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Abstract

Let L be a union of hyperplanes with s vertices. We prove that the runtime of
a probabilistic linear search tree recognizing membership to L is at least Q (log s),
provided that L satisfies a certain condition which could be treated as a generic
position. A more general statement, namely without the condition, was claimed by
F. Meyer auf der Heide [1], but the proof contained a mistake.
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1 Families of hyperplanes in a generic position

Let L =J,<;<,, Hi C IR be a union of hyperplanes. We intend to define a version
of what does it mean that L is in a generic position.

If @ = () 1<j<eH;, has the dimension dim@Q = [ we call @ [-face of L. Also
O—faces we call vertices. If a hyperplane H contains some [—face for rather [ then H
contains many vertices of L. The generic position for L means, informally speaking,
that this 1s the only reason for H to contain many vertices of L.

Definition. We say that L is in a generic position if for some ¢; > ¢o > 0,¢3 >
0 and any hyperplane H C R*

1) L has s > m®" vertices,
2) each vertex belongs to exactly n hyperplanes of L,

3) the number of vertices v lying in H for which there is no [-face contained in
H such that this [-face contains v, where { > c3n, does not exceed m®".

One can show that if Hq, ..., Hysatisfy the property of algebraically indepen-
dence, namely, that m - n coefficients a;; of all linear equations for Hy, ..., H,, (
le. H; = {Zl<j<n a; X; = 1}) are algebraically independent over ¢ then L is in
a generic position.

Moreover, one can prove in this case the following. Let @4, ..., @Q; be all maxi-
mal (in the sense of inclusion) faces of L containes in H, then ), ., ., dim(Q; +1) <
n. Thus, the number of vertices in the item considered in the item 3 of the definition

n

does not exceed n - m” since any [face cannot contain more than m! vertices of

L.

Let D be a probabilistic linear search algorithm (or briefly o« —PLSA) recognizing
L with two-sided error o < /5 (one can find in [1], [2] the concepts used in the
present paper).

Theorem. If L is in a generic position then the runtime of D is greater than
Q (nlogm).

Note that the similar result was claimed in [1] even without the condition 3)
from the definition of a generic position, but the proof contained a mistake.

For a value of the random parameter 0 < v < 1 by D, we denote the corre-

sponding LSA (cf. [1]).

Recall that in [2] it is proved that one can obtain f—PLSA recognizing the same
language L as D for any cinstant § > 0 increasing the runtime of D by at most a
constant factor. We shall use this remark to make o as small as desired.

As in [1] one shows that for any vertex of L there exists ¢ > 0 such that each
hyperplane occuring as a testing one in D which intersects the closed ball B.(v) of
the radius € and with the center in v, should pass through v.



Similar to [1] select from D all the testing hyperplanes passing through v. Then
the obtained thereby D' is o« —PLSA recognizing the language LN B.(v), when being
restricted on B(v).

Making a suitable affine transformation, we can assume that v is the coordinate
origin and besides, the hyperplanes from L passing through v, are just the coordinate

hyperplanes {X; = 0}, ..., {X,, = 0}.
For any 0 < < 1 each leaf of D/v provides a polyhedra V' of the form
{Li=0}Nn...N{Ly, =0}N{Lgy1 >0}t ...N{L; >0}

for some testing hyperplanes L1, ..., Ly. Then P = {L; = ... = L, = 0} is the
minimal (in the sense of inclusion) face of the closure of V. If ¢; = 0 then V is
open. Polyhedra corresponding to all the leaves of D/v form the partition R*.

For the time being we fix 0 < v < 1 and an open polyhedron V. Denote by A (V)
the maximal dimension of the faces of L passing through v which are contained in P.
Any such face of L has the form () ;er{X; = 0} for a certain subset [ C {1, ...,n}.
Observe that if two faces () jer{X; = 0} and () ;es{X; = 0} of L are contained
in P then the face () ;erns{X; = 0} is contained in P as well. Thus, there is the
unique maximal face of the form () ;e;{X; = 0} contained in P and its dimension

equals to A (V).

2 Estimating spherical measure of intersections of
a polyhedron with the coordinate hyperplanes

For any set W C RX consider its cone C'(W) with the vertex in the rorigin and by
In(W) = pn(C(W) N By)/pin(B1) where g, is the usual Borel measure in R* and
the ball By = B1(0) (we consider only measurable sets).

Take any line h € P passing through the origin (provided that dim P > 0 and
such a line does exist) and let H be a hyperplane orthogonal to h and passing
through the origin.

Lemma 1. 6,(V)=46,1(VNH)

Proof.  Actually, a more general statement holds. For any subset /' C H for
the direct product U x h C R™ we have 6, (U x h) = d,_1(U). To prove the latter
statement one can consider a partition of HN By = UgU ... UU; into “small” pieces
where U; = R;(Uy), 1 < i <t for appropriate rotations R; of H. Extend every R;
to the rotation R; of R¥ by leaving h invariant. Then 1 = 6, (B1) = (t4+1)d, (Uyx h)
and 1 =d,_1(HNBy) = (t+ 1)8,(Uy). The standard arguing with approximation
of U by a partitioning into “small” pieces completes the proof of the lemma.

O



Lemma 2. Ifa-PLSA D’ recognizes the language L N Be(v) (where L is in a
generic position), being restricted on Bc(v), where v is a verter of L, then with a
2o

probability > p =1 — = (thus, we assume that o < /5, see the remark in section

1), a certain leaf of D', provides an open polyhedron V with A (V) < ezn.

Proof. Suppose the contrary. Recall that we assume that v coincides with the
origin and among the hyperplanes Hy, ..., Hy, there are {X; = 0}, ..., {X,, = 0}.
Then 1 =36, (V) where the summation ranges over all open polyhedra V provided
by the leaves of D/v' Assume that for a particular value of the random parameter
0 <y <1 forall open V we have A (V) > c3n.

Let P be the minimal face of V, then P C {X;, = ... = X;, = 0} for some in-
dices 1 <y, ..., <nwith! < (1—c3)n. Foranyindex j € {1, ...,n}\{é1, ..., 4}
lemma 1 entails (5n_1(V Nn{x; = 0}) = 0,(V). Therefore > v > cicn (5n_1(V N
{X; = 0}) > cgn. By the supposition the expectation of the latter sum over the
values of the random parameter 0 < < 1 is greater than

E(Z Z (5n_1(V N{X; = 0})) > (1 —p)esn = 2an.

Vo 1<i<n

This contradicts to the definition of o—PLSA taking into account that for any
point from V' N {X; = 0} the output of D’ is the same as for the points, from its
small neighbourhood, so D/, does not distinguish them. The obtained contradiction

proves the lemma.
O

3 Lower bound on the number of faces in PLSA

Now we complete the proof of the theorem, the arguing is similar to one in [1].
Applying lemma 2 to each vertex of L we conclude that there exists a value 0 < v <1
of the random parameters such that for at least ps vertices v of L there is an open
polyhedron V' provided by corresponding to a leaf of D, such that V' hast a face
P (which could be not a minimal face of P unlike the local situation in section 2)
containing v and if some [—face of L is contained in P and contains v then | < c3n.
To every such vertex v let us correspond a face p (if there are several such faces
then correspond any of them).

Since L is in a generic position (see the definition), any face P of D, could be

" vertices of L. Hence there are at least P9/, con =

corresponded to at most m°?
pm(€1=¢2)" faces of D.. But on the other hand, the number of faces in D, does
not exceed s%7 (cf. [1]), therefore 227 > pm(©1=¢2)" this completes the proof of the

theorem.
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