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Abstract

The acyclic directed Steiner tree problem (ADSP) requires a minimal outward
tree within an acyclic digraph with edge costs GG = (V, F, d) which connects
a root r with a distinguished subset S C V, #S = k. The best possible
performance guarantee of any polynomial approximation algorithm for ADSP
cannot be less than ilogk unless P O NP. The presented series of heuristics

A, has a performance guarantee k%(l +In k)"~1. This implies that that {A4,}
is a polynomial exp[y/4InkIn(lnk + 1) —In(In &+ 1)]-approximation scheme for
ADSP.
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1 Introduction

The general Steiner tree problem in graphs requires a minimum cost tree span-
ning a distinguished node set S in a network . This problem is investigated for
different types of networks. We will mention below the following cases: usual
networks with edge costs (NSP), node-weighted networks (NWSP) where the
cost of a tree is the sum of edge costs and prescribed costs of its nodes, acyclic
directed networks with edge costs (ADSP), directed networks (DSP).

We consider the Steiner tree problem for acyclic directed graphs, i.e directed
graphs where no directed chain leads from any node to itself.

Acyclic directed Steiner tree problem (ADSP).Given an acyclic digraph
G = (V,E,d) with edge costs d : E — R*, S C V and r € V, find a mini-
mum cost outward-directed tree from a root r containing S (minimal Steiner
tree).

For an instance of the general Steiner tree problem, Smt and smt denote
the minimal Steiner tree and its cost, respectively. The elements of the set S
are called terminals. The number of terminals is denoted by k.

ADSP is also known as the Steiner arborescence problem in acyclic networks
[5]. It has various practical applications. The most important occurs in biology
while constructing philogenetic trees [3]. A number of papers are devoted to the
case of a digraph embedded in a d-dimensional rectilinear metric. For d = 2, a
fast and effective heuristic was proposed in [11], however this case has not yet
been shown to be N P-hard. An exact exponential-time algorithm for ADSP
based on embedding of a graph in a d-dimensial rectilinear metric was given in

[10].

The most of cases of the general Steiner tree problem (NSP, NWSP, ADSP,
DSP) are N P-hard [6], so many approximation algorithms appeared in the last
two decades. The quality of an approximation algorithm is measured by its
performance ratio: an upper bound on the ratio between the achieved cost and
the optimal cost. A worst-case analysis for some approximation algorithms
was provided to find its exact performance ratio. For the most complicated
cases, a performance ratio may depend on the number of terminals. From the
other side, significant progress in low bounds for approximation complexity of
N P-hard problems has been made in the last few years [15].

The approximation complexity of NSP and NWSP is already determined.
NSP belongs to M AXSN P-class [2], so a constant factor approximation al-
gorithm exists [13] and for some € > 1, e-approximation is N P-complete [1].
For NWSP, a 2log k-approximation algorithm was designed [7]. From the other
side, the famous set cover problem may be embedded in NWSP. This implies
that NWSP cannot be approximated to within less than ilog k unless P D NP
[9].1 Therefore, the only question for these problems is still open: what exact

'Here we use P to mean the complexity class DTIME[nPo¥¢°9m)



constants separate polynomially solvable and N P-complete approximations?
For NSP, this constant is at most 14 log2 ~ 1.69 [17]. For the euclidean and
rectilinear subcases of NSP, these constants are at most 1 + log % ~ 1.1438

[17] and & ~ 1.271 [18], respectively.

The approximation complexity of ADSP and DSP is still unknown, the only
we can say that the set cover problem can be transformed to ADSP, so these
problems are not easier to approximate than NWSP. To determine an upper
bound of the approximability of ADSP we may compare it with the next already
distinguished approximation complexity class. The famous represantative of
this class is the chromatic number problem (CNP). This class is characterized
by the existence of € > 0 such that the n°-approximation is N P-complete [9].
The main result of the paper says that to approximate ADSP is easier than to
approximate CNP.

Theorem 1 There is a polynomial-time exp[y/4In kIn(Ink + 1) —In(In k +1)]-
approzimation scheme A;, | = 1,2, ..., for the acyclic directed Steiner tree prob-
lem. The performance ratio of an algorithm A; is

1
[

k(14 log k)1,

where k is the number of terminals. The runtime of an algorithm A; is O(n? +
nl_lkl), where n is the number of vertices of the input graph.

Remark 1 The function

41In(ln k41

In k&

k
exp[\/4lnkln(lnk +1)—In(lnk+1)] = Py

is a subpolynom, i.e. its growth is less than k¢ for any ¢ > 0.

We believe that the approximation complexity of ADSP is characterized by
the presented series of heuristics.

Conjecture 1 ADSP cannot be approzimated with subpolynom guarantee un-
less P= NP.

In the next section we describe in termins of contraction several known heuris-
tics for Steiner tree problems and a new level-restricted relative greedy heuristic.
In Section 3 we estimate an approximation of optimal Steiner trees for ADSP
with level-restricted Steiner trees. A formal definition of heuristics A; with a
runtime analysis is presented in Section 4. The last section is devoted to the
proof of the performance ratio claimed in Theorem 1.



2 The Greedy Contraction Framework

At first we assume that the digraph G is transitive, i.e. for any « — v-path, in
G there is an edge (u,v) € E. Moreover, the cost of any edge in G coincides
with the cost of the minimal path between its ends. Gg denotes a subgraph of
G induced by the set SUr. Mst(S) is the minimum spanning tree of G's and
Moy = My(S) is its cost.

A full Steiner tree does not contain internal terminal nodes and it has only
one edge from its root. We can split Smt into edge-disjoint full components. A
full tree has a level [ if every path from its root to any leaf has at most [ edges.

Contraction of a tree 7" means reducing to 0 the costs of edges of Mst(S)
coming to the terminals of T (or edges of (/g between terminals of 7" for undi-
rected Steiner problems). We denote the result of contraction by S/T. So
contraction reduces the value My (S5).

For all the Steiner tree problems, the following greedy contraction framework
is successfully used in approximations.

Greedy contraction framework (GCF)
(1) repeat until My(S) =0
(a) find a full Steiner tree 7™ in a class K which minimizes
a criterion function f(T): T* < arg mingeg f(T).
(b) insert 7™ in LIST.
(c) contract 7™, S « S/T™*.
(2) reconstruct an output Steiner tree from trees of LIST.

Many famous heuristics can be embedded in this framework considering
different definitions of a class K and a criterion function f.

The minimum spanning tree heuristic (MSTH) [13].
K consists of all paths and f(7") = d(T).

The Rayward-Smith’s heuristic (RSH) [12].
K contains all stars and f(7T) = D)

—— > where r is the number of leaves of T.

The generalized greedy heuristic (GGH) [16].
K consists of trees with 3 terminals and f(1") = d(T') — (Mo(S) — Mo(S/T)).

The size-restricted relative greedy heuristic (SRGH) [17].

K = K, contains all trees with at most r terminals. f(7T") = m

To determine a performance guarantee of an algorithm A embedded in GCF
we may bound the following two ratios:

smi &

a| =
smt '



where smi ;- is the the minimum tree cost in the family K containing all Steiner
trees with full components belonging to K ;

cost 4

g = 3
smtﬂ

where cost 4 is the cost of the output tree of the greedy algorithm A.

MSTH gives a1 < 2 and a3 = 1 for NSP, and a1 < k and a; = 1 for NWSP,
ADSP.

RSH gives a; < 5/3 and a4 - ay < 2 for NSP [14] and ay - ay < 2logk for
NWSP [7].

GGH gives a; < 5/3 and a; - ay < 11/6 for NSP [16].

SRGH gives lim, ., a; = 1 [4] and lim, ., a3 = 1+ In2 for NSP [17]. In
other words, it induces a polynomial (14 In 2)-approximation scheme for NSP.

In this paper we present a level-restricted relative greedy heuristic

(LRGH).

The class K = K consists of full Steiner trees with at most [ levels. The
criterion function is the same as for SRGH:

_am
T = 3008y - (ST W

Theorem 2 of the next section says that a; < kT for DSP. The rest of the
paper is devoted only to ADSP. In Section 5 we prove that ay < (1 + logk).
Unfortunately, we cannot exactly compute arg ming, f(7) for [ > 3. Section 4
shows how we avoid this obstacle restricting the class Kj.

3 Level-restricted Steiner trees

A Steiner tree is called [-restricted if the level of its full components does not
exceed [. Smt; and smit; denote the minimal [-restricted Steiner tree and its
cost, respectively. The following theorem bounds the approximation of minimal
Steiner trees with minimal [-restricted trees.

Theorem 2 For any instance of the directed Steiner tree problem,

1
smt;/smt < k7.



Proof. We will construct Smt; for every full component of Smt separately, so
we can assume, that Smt is a full Steiner tree.

At first we introduce some denotations. Let T'= Smt and v be its node. v
denotes the set of all descendants of v and s(v) denotes the number of terminals
in v, e.g. s(r) =k. Son(v) is the set of all sons of v in 7. Let

Vi={veT, s(v)> ET& s(v') < kT for any v’ € Son(v)},

=1,.,0—-1, V=5, Vy = {r}. Forany v € V;, i = 0,...,[ — 1, denote
Son()_vﬂVH_l

Let 7' be a tree with the node set V! = Ul_,V; and the edge set E' = {(u, v),
u € V! v e Son'(u)}. The cost of an edge (u,v) in T' coincides with the cost
of the u — v-path in the tree T'. Note, that the tree 7' is an [-restricted Steiner
tree, since u ¢ v for any w # v, wu,v € V; (Fig. 1, Steiner tree edges are

dotted).
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Figure 1: The [-restricted tree T! drawn from a full Steiner tree

Let w € Vi, Son(u) = {u, ..., U—y()}. For every j = 1,...,t, denote U; =
Son!(u) N aj, d(u;, u}) = maXyer, d(u]7 v). Then

> Z|U| wj, uf) + d(u, uj)) =

UESonl(u)



t t
Z|U|d _jinlaxt|Uj|Zd(u,u;). (2)
=

7=1
Note, that 3°,crr; s(v) = s(u;) yields [Uj| minyev;,, s(v) < s(u;) and

max |Uj |U£nvlﬂls( v) < max s(u;). (3)
Since minyev;,, s(v) > BT and max;=1,. ¢ 5(u;) < k+ (3) yields
max |Uj| < k. (4)
7=1,...,1

Inequalities (2), (4) imply

X o) <k Y

UESonl(u)

Note that all u — uj-paths are edge-disjoint in the tree T'. Thus,

= Z Z d(u,v) <

ueVt veSont(u)

t(u)
KT d(u,ul) < kTA(T) O

weVij=1

4 The Series of Algorithms

In this section we construct recursively the series of algorithms {A4;,{ = 1,2, ...}.
For any [, the algorithm A; is LRGH with the restricted subclass of K, i.e. it
approximates the minimal [-restricted Steiner tree.

A coincides with MSTH.

Since G's has no cycles, Mst(S) consists of the cheapest edges coming to
S-nodes in G's. For any s € S, denote the cost of such edge by m(s) =
minges d(s', s). So the output cost is My = Y, cqm(s).

Ay coincides with LRGH.
Our goal is computing of Step (a) of GCF for the function (1).

We need the following denotations. Let v € V = S, dy = minsesy, d(s, v) =
d(sp,v). S(v) and ¢(v) denote the set of all S-descendants of v and its size,
respectively. For any s; € S(v), d; = d(v,s;), m; = mingegd(s,s;). We assume
that the set S(v) is enumerated in such way that 4= < ditL

m; — Mit1’

The class K = Ky consists of 2-level full Steiner trees. Every such tree is
determined by its root, unique internal node v € V — S and leaves (Fig. 2,
MST-edges are dotted).

The following lemma makes possible computing of minyeg, f(1).
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Figure 2: Minimum spanning and 2-restricted Steiner trees

Lemma 1 For anyv eV — S,

I d
min f(T) = min =2=0"
T3v 7=1,..,t(v) ZZ:I m;

Proof. Let T* = arg min,er f(1'), and {(s§,v), (v, s7), ..., (v, sf«) } be its edges.
We can rewrite (1) as follows
d(s5,v) + 2ie d(v, 55)

>ilym(sy)

(1) =

We may replace sy by sg in 1™ without increasing f since d(sg, v) < d(sg, v).
Let s € S(v) and

d(v,s)

m(s)

d(v,s*) d(v, s7)

()

m(s7)  imheatt m(s?)

<

(5)

To prove Lemma we will show that f(7™ U (v,s)) < f(1™). Indeed,

since T* minimizes f. Therefore, i&’;:)) < f(T*). Thus, inequality (5) yields

e e = d(T*) + d(v, s) d(T)
F(T™ U (v,9)) S m(s¥) + m(s) . Yi m(s)

= (1) <

The algorithms A;, © > 3.



As mentioned above, we cannot exactly find argming, f(7'). So we are
looking for a minimum of f in a subclass of K defined below.

We define a tree Tj(u), [ > 2, recursively. For any u € V, Ty(u) =
argmings, f(T). For any s € 9, denote by V(s) the Voronoi region of s,
ie. Vg(s) ={v € V,s=argmingsd(s,v)}. To determine Tj(u), [ > 3, we use
the following

Procedure
Ti(u) < (S0, u) = arg mingegs d(s, u);
J(T1(u)) 4= o0
S +— SUu;
repeat forever
v*  argmin,ey(y F(Ti1(9))
if f(T(w) VT 1( *)) > f(1i(u)), then exit repeat
Tl(u) — Tl( ) uT_ 1(1]*)
contract 7j_1(v")

Remark 2 f(1;(v*)) < 1.

Indeed, for a non-zero edge e € Mst(5), f(e) =1 &

Now we can present the algorithm A;, [ > 2, as follows:

Algorithm A;
(1) repeat until My(S) =0
(a) u* «— argmin,ey f(Ti(u)).
(b) insert Tj(u*) in LIST.
(c) contract Tj(u*), S < S/Ti(u*)

(2) reconstruct an output Steiner tree from trees of LIST.

Now we will estimate time complexity of algorithms A;. For brevity, the
sets and its cardinalities will have the same denotations.

To compute the graph G's we need an O(F)-breadth-first-search. Mst(S)
can be obviously found in time O(%). Thus, Ay runs in time O(L).

For Ay, we need to know all distances between V — S and S (O(V?)), then
in time O(S) we can find T5(u) for any u € V — S (Lemma 1). Thus, the total
runtime of Az is O(V? + S?V).

For the case ¢ > 3, we may find all pairs shortest paths for the input
graph G' (O(V?)). A runtime of Procedure T)(u) is rt; = O((V.S)'~1), since
rt; = rt;_1V.S and rty = O(VS). Thus, A; has a runtime O(V'=15%).



5 The Performance Guarantee

Our first goal is to show that the minimum of the function f in the item (a)
of Algorithm A; is not far from the minimum in the whole class K;. In other
words, we generalize Lemma 1 for arbitrary [.

Lemma 2 Let 1) = argming, f(T') and v* be the unique son of a root of T}.
Then

F(T(w) < FI7) 2+ log k)2 (6)

Proof. Induction on {. The case of [ = 2 follows from Lemma 1. Denote

= (2+logk)~%and S* = SNTy.

At first we consider the case of S N Tj(v*) C S*. Consider ADSP for S*
with a root v*. In above denotations, let Smi;_y and smt;_; be the minimal
| — 1-restricted Steiner tree and its cost, s;_1 = smt;_1¢;—1 and My = My(S™)
be the cost of the minimal spanning tree Mst(S*). Let dy = d(Ti—1), My =
Mo (S*/T;—1) and my = My — M;. By induction f(T;_1) < f(I})ci—1. Since
F(I7,) < f(Smt_1), we obtain Ti—ll < Sjl\/fol. After contraction of Tj_y = T} |
the procedure finds 772 |, T} | and so on. Denote their corresponding values by

d;, M; and m;. By induction Ti—"i < ]\S/}i__ll and, therefore

d;

M; < M;_1(1-
Si—1

) (7)

Now we apply an analysis technique due to Leighton and Rao [8] to prove two
following inequalities. Unraveling (7), we obtain

M, < Mo T[(1 - -

=1 Sl-1

Taking natural logarithm on both sides and simplifying using the approximation
In(1+4 2) < &, we obtain

.
My > Luizt d;
r Si—1

In

The procedure interrupts when f begins to increase. But we will continue it
until M, > s;—1 > M,41. So M,41 < s;—1. The inequality Ti—‘”ri < SJZW;: implies

dri1 o m]\Z—tl < 1 Therefore, the inequality My < k - smt;_; yields

Si—1 —

Zgzl dz + Mr—l—l + dr—l—l

Sl—1

<24+1Ink (8)

Inequality (8) holds, since Remark 2 allows us to assume that f(77)¢; < 1. The
inequality (6) follows from the following series of inequalities:

Fn) = S <

10



do+ 32y di _ do+ 3000 di+ Mgy _ (©)
Mo — M,y — My -
do + smti_icr _ (do + smti_1)e
My - My
Inequality (9) holds, since both its sides are less than 1. Thus, we proved (6)
in the case of SN1T;(v*) C S*.

= f(I7)a

Now we turn to the case of an arbitrary set S N 7j(v*). We partition m;
of the tree Tf_l into two parts m; = m; + m;, where the first part is the sum
of costs of edges coming to S*-vertices of Tf_l and the second is the sum of
costs of edges coming to the rest of S-vertices of Tf_| in the tree Mst(S). We

*

also partition d; = d¥ + d; in the same proportion as m;, i.e. % = T% Assign
d; + 0if m; = 0, and df + 0 if mJ = 0.

The condition of the procedure interruption implies

F(T(w) < F(Ti(w™) = T7H (07)),

ot
f——l_Thus7
My

J(T(™) = [Ty () =
d(T[(U*)) < dO + Zr—l—l d* + Zr—l—l .
w0~ S i S e
dO _I_Er—l—l d* + Z: 1 7' . . dO _I_Er—l—l d*
Y mi A im0 T S my

f(h(w™) =

Note, that the previous argument for the case of SNTj(v*) C S* is true for
the values d7, m? and M; = M;_y — m} if we omit such i’s for which m? = 0.
Therefore,
do+ 504 ar

ik m

f(Ti(v) < <fIa &

Now we are able to prove the main result of the paper.
Proof of Theorem 1.

Let T be the output tree of Algorithm A; and T}', T2, T} be the trees
inserted in LIST. Denote d(Tf) =d;, M; = M;_1 — m;, where m; is the sum
of costs of edges coming to S-vertices of T} in the tree Mst(S). As above,
= 2+In k)l_z, s; = smijc.

Note that f(1}) < smt;/My. By Lemma 2, d;/m; < f(17)er < s1/Mo.
Inductively,
d; sy
— < .
m; — M;_4

11



Now we are ready to use the same argument as for the proof of Inequality (8)
to obtain for M, > s; > M,y the following inequality:

Zgzl dz + Mr—l—l + dr—l—l

<24+1Ink
8
This implies that
r+1
d(T) <> di+ Moy < s1(241nk)
=1

By Theorem 2, the last value is at most k%(Q + In k) —Lsmt.

We omit here a slight improvement of the previous analysis which leads to
the bound claimed in Theorem 1.

Now we will find the limit performance guarantee of {A4;}. Denote the

performance guarantee of A; by fi(k) = k%(l + log k)!=1. We need to find
f(k) = min; fi(k). Taking natural logarithm of f;(k) and derivative, we obtain

In k&

Substituting the solution of (10) in In fj(k), we obtain

In f(k) = 1y/Inkln(lnk+1) = ln(nk+1) ¢
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