.

Lemma 1 The dual distance of the (n,k,n — k)-elliptic-code C' equals k. g

Let A, and B,, denote the number of codewords of weight w of C resp. C'*.
The MacWilliams identities [5, Chapter 11] relate these numbers:

n—j o i o
(1) Z(n‘} z)Ai:qk_JZ(?_:)B", j:Ojl,..-,n_

=0 =0
Butsince Ag=By=1land Ay =...= A, 4_1=B;j=... = B 1 =0, we
get .
n—j _E .
(2) Z (n.? z)Ai=(?)(qk_J_l)1 3=0,1,...,k—1
i=n—k

If one knows the number A,_; of minimum weight codewords of C, then
it is possible to compute recursively the A,, for all w and hence the weight
enumerator A(z) := 0 _y Ayz” of C. This is done by substituting for j the

values k — 1,k —2,...,0. Using induction we get the following formula for
the numbers A,,:



Theorem 2 Let C be an (n,k,n—k) code with dual distance k. Further, let
Ay denote the number of codewords in C of weight w. Then we have

An—kr = (k i r) S (-1y (" = ) (7 1)+ (—1)"(,c i r) Ani

j=0 J
for allr € {0,...,k}.

Proof Inductiononr. g
Remark. Comparing this result with the weight distribution of MDS-
codes [5, Chapter 11, Theorem 6], one realizes that the assertion of the

theorem remains valid, if one only requests C' to be an (n, k,d)-code with
d>k.

Corollary 1 Let C be an (n, k,n — k)-elliptic-code. Then we have:

1. The weight distribution of C is completely determined by the number
An_i of minimum weight codewords of C.

2. If B, denotes the number of codewords of weight w in CL, we have
By = Ay, i.e. C* and C have the same number of minimum weight
codewords.

3. If n = 2k, then C and C1 have the same weight distribution, i.e. are
formally selfdual.

Proof 1. This is an immediate consequence of the formula in Theorem 2.

2. Substitute in the MacWilliams-identities (1) for j the value k. Then,
noting that A4y =...= A, s 1=B =...=B;_;=0and 4y = By = 1, we
get the assertion.

3. Follows from 1 and 2. g

For the computation of the weight distribution of C it is thus sufficient
to compute the number of minimum weight codewords. For this, we shall
utilize the following

Lemma 2 Let £ be an elliptic curve over Fo, P,...,P, € &(F,) and G a
divisor of € subject to the conditions ordp,(G) = ... = ordp,(G) = 0 and
0 < deg(G) < n. Further, assume that C(G, D) is not MDS. Let Q € £(F,)
correspond to the neutral element of E(F,).
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Then the number of minimum weight codewords of C(G, D) equals (g—1)
times the number of deg(G)-subsets J of {1,...,n} such that

(3) G?P" = Tr(G).

Proof Let C(G,D) be an (n,k,d)-code. Then n = deg(D) and k =
deg(G). If J is a subset of {1,...,n} satisfying (3), then we have by definition
of ®: 3°; P; — |J|Tx(G) € H(E), i.e.

(4) S P, — G € H(E).
J

Conversely, each subset J satisfying (4) also satisfies (3). Since each set J
satisfying (4) gives rise to a divisor D' := ¥_; P; < D for which D' — G is
principal, and conversely, each divisor D' < D such that D' — G ¢ H(E)
determines a subset J satisfying (4) in an obvious manner, the number of
subsets J satisfying (3) equals the number of elements in the set

(5) {D'|D'< D, D' -G e H(E)).

Now consider the number A,_; of minimum weight codewords of C(G,D).
By definition of C(G, D) this is equal to the number of functions f € £(G)
such that there exists a k-subset J of {1,...,n} for which we have f(P;) = 0
for all j € J. It follows that (f)o > T, P;. But since f € L£(G) we have
(f) 2 =G, thus (f) > ;P — G. Since deg(G) = k = |J|, we have
(f) =X, P; — G. So it is not difficult to see that

6) Ak ={fIFeL(G)3TC{L,...,n}: (f) = EJ:PJ' - G}|.

Denote the above set by M (D, G). We define a mapping ¥

¥: M(D,G) —» {D'|D'<D,D'-G e H(E))
f = (N+G

Clearly, 1 is surjective and well-defined. Moreover 1( f1) = ¥(f2) implies
(f1) =(f2), i.e. fo/fi € F,*. Thus the assertion follows. g

Using Lemma 2 one can reformulate the problem of determining the num-
ber of minimum weight codewords of a non-MDS elliptic code C(G, D) as
follows:



Given a finite additive abelian group ®, a subset M of &, a positive
integer k and an element g of &, determine the number of k-subsets
{91,---,9x} of M subject to the condition 5  ¢; = g.

In our applications & is the group ((F,), ®), M is the subset {P,,..., P},
k equals deg(G) and g is Tr(G). It should be pointed out that we are merely
interested in a constrained version of the above problem since the group

(E(F,), ®) is of the type C, x C,,, where C,, and C,, denote the cyclic groups
of orders m and n [6).

In the next section we are going to solve the above problem in special
cases for the elliptic codes of types I and IL

4 Weight Distribution of Elliptic Codes of
Type I

Let £ be an elliptic curve over F,. Further let £(F,) = {P,,...,P,} and
choose a divisor G € D(€) subject to the conditions 0 < deg(G) < n and
ordp (G) = ... = ordp,(G) = 0. Put D := P, +... + P,. We call the code
C(G, D) an elliptic code of type I (cf. Section 2). In the following we are
going to determine the weight distribution of C(G, D).

Let & be an additive finite abelian group of order n and j be an integer
satisfying 0 < j < n. For g € & define

Si(9:8):={T C® | |T|=j, Yt =g}
teT
and s;(g; ®) := |S;(g; ®)|. The following is a reformulation of Lemma 2:
Lemma 3 Assume that the code C(G, D) is not MDS. Then the number of

minimum weight codewords of C(G, D) equals (¢ — 1) - Saeg(c)(Tr(G); E(F,))
where Tr(G) € E(F,) is the trace of G. 1

H

The main result about the numbers s;(g; 8) is given in the following

Lemma 4 Let ® be an additive finite abelian group. Further, let j be an
integer prime to |®|. Then for all g € ® we have

1 e
5(g78) = ,@I(j )



Proof Since the sets S;(g1;®) and S;(gy; ®) are disjoint if g; and g,
are different elements of ® we get the relation

|&
¢ > siei0)= ().
Now let g,g be elements of 8. Then there is a bijection between S;i(g;®)
and Sj(g + jg; ®) which maps a set T € $;(g; B) onto the set {t +g | ¢ €
T} € Si(g + jg; B). So we have

Vg,0€ 6: 5;(9;8) = s;(g + jg; B).

Since j and |®| are assumed to be coprime, multiplication by j is an auto-
morphism of &, i.e. j& = &. Hence together with (7) we get the assertion.
|

Combining the results of this section with Theorem 2 we get the following
explicit weight distribution for elliptic codes of type I:

Theorem 3 Let C(G, D) be defined as above. Suppose that C(G, D) is not
MDS and j := deg(G) and n := |E(F,)| are coprime. Denote by A, the
number of codewords of weight w in C(G, D). Then we have

U S e

Jorallr € {0,...,7}. &

The question, when the code C(G, D) is MDS has been answered in [7].

The reformulated result reads as follows.

Theorem 4 The code C(G, D) is MDS if and only if E(F,) ~ Cy x Cy and
deg(G) =2 and the trace of G is the neutral element in E(F,).

Proof [7]. &
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5 Weight Distribution of Elliptic Codes of
Type 11

Let € be an elliptic curve over F,. Denote by P, P,,..., P, all the different
F,-rational points of £. Without loss of generality, let P correspond to the
neutral element of (£(F,),®). Further let j, 0 < j < n be an integer and
denote by G the divisor jP. Put D := P+ ..+ P,. Then C(G,D) is an
elliptic code of Type II.

In accordance to the present situation where |E(F,)| = n+1, let & denote
an additive finite abelian group of order n + 1 and j be an integer satisfying
0 < 7 < n. Further let 8" denote the set of nonzero elements of . For

g € ® define
IT| =3, t=g}
teT

and 3;(g; &) := [S;(g; B)|. Again, the following is a reformulation of Lemma. 2:

Lemma 5 Assume that the code C(G, D) is not MDS. Then the number of
minimum weight codewords of C(G, D) equals (¢ — 1) - Saegc)(P; E(F,)). 0

Si(g;8) := {T C &*

The next lemma. gives the value of 3;(g; ®) for different j:

Lemma 6 Let ® be an additive finite abelian group. Further let 7 be an
integer such that |®| is coprime to j'. Then one has

(%71 + coger-n) forg =0,
3;(9;8) = L (18] -1 | |
w1 (7571 #cvter-n) 4t porg 0.
Proof First observe that
(8) 3i(9;8) =3;(g;8) +3;_1(g; 8).

By Lemma 4 s,(g; ®) = I_éI(I?I) for all 4, 1 < u < j, since |&| and j! are
assumed to be coprime. Induction on j yields the assertion. Note that the
reason why one gets different formulae for g = 0 and g # 0 is the fact that
31(0;8) =0 while 3;(¢;8) = 1if g £ 0. 0

Lemma 5 and Lemma 6 in combination with Theorem 2 yield the following
weight distribution for the code C(G, D):
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Theorem 5 Let C(G, D) be defined as above. Suppose that C(G, D) is not
MDS. Let j := deg(G) and n := |E(F,)| and assume that j! and n are
coprime. Denote by A, the number of codewords of weight w in C(G, D).
Then we have

Anjir = (.” )f(—l)‘(”““f +")(q'-‘—1)

J—r =0 i

e (e FYSI D) @-1

n
forallr € {0,...,5}. n

Remark. The assumptions of the above theorem are satisfied if for exam-
ple the class group of € is of prime order.

In [7] necessary and sufficient conditions for C(G, D) to be MDS are given.
We are not going to discuss the conditions in detail.

6 The General Problem

In this section we are going to outline briefly the general problem of deter-
mining the weight distribution of an elliptic code. The main result of this
section is the assertion that if one knows the weight distribution of every
elliptic code of Type I, then one can derive explicit formulae for the weight
distribution of an arbitrary elliptic code.

In Section 3 we reduced the problem of determining the weight distribu-
tion of an elliptic code to a combinatorial problem in the theory of abelian
groups. This Problem in mind, let us define for a subset M of the abelian
group & and an element g € G

Silg; M) :={T C M | |T| =3, St=g}
teT

and s;(g; M) := |S;(g; M)|. Note that 3;(g; &) = sj(g; ®*). It is easy to
see that an elliptic code C(G, D) is MDS if and only if 5;(g; M) = 0 where

= deg(G), M = {P,...,P}if D = P+ .--4 P,, & = &(F,) and
g Tx(G).
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According to the results in Section 3 the number of minimum weight code-
words of an arbitrary non-MDS elliptic code over F, equals (g — 1)s;(g; M)
for appropriate j, M, g and &. In view of Theorem 2 the weight distribution
of an elliptic code is known, once one knows the numbers sj(g; M). In or-

der to relate the numbers s;(g; M) with the numbers sz(a; ®) we need the
following

Lemma 7 Let ® be a finite abelian group, M C &, J a natural number with
1<j<|M|,ge® andbe &\ M. Then we have

(9) $i(g; M U {b}) = s;(g; M) + s;_1(g — b, M).
Proof Denote by S the set
S:={T € S;(g; MU {8}) | beT}.
The mapping £:S — S;_1(g — b; M) defined by E(T) := T\ {b} is clearly

a well defined bijection, since ¥ ¢ M is assumed. Hence we have |S| =
sj—1(g — b; M). On the other hand, the set Si(g; M U {b}) is the disjoint
union of S and Sj(g; M). Hence the assertion follows. g

Having Lemma, 7 at hand, it is possible to give a formula for s;(g; M) in
terms of the numbers s,(a; M U {b}).

Lemma 8 With the assumptions of Lemma 7 we have

J

silgs M) = 3 su(g—(j — p)b; MU {b})(=1)"*

n=2

+H=1)""xmlg - (7 — 1)b)
where xa is the characteristic function of M.

(10)

Proof The formula follows from (9) using induction on J. Note that
s1(a; M) = xu(a). 0

Formula (10) is the basis of a recursion procedure which at the end yields
a formula for s;(g; M) as an integral linear combination of numbers Su(a; ®)
for 4 < j and appropriate ¢ € & and numbers xr(a’) for appropriate subsets
M C L C ®and a € ®. Since the formula is very lengthy, we are not going
to discuss it in detail.

Theorem 6 With the above assumptions, the number si(g; M) can be ezx-
pressed as an integral linear combination of the numbers $u(a,;8),2< u<j
and x(b) for appropriatea, € &, b€ & and M C L C &.
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7 Examples

This section contains several examples how to compute the weight distribu-
tion of elliptic codes with the aid of the theorems presented in this paper.

Example 1 Consider the elliptic curve £ over F5 given by the Weierstrafl-
equation

y =242z 4 1.
£ has seven Fs-rational points. Denoting the point with the projective coor-
dinates (0 : 1 : 0) by oo, the other six points have the affine coordinates

P =(12), P=(1,-2),
P3 = ("'2$ 2)! P4 (_2$ _2)1
Py =(0,1), Ps=1(0,-1).

Let the divisor G be given by G = (f)o where f = (z+1)(z—2)/(z*+z +1).
It is easy to check that ord,,(G) = ordp,(G) = - -- = ordp,(G) = 0. Further
deg(G) = 4. Let D := oo+ P, + --- + Ps. According to [7, Theorem 3] the
code C(G, D) is not MDS. It is a (7,4, 3) code. By Lemma 3 and Lemma 4
the number of codewords of weight 3 in C(G, D) equals

(5 - 1)%(1) _ 2.

Using Theorem 3 we get the following weight enumerator for C(G, D)
14027 + 200z° + 2042° + 60z* + 202° + 1.

[

Example 2 With the notations of Example 1 let now G := 400 and D :=
P+ ---+ Ps. By [7, Theorem 1] the code C(G,D) is not MDS. Thus
C(G, D) is a (6,4,2)-code. Taking oo as the neutral element of £(F5), we
have Tr(G) = . So, by Lemma 5 the number of minimum weight codewords
of C(G, D) equals 434(0; C;) where C; denotes the cyclic group of order 7.
By Lemma 6 the number of minimum weight codewords of C(G,D) thus

equals
1 {6
1(9)+9) -

Theorem 5 now yields the following weight enumerator for C(G, D):
1722° 4+ 2162° + 1922* + 322° + 1222 + 1.
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Example 3 The following example will demonstrate how to compute the
numbers s;(g; M) from the numbers s,(a; ) for & = C; = Z/7Z, j = 4,
M = {2,3,4,5,6} and ¢ = 0. The result will be then used to compute
the weight distribution of the code C(G, D) where G = 400 and D = P, +

P3 + ... + P, where we again have used the notations of the foregoing two
examples.

By Lemma 8 we have

4

$4(0; M) = 3" 3,(0 — (4 — p); Cr)(—1)"* — xpe(=3).

p=2

Using Lemma 6 we compute s,(0; M) = 1. The number of minimum weight
codewords of C(G, D) thus equals 4. C(G, D) is a (5,4,1)-code. Its weight
enumerator, which can be computed using Theorem 2, equals

2082° + 2442% + 1442° + 2422 + 42 + 1.

Example 4 We begin this example by computing the values s;(a; Cs) for all
values 1 < j < 8 and a € Cy where Cj is the cyclic group of order 9.

First of all, we remark that s;(a;Cg) = sg_;(—a;Cs). This can be seen
easily by looking at the complements of the sets in §;(a;Cp) and taking
into account that the sum of the elements in Cy equals 0. Secondly, by
Lemma 4 we have s;(a;Cy) = %G) if j is coprime to 9. Hence we only have
to compute s3(a; Cs) for all @ € Cy. By considering the sets {t + 1 | ¢ €
T} for T € S3(a;Cs) we can show similar to the proof of Lemma 4 that
s;(a; Cy) is constant (as a function of a) on the residue classes of Cy/Cs.
Hence, identifying Cy with Z/9Z and taking for the elements the residue
classes of the numbers from 0 to 8, we see that it only remains to compute
33(0; Cs), 53(1; Cg) and s3(2; Cy). This computation can be done by hand or
by a small pocket calculator. The result is

83(0; Cg) = 10, 33(1; Cg) = 9, 33(2; Cg) =9,
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The following is a list of all the values of s;(a;Cg) for 1 < j < 4:
Va € Cy51(a;C) =1
Va € Cy: 85(a;Cy) =4
53(0; C) = 53(3; Co) = s3(6; Cy) = 10
33(1; Cg) = 53(4;Co) = 83(7; Co) = 9
83(2; Cq) = 33(5; Co) = 33(8;Cy) = 9
Va € Cg: 84(a;Cy) = 14.
Now let £ be the elliptic curve over Fs defined by
y¥=2>+z+1.

This curve has 9 rational points over F5. Using the explicit equations for
adding the points on the curve [10] one computes the group £(F;) to be of
type Co. Let co denote the point with the projective coordinates (0: 1 : 0).
Further let the other 8 points be denoted by P, ..., Ps and let G := 400 and
D := P, +---+ P;. Then the trace of G is oo which is the neutral element of
E(F5). So by Lemma 5 the number of minimum weight codewords of C(G, D)
equals 434(0; Cy). In order to compute 34(0; Cy), we use the formula (10)
which yields

4

34(0; Co) = D 5,(0; Co)(—1)**,

w=2
We thus get
354(0;Co) =4 — 10 + 14 = 8.

The number of minimum weight codewords of the (8,4,4)-code C(G, D) is
32. Hence we get by Theorem 2 the following weight enumerator for C(G, D)

1122% + 19227 + 19228 + 962° + 3224 + 1.

Example 5 Let the elliptic curve £ and the point co be defined as in the
previous example. P = (2,1) is a point of order 3 of £(Fs). We can identify
it with the element 3 in Cy. Let G =3P and D = Y Qee(Fs),@zp @ The code
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C(G, D) is an (8,3,5)-code. The number of minimum weight codewords of
C(G, D) equals 4s3(3; M) where M = C, \ {3}. By (10) we have

3

s3(3,M) = 3 5,(3~ (83— p)3;Co)(—1)** + 1.

u=2

We thus have
s3I M)=—-44+10+1=171.

The number of minimum weight codewords of C(G, D) is equal to 28. We
thus get the following weight enumerator for C(G, D)

162% + 5227 + 2825 + 282° + 1.
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